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This online appendix supplements the paper Volatility-of-Volatility Risk with additional

information on and conclusions from a model calibration exercise (Section I), technical details

about delta-hedged equity options and risk-neutral skewness (Section II), and an additional

robustness check (Section III).

I. Model

Unlike the expected gains for index options in Equation (2.10), the expected gains for VIX

options do not generally admit a linear factor structure because the option price is no longer

homogeneous in the underlying asset value. In this section we provide a numerical example

to investigate the patterns in delta-hedged VIX option gains and how they are related to the

volatility of volatility. In Section I.A, we explain how we calibrate the model. In Section I.B,

we study model-implied expected gains on delta-hedged VIX options and the relation to the

volatility of volatility. In Section I.C, we study the deltas of VIX options and compare them

to Black-Scholes deltas.



A. Calibration

We calibrate the model to match key asset-pricing moments in the data. The Q-dynamics

of the model are given in Equations (2.2) and (2.9). As it is common in the literature we

choose θ(Vt) = κV (V̄ − Vt) and γ(ηt) = κη(η̄ − ηt). For simplicity, we assume that the three

Brownian motions W 1, W 2 and W 3 are uncorrelated.

We choose parameter values for rf , κV , V̄ , λV , κη, η̄, λη, and φ. The parameters can

be found in Table 1. We choose rf and V̄ to match the unconditional level of risk-free rate

and the variance of the S&P500 index in our sample period, respectively. We choose λV , η̄,

and κV to target the level, the variance, and the persistence of V IX2, respectively. These

moments can be computed in closed form, because V IX2 is linear in the state variables.

More specifically, it is given by

(1) V IX2
t = A+B Vt

where the coefficients A and B are

(2) A =
κV V̄

κV + λV

[
1− 1− e−(κV +λV )τ

(κV + λV )τ

]
, B =

1− e−(κV +λV )τ

(κV + λV )τ

Finally, we calibrate λη, φ, and κη to match the level, the variance, and the persistence of

V V IX2. We run a simulation study to compute model-implied moments of V V IX2, since

they are not available in closed form. We consider a grid of states (Vt, ηt), where the grid

spans values between 0 and 3 times the steady state of both variables. The grid points serve

as starting values for N paths of the state variables that we draw according to a discretized

version of the dynamics in Equation (2.2). In particular, since ηt follows a square-root
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process, we draw ηt+1 given ηt from a non-central χ2-distribution

(3) ηnt+∆t =
(1− e−(κη+λη)∆t)φ2

4(κη + λη)
χ2
d

(
4κηe

−κη∆t

(1− e−(κη+λη)∆t)φ2
ηnt

)
(ωnη,t+∆t)

for each n = 1, . . . , N , with d degrees of freedom where

(4) d =
4κV
φ2

κη + λη
κV + λV

η̄.

The increments in V are approximately Gaussian with

(5) V n
t+∆t = N

(
V n
t + [κV V̄ − (κV + λV )V n

t ]∆t,∆t ηnt

)
(ωnV,t+∆t).

To ensure non-negative realizations of the variance, we truncate the normal distribution at

zero. To make the simulation results more reliable in small samples N , we use the same

pseudo random numbers (ωnη,t+∆t, ω
n
V,t+∆t) for each grid point.

We calculate the prices of VIX futures that mature in t+τF . We assume a time to maturity

τF of one month and choose ∆t = τF
30

. For a given parameterization and a particular vector

of initial state variables (Vt, ηt), we simulate the distribution of Vt+τF and ηt+τF . We then

calculate the time t futures price by

(6) Ft(Vt, ηt, τF ) =
1

N

N∑
n=1

√
A+B V n

t+τF

The next step is calculate a grid of prices of VIX options that also mature in one month.

These options are written on VIX futures that have a time to maturity of one month at the

maturity of the option. To do so, we simulate state variables under Q as described above

and calculate the VIX futures prices at maturity of the option using the grid of futures prices

calculated earlier. Since the terminal values of the drawn state variables are between the

points of the futures prices grid, we interpolate (or extrapolate if a state variable is outside
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the grid) the futures prices. The resulting futures price of the n-th path given initial values

of (Vt, ηt) is denoted by F n
t+τC

(Vt, ηt, τF ). The call and put prices are

C∗t (Vt, ηt, τC , K) =
1

N
e−rf τC

N∑
n=1

(F n
t+τC

(Vt+τC , ηt+τC , τF )−K)+,(7)

P ∗t (Vt, ηt, τC , K) =
1

N
e−rf τC

N∑
n=1

(K − F n
t+τC

(Vt+τC , ηt+τC , τF ))+

where K denotes the strike price. We use a grid of strike prices that ranges across values

between 0.4K̄ and 1.6K̄, where K̄ is the steady state futures price Ft(V̄ , η̄, τC + τF ).

To calculate V V IX2, we use VIX option prices calculated above and proceed similarly

to the procedure that is applied to data. We numerically solve the integral

V V IX2
t (Vt, ηt) =

2erf τC

τC

[ ∫ Ft(Vt,ηt,τC+τF )

0

1

K2
P ∗t (Vt, ηt, τC , K)dK(8)

...+

∫ ∞
Ft(Vt,ηt,τC+τF )

1

K2
C∗t (Vt, ηt, τC , K)dK

]

using our grid of strike prices as discretization. Futures prices Ft(·, ·, τC + τF ) with longer

maturity are calculated as described above.

Finally, we draw one long path of the state variables under P. For that purpose, we

proceed as described above but use the P-dynamics of the state variables:

(9) ηt+∆t =
(1− e−κη∆t)φ2

4κη
χ2
d

(
4κηe

−κη∆t

(1− e−κη∆t)φ2
ηt

)
(ω0

η,t+∆t),

with d degrees of freedom where

(10) d =
4κη
φ2

η̄
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and

(11) Vt+∆t = N
(
Vt + κV (V̄ − Vt)∆t,∆t ηt

)
(ω0

V,t+∆t).

Using our grid of V IX and V V IX, we can now study the time series properties of the

model-implied quantities and compare them with the empirical moments.

B. Expected gains on delta-hedged VIX options

To calculate model-implied delta-hedged option gains, we calculate prices of VIX futures and

VIX options on a grid, as described in Section I.A. We use Equation (2.18) and numerically

solve the integral

(12)

∫ t+τ

t

Et
[
∂C∗s
∂ηs

ληs

]
ds.

We approximate the continuous path of ∂C∗s
∂ηs

by a discretization with step size ∆t:

(13)

∫ t+τ

t

Et
[
∂C∗s
∂ηs

ληs

]
ds ≈ 1

N

N∑
n=1

I−1∑
i=0

∂C∗t+i∆t(V
n
t+i∆t, η

n
t+i∆t, τC − i∆t,K)

∂ηt+i∆t
ληt+i∆t∆t,

where I∆t = τ . We implement this equation in the following way: First, we compute grids

of VIX option prices according to the procedure outlined in Section I.A also for shorter times

to maturity, in particular, τC − i∆t for i = 0, . . . , I. Second, we approximate the derivative

of C∗ with respect to η using finite differences, i.e., at the grid point (VmV , ηmη), we use

(14)
∂C∗(VmV , ηmη)

∂ηmη
≈
C∗(VmV , ηmη+1)− C∗(VmV , ηmη−1)

ηmη+1 − ηmη−1

.

Third, we again simulate innovations in the state variables under P. After each simula-

tion step, we end up in states which are between two grid points or even outside the grid.
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Because we do not have derivatives at these points, we proceed as follows. We start with the

calculation of expected option gains over the last time step from t+ τC −∆t to t+ τC . This

gives us a grid of expected option gains over this short period. We then simulate increments

in the state variables in the period from t + τC − 2∆t to t + τC − ∆t, starting again with

the usual (V, η)-grid and add up expected gains over this period with expected gains over

the final period given the state that is drawn using the scheme that approximates the P

dynamics (see Section I.A). We do so by interpolating the grid produced before. We use the

same procedure and iterate back until time t.

Figure 1 shows expected delta-hedged option gains divided by the futures price as a

function of η for different levels of the variance Vt. For the upper graph we choose λη = −5,

i.e. we assume that the market price of volatility-of-volatility risk is negative. For the lower

graph we assume λη = 5. For the strategies shown here, we always choose at-the-money

options. When the investor sets up a strategy in state (V0, η0), the strike price of the option

he buys is equal to the VIX futures price in state (V0, η0), i.e., to Ft(V0, η0, τF ).

Given a negative λη, we find that the expected gains are all negative.1 This is because

the derivatives of the VIX options with respect to η are positive for all grid points and for all

times to maturity. We also find that expected option gains are larger in absolute terms for

higher values of η. Since we truncate the process for V at zero, this effect is more pronounced

for low values of V : A high volatility of volatility not only increases the value of the VIX

option because the option price is convex in V , but also because it increases the upside

potential of the V IX without increasing the downside potential, due to the lower bound at

zero. Expected option gains are not exactly linear in ηt since the derivative of VIX option

prices with respect to η is not constant but decreasing in η (see Figure 2).

With a positive λη expected delta-hedged option gains are positive. In this case, all VIX

1Quantitatively, the expected delta-hedged VIX option gains normalized by the VIX futures price, com-
puted at the average values of the volatility states, are about -0.1% for two-day returns, or -1.5% time-
aggregated to a monthly horizon. These values are close to the empirical estimates presented in Section
5.
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option prices are still increasing in the volatility of volatility. We can conclude that the

sign of the expected option gain is pinned down by the sign of the market price of volatility

of volatility risk, and that the expected delta-hedged VIX option gains are increasing, in

absolute terms, in the volatility of volatility.

C. Delta computations

A key input into the computations of delta-hedged option returns is the delta of the option.

A typical approach in the literature is to approximate the unknown ”true” deltas by the

Black-Scholes implied ones; see Bakshi and Kapadia (2003), Duarte and Jones (2007), and

our subsequent analysis. In this section, we use our numerical model to compute and compare

the “true” and Black-Scholes deltas, and evaluate the adequacy of the approximation for the

VIX options.

The Black-Scholes delta for a call option on a futures contract is given by ∆ = e−rf τCN(d1)

where N denotes the stadnard normal cumulative distribution function, and d1 is given as

(15) d1 =
log(Ft(V, η))− log(K) + 1

2
IV 2τC

IV
√
τC

.

Here, IV denotes the implied volatility of the underlying. We use the observed option and

futures prices and solve the Black Scholes formula for IV .

The Black-Scholes model assumes that the option’s underlying follows a geometric Brow-

nian motion. In our model Vt does not follow such a process. As a consequence, neither the

VIX nor VIX futures prices follow a proportional process. In particular, the variance of the

VIX futures price is largely driven by η, while its level is largely driven by V .

To evaluate the quality of the approximation, we compute the true delta from the model,

∂C∗

∂F
. The two prices C∗ and F are both functions of V and η. An innovation in F can be due
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to an innovation in V or in η, and these two innovations may lead to different innovations in

C∗. The goal is to set up a portfolio that is neutral to innovations in the variance V , such

that the portfolio is in the end only exposed to innovations in the volatility of volatility. It

is therefore appropriate to consider the derivative in the V -direction only. We use the chain

rule to come up with

(16) C∗Fv =
∂C∗/∂V

∂F/∂V

as a proxy for ∂C∗

∂F
. C∗Fv quantifies how much the VIX option price changes after a change

in F that is due to a change in V .

Figure 3 shows both variants of delta as functions of the state variables V and η. The

plotted deltas are for options with a strike price of F (V̄ , η̄). We find that the two variants

of delta have a similar shape, but C∗FV is closer to 0 when the option is deep in the money

and closer to 1 when the option is far out of the money. The Black Scholes delta of the

at-the-money option is equal to 0.63 while C∗FV of the at-the-money option is 0.60. In the

empirical part of our paper we use mostly at-the-money options and test if the results are

robust to variations in deltas.

Instead of using Equation (2.18) to calculate expected option gains, one could alterna-

tively simulate realized gains from the trading strategy and take the average across realiza-

tions. For this purpose, we would have to calculate deltas of the VIX options and set up a

delta hedged portfolio. This procedure, however, has the disadvantage that we need much

larger samples to obtain stable results, because of the fluctuations in the Brownian motion

W3 that are averaged out when taking the expectation (see Equation (2.17)). While this task

is very costly in terms of computation time, one can look at realized delta hedged option

gains path by path and study the difference between gains when different deltas are used for

setting up the hedge portfolio.
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We now compare the difference between gains from our trading strategy when using

the Black-Scholes delta or the “true” delta C∗FV for setting up the hedge portfolio. Even

with noisy estimates of the expected gains, the difference between both gains is informative

because we use the same paths of the state variables in the simulation of the two strategies.

Thus, the sampling error widely cancels out when considering the difference.

Figure 4 shows the difference between delta hedged option gains when using either delta.

For moderate values of V the difference is close to zero. When V is high, the strategy

that uses the Black-Scholes delta yields less negative returns than the strategy that uses

C∗FV . In the light of this result, we can conclude that using Black-Scholes deltas is a rather

conservative strategy. In our empirical exercise, we would expect even more pronounced

gains when using C∗FV , which is, however, not observable in the data.

II. Technical Details

A. Delta-Hedged Equity Options

The state vector is xt =

[
St Vt ηt

]′
. Under the linear risk premium structure, λVt = λV Vt

and ληt = ληηt. Note that since Ct is homogeneous of degree 1 in the underlying St and the

strike price K, ∂C
∂V

and ∂C
∂η

are also homogeneous of degree 1 in St and K. Define a pair of

functions:

g1(xt) = λVt
∂Ct
∂Vt

(17)

g2(xt) = ληt
∂Ct
∂ηt
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We can re-write Equation (8) from the paper as:

Et [Πt,t+τ ] = Et
[∫ t+τ

t

g1(xu)du

]
+ Et

[∫ t+τ

t

g2(xu)du

]
.(18)

Define operators L and Γ such that:

L[.] dt =
∂[.]

∂S
µtStdt+

∂[.]

∂V
θ(Vt)dt+

∂[.]

∂η
γ(ηt)dt+

∂[.]

∂t
dt(19)

+
1

2

∂2[.]

∂S2
[dSt, dSt] +

1

2

∂2[.]

∂V 2
[dVt, dVt] +

1

2

∂2[.]

∂η2
[dηt, dηt]

+
∂2[.]

∂S∂η
[dSt, dηt] +

∂2[.]

∂S∂V
[dSt, dVt] +

∂2[.]

∂V ∂η
[dVt, dηt]

Γ[.] =

[
∂[.]

∂S
St
√
Vt,

∂[.]

∂V

√
ηt,

∂[.]

∂η
φ
√
ηt

]
.

Then, for u > t, Itô’s Lemma implies that:

(20) g1(xu) = g1(xt) +

∫ u

t

Lg(xu′)du
′ +

∫ u

t

Γg(xu′)dWu′ .

The integral in the first expectation on the right-hand side of Equation (18) becomes:

∫ t+τ

t

g1(xu)du =

∫ t+τ

t

[
g1(xt) +

∫ u

t

Lg(xu′)du
′ +

∫ u

t

Γg(xu′)dWu′

]
du(21)

= g1(xt)τ +
1

2
Lg1(xt)τ

2 +
1

6
L2g1(xt)τ

3 + ...+ Itô Integrals

=
∞∑
n=0

τ 1+n

(1 + n)!
Lng1(xt) + Itô Integrals,

and likewise for the second integral in (18). We can use this to re-write (18) as:

Et [Πt,t+τ ] = Et
[∫ t+τ

t

g1(xu)du

]
+ Et

[∫ t+τ

t

g2(xu)du

]
(22)

=
∞∑
n=0

τ 1+n

(1 + n)!
Ln [g1(xt)] +

∞∑
n=0

τ 1+n

(1 + n)!
Ln [g2(xt)] .
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Note that g1(xt) = α1(Vt, τ ;K)St, and g2(xt) = α2(ηt, τ ;K)St. By Lemma 1 of Bakshi and

Kapadia (2003), Ln[g1(xt)] and Ln[g2(xt)] will also be proportional to St, which implies that:

Ln [g1(xt)] = λV VtΦ
V
t,nSt ∀n(23)

Ln [g2(xt)] = ληηtΦ
η
t,nSt ∀n.

Therefore, we have:

Et [Πt,t+τ ] =
∞∑
n=0

τ 1+n

(1 + n)!
Ln [g1(xt)] +

∞∑
n=0

τ 1+n

(1 + n)!
Ln [g2(xt)](24)

= St
[
λV βVt Vt + ληβηt ηt

]
,

which implies that:

(25)
Et [Πt,t+τ ]

St
= λV βVt Vt + ληβηt ηt,

where the sensitivities to the risk factors are given by:

βVt =
∞∑
n=0

τ 1+n

(1 + n)!
ΦV
t,n > 0(26)

βηt =
∞∑
n=0

τ 1+n

(1 + n)!
Φη
t,n > 0.

The betas are positive since ∂Ct
∂Vt

> 0 and ∂Ct
∂ηt

> 0.
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B. Risk-Neutral Skewness

The prices of the volatility, cubic, and quartic contracts Vt,t+τ ,Wt,t+τ , Xt,t+τ are given

Vt,t+τ =

∫ ∞
St

2(1− log K
St

)

K2
Ct(t+ τ ;K)dK +

∫ St

0

2(1 + log St
K

)

K2
Pt(t+ τ ;K)dK,(27)

Wt,t+τ =

∫ ∞
St

6 log K
St
− 3(log K

St
)2

K2
Ct(t+ τ ;K)dK

−
∫ St

0

6 log St
K

+ 3(log St
K

)2

K2
Pt(t+ τ ;K)dK,

Xt,t+τ =

∫ ∞
St

12(log K
St

)2 − 4(log K
St

)3

K2
Ct(t+ τ ;K)dK

+

∫ St

0

12(log St
K

)2 + 4(log St
K

)3

K2
Pt(t+ τ ;K)dK,

and µt,t+τ = erf τ − 1− e
rf τ

2
Vt,t+τ − e

rf τ

6
Wt,t+τ − e

rf τ

24
Xt,t+τ .

To construct these measures, we use out-of-the-money options to mitigate liquidity con-

cerns. Following Shimko (1993), each day we interpolate the Black-Scholes implied volatility

curve at the observable strikes using a cubic spline, and then calculate option prices to com-

pute the above moments. We construct these measures for both S&P500 options and VIX

options. Our implied volatility slope and risk-neutral skewness measures are calculated using

options with the same maturity as our test assets.

III. Additional Robustness

As stated in Section V.A of the paper, we considered an exercise similar to Coval and

Shumway (2001) by perturbing the Black-Scholes deltas used in the option hedging. In

Tables 2 and 3, we set the deltas to 0.95 and 1.05 times the value from the Black-Scholes

model, respectively. Our main results are not sensitive to the choice of using Black-Scholes

deltas for option hedging, and remain quite robust.
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Tables and Figures

Table 1: Model parameters

The table shows the calibrated parameters for the model. Variance and vol-of-vol refers to the parameters of
the variance and volatility-of-volatility dynamics, respectively. Times-to-maturity indicate the time intervals
at annual frequency.

Variance V̄ κV λV

.19792 2.4982 −4.8

Vol-of-vol η̄ κη φ λη

.0329 13.097 .0694 −5

Risk-free rate rf

.0102

Times to maturity ∆t τ τF τC

1/360 2/360 30/360 10/360
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Table 2: Delta-Hedged Option Gains: 0.95 × ∆BS Delta

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness,
when the Black-Scholes delta is reduced to 0.95 × ∆BS . Options have one month to maturity, are grouped
into an equal-weighted portfolio inside the moneyness bin, and are held till expiration. The delta-hedge is
computed using the Black-Scholes formula, with daily rebalancing and the margin difference earning the
risk-free rate. The delta-hedged option gains Π are scaled either by the index or by the option price. The
t-statistics are testing the null that the delta-hedged option gain is equal to zero. The % < 0 column shows
the fraction of observations with negative gains. The data are monthly from 2006m2 to 2016m12.

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500 Options

Call 0.950 to 0.975 0.07 [ 3.63] 0.04 45% 0.51 0.36 1.70 [ 4.21] 0.81

0.975 to 1.000 0.05 [ 3.29] -0.01 52% 0.46 0.23 2.62 [ 4.38] -0.30

1.000 to 1.025 -0.03 [-2.50] -0.05 57% 0.42 0.07 -2.08 [-1.54] -4.97

1.025 to 1.050 -0.08 [-6.86] -0.05 62% 0.36 0.11 -31.52 [-8.87] -22.31

Put 0.950 to 0.975 -0.14 [-7.24] -0.20 83% 0.61 0.35 -20.09 [ -8.85] -31.90

0.975 to 1.000 -0.17 [-9.01] -0.22 77% 0.59 0.20 -11.02 [ -7.68] -20.48

1.000 to 1.025 -0.23 [-11.36] -0.26 75% 0.60 0.05 -9.34 [-12.36] -13.36

1.025 to 1.050 -0.28 [-10.16] -0.31 74% 0.62 0.06 -6.47 [-10.75] -7.71

Panel B: VIX Options

Call 0.800 to 0.900 -0.38 [-2.17] -0.83 61% 2.65 -0.05 -2.13 [-2.03] -4.46

0.900 to 1.000 -0.90 [-4.06] -1.70 69% 3.26 -0.12 -7.80 [-3.94] -14.21

1.000 to 1.100 -0.94 [-3.65] -1.65 73% 3.50 -0.15 -11.05 [-3.36] -20.47

1.100 to 1.200 -1.32 [-5.38] -1.73 79% 3.25 -0.13 -20.90 [-5.11] -29.08

Put 0.800 to 0.900 -0.44 [-1.51] -0.73 63% 2.62 0.07 -11.33 [-1.44] -23.15

0.900 to 1.000 -0.73 [-3.52] -1.03 70% 2.95 -0.14 -10.13 [-2.99] -16.30

1.000 to 1.100 -0.74 [-3.14] -0.79 66% 3.20 -0.18 -5.48 [-2.97] -6.53

1.100 to 1.200 -1.05 [-4.31] -0.86 69% 3.18 -0.12 -4.97 [-4.30] -4.87
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Table 3: Delta-Hedged Option Gains: 1.05 × ∆BS Delta

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness,
when the Black-Scholes delta is increased to 1.05 × ∆BS . Options have one month to maturity, are grouped
into an equal-weighted portfolio inside the moneyness bin, and are held till expiration. The delta-hedge is
computed using the Black-Scholes formula, with daily rebalancing and the margin difference earning the
risk-free rate. The delta-hedged option gains Π are scaled either by the index or by the option price. The
t-statistics are testing the null that the delta-hedged option gain is equal to zero. The % < 0 column shows
the fraction of observations with negative gains. The data are monthly from 2006m2 to 2016m12.

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500 Options

Call 0.950 to 0.975 0.07 [ 2.68] -0.04 56% 0.64 0.29 1.51 [ 3.03] -0.86

0.975 to 1.000 0.04 [ 1.96] -0.07 56% 0.57 0.13 2.15 [ 2.98] -2.61

1.000 to 1.025 -0.04 [-2.66] -0.08 60% 0.48 0.10 -2.82 [-1.87] -9.11

1.025 to 1.050 -0.08 [-6.06] -0.05 63% 0.40 0.14 -34.43 [-8.96] -25.11

Put 0.950 to 0.975 -0.13 [ -8.46] -0.16 79% 0.48 0.34 -18.45 [-9.05] -25.34

0.975 to 1.000 -0.15 [-10.66] -0.17 72% 0.43 0.19 -9.47 [-7.97] -13.93

1.000 to 1.025 -0.20 [-14.58] -0.19 76% 0.40 0.01 -8.20 [-14.76] -8.48

1.025 to 1.050 -0.22 [-13.33] -0.20 80% 0.38 0.01 -5.21 [-13.55] -5.15

Panel B: VIX Options

Call 0.800 to 0.900 -0.11 [-0.77] -0.45 57% 2.26 0.06 -0.63 [-0.71] -2.54

0.900 to 1.000 -0.63 [-3.29] -0.99 67% 2.84 -0.03 -5.73 [-3.37] -9.49

1.000 to 1.100 -0.75 [-3.26] -1.04 68% 3.12 -0.16 -9.01 [-3.17] -12.89

1.100 to 1.200 -1.08 [-4.56] -1.39 77% 3.14 -0.12 -17.11 [-4.38] -21.77

Put 0.800 to 0.900 -0.56 [-1.79] -1.19 67% 2.80 0.06 -14.20 [-1.63] -32.17

0.900 to 1.000 -0.87 [-3.85] -1.60 70% 3.20 -0.13 -11.69 [-3.12] -24.20

1.000 to 1.100 -0.93 [-3.59] -1.94 73% 3.51 -0.17 -6.79 [-3.28] -13.46

1.100 to 1.200 -1.30 [-5.18] -1.72 79% 3.28 -0.14 -6.10 [-5.02] -8.40
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Figure 1: Model-implied Expected Delta-hedged VIX Option Gains

The figures show model-implied expected delta-hedged option gains as a function of the volatility-of-volatility
η for different levels of the volatility state Vt. The upper plot shows gains for a negative market price of
volatility-of-volatility risks, λη = −5. The lower plot shows gains for a positive market price of volatility-of-
volatility risks λη = 5. All options are at the money.
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Figure 2: Model-implied Sensitivities of VIX Option Prices

The figure shows model-implied sensitivities (derivatives) of at-the-money VIX option prices to the volatility-
of-volatility η as a function of the state variable η for different levels of Vt. The upper plot shows gains for
a negative market price of volatility-of-volatility risks, λη = −5. The lower plot shows gains for a positive
market price of volatility-of-volatility risks λη = 5.
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Figure 3: Black-Scholes and Model-implied Deltas

The figure plots the Black-Scholes delta of a VIX option (left panel) and the model-implied delta (right
panel) as functions of the volatility and volatility of volatility state variables V and η.

Figure 4: Difference Between Delta-Hedged Option Gains

The figure plots the difference between the delta-hedged option gains using the model-implied versus the
Black-Scholes delta. All options are at-the-money.

18


	Model
	Calibration
	Expected gains on delta-hedged VIX options
	Delta computations

	Technical Details
	Delta-Hedged Equity Options
	Risk-Neutral Skewness

	Additional Robustness

