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A The Numerical Algorithm for the LTV Limits Case

The free boundary condition makes it difficult to obtain the solution in closed form.
So we apply the finite difference method to get the dual value function, which satisfies the
free boundary condition at every node. Since we know the value function at final time T , it
is similar to an American-type option pricing. For the unconditional stability, we apply the
Crank-Nikolson method and Gauss-Seidel scheme.

Let us define the value function as a CRRA utility function,

U(XT ) =
K

1− γ
X1−γ
T ,

where the constant K is a weight on the utility at the final time.
Let us define the grid as y = 0, δy, 2δy, . . . , Nδy = yT , and

t = 0, δt, 2δt, . . . ,Mδt = T . A Crank-Nicolson method is the combination of the explicit
and implicit methods so the differences with respect to time and y of function
φ(iδy, jδt) ≡ φi,j are given by

φt =
φi,j+1 − φi,j

δt
,

φy =
1

2

(
φi+1,j − φi−1,j

2δy
+
φi+1,j−1 − φi−1,j−1

2δy

)
,

φyy =
1

2

(
φi+1,j − 2φi,j + φi−1,j

(δy)2
+
φi+1,j−1 − 2φi,j−1 + φi−1,j−1

(δy)2

)
.

If we substitute these differences into PDE (45) and rearrange it, for i = 0, 1, . . . , N − 1,
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and j = 1, 2, . . . ,M − 1, we have

β

2
(φi,j + φi,j−1) =

φi,j − φi,j−1
δt

+
(β − r)iδy

4

(
φi+1,j − φi−1,j

δy
+
φi+1,j−1 − φi−1,j−1

δy

)
+
θ2i2δy2

4

(
φi+1,j − 2φi,j + φi−1,j

(δy)2

+
φi+1,j−1 − 2φi,j−1 + φi−1,j−1

(δy)2

)
+

γ

1− γ
(iδy)1−

1
γ

where the boundary conditions are given by

φi,M = Ũ(iδy) =
Kγ

1− γ
(iδy)1−

1
γ , i = 0, 1, . . . , N,(A.1)

φN,j = e−βδt

{
γ(Nδy)1−

1
γ δt

1− γ
+ φN,j+1

}
, j = 0, 1, . . . ,M − 1,

φ0,j = 0, j = 0, 1, ...,M.

Thus, we have the following grid equation

aiφi+1,j−1 + (bi − 1)φi,j−1 − ciφi+1,j−1 = −aiφi+1,j − (1 + bi)φi,j

+ciφi−1,j − di.

where the coefficients ai, bi, ci, and di are given by

ai =
δt

4
((β − r)i+ θ2i2),

bi = −δt
2

(θ2i2 + β),

ci =
δt

4
((β − r)i− θ2i2),

di =
γδt

1− γ
(iδy)1−

1
γ , i = 1, . . . , N − 1,

with boundary conditions (A.1). Note that this is the system of N − 1 linear equations
with N − 1 unknowns.

For the free boundary condition, we have to consider the backward difference
because if (i, j) is the free boundary node, the value function at (i+ 1, j) would be
undefined. Thus, the free boundary condition is expressed by

φi,j − φi−1,j
δy

≤ LP0λ
σp
θ eα(jδt)(iδy)−

σp
θ −m(jδt),
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where the remaining human capital m(jδt) and constant α are determined by

m(jδt) =
i0
r

(
1− e−r(M−j)δt

)
,

α = µp −
1

2
σp +

σp
θ

(
β − r − θ2

2

)
.

The free boundary condition can be rewritten as

φi,j ≤ φi−1,j + LP0λ
σp
θ eα(jδt)(iδy)−

σp
θ · δy − δy ·m(jδt)(A.2)

, φi−1,j + g(i, j).

Therefore, for each node we have to check whether the derived value from the system with
N − 1 unknowns is less than g(i, j). Notice that since there is one-to-one correspondence
between wealth and parameter λ, the dual value function φi,j satisfying the inequality
(A.2) is true only for a corresponding initial wealth x = x∗(λ).

Now, we apply the Gauss-Seidel method with overrelaxation. Let us denote the
system of linear equations as

AX = E

Then the Gauss-Seidel method implies that

x
(k+1)
i = x

(k)
i +

w

aii

(
ei − Σi−1

j=1aijx
(k+1)
j − ΣN

j=iaijx
(k)
j

)
.

Thus, we have for i = 1,

φ
(k+1)
1,j = φ

(k)
1,j +

w

b1 − 1

(
e1 − (b1 − 1)φ

(k)
1,j − a1φ

(k)
2,j

)
,

and for i = 2, . . . ,M − 2,

φ
(k+1)
i,j = φ

(k)
i,j +

w

bi − 1

(
ei + ciφ

(k+1)
i−1,j − (bi − 1)φ

(k)
i,j − aiφ

(k)
i+1,j

)
,

and for i = M − 1,

φ
(k+1)
M−1,j = φ

(k)
M−1,j

+
w

bM−1 − 1

(
eM−1 + cM−1φ

(k+1)
M−2,j − (bM−1 − 1)φ

(k)
M−1,j

)
.

Therefore, for each time j, the iterative scheme is obtained by

φ
(k+1)
1,j = max

{
g(1, j), φ

(k)
1,j +

w

b1 − 1

(
e1 − (b1 − 1)φ

(k)
1,j − α1φ

(k)
2,j

)}
for i = 2, . . . , N − 2,

φ
(k+1)
i,j = max

{
φ
(k+1)
i−1,j + g(i, j),

φ
(k)
i,j +

w

bi − 1

(
ei + ciφ

(k+1)
i−1,j − (bi − 1)φ

(k)
i,j − αiφ

(k)
i+1,j

)}
,
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and for i = M − 1,

φ
(k+1)
M−1,j = max

{
φ
(k+1)
M−2,j + g(M − 1, j), φ

(k)
M−1,j

+
w

bM−1 − 1

(
eM−1 + cM−1φ

(k+1)
M−2,j − (bM−1 − 1)φ

(k)
M−1,j

)}
.

As mentioned above, the derived dual value function at time 0 is true only for
x = x∗(λ). Thus, we have to repeat the procedure for each λ ∈ (0, λ̄) where λ̄ corresponds
to −L · P0.

B Proof of Proposition 9

Let us define new dual variables yt ≡ λe(β−ν+δ)tHt and zt ≡ ytI
γ
t . Then the dual

value function can be calculated by

Jν(λ, q) = E
[∫ ∞

0

e−(β+δ)tI1−γt

(
γ

1− γ
z
1− 1

γ

t + zt

)
dt

]
+E

[∫ ∞
0

e−(β+δ)t max
Xπν
t

{
δVu (Xπν

t , kIt)− λνe(β−ν+δ)tHtX
πν
t

}
dt

]
= q1−γẼ

[∫ ∞
0

e−(β+δ)t
(

γ

1− γ
z
1− 1

γ

t + zt + δk1−γψu

(ν
δ
zt

))
dt

]
≡ q1−γψ(zt),

where ψu(z) is the dual value function after income shock, which is exactly the same as
with the value in (20). The second equality holds from a change of measure applied in
Lemma 1 and the Legendre transformation. Thus, the value function ψ(z) should satisfy
the following ODE:

0 =
σ2
z

2
ψ′′(z)z2 −

(
rI − β̂ + ν − δ

)
ψ′(z)z(B.1)

−
(
β̂ − ν + δ

)
ψ(z) +

γ

1− γ
z1−

1
γ + z

+δk1−γ
(
A1

(ν
δ
z
)α+

+
γ

(1− γ)M

(ν
δ
z
)1− 1

γ
+

ν

rIδ
z

)
.

Then similar to the DTI limit case, we consider the general solution, which is a sum of
homogeneous and particular solutions as

ψ(z) = Bzξ+ + Czξ− + ψp(z),

with the boundary conditions,

ψ′(z) = kD, and ψ′′(z) = 0.(B.2)
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Notice that the dual value function satisfies the ODE (B.1) for 0 < z ≤ z, so by the growth
condition at z = 0, the coefficient C should be equal to 0. We conjecture the particular
solution ψp(z) as follows:

ψp(z) = F1z
α+ + F2z

1− 1
γ + F3z.

If we substitute the ψp(z) and its derivatives in ODE (B.1), the coefficients F1, F2, and F3

are obtained.
Moreover, the free boundary z and the coefficient B are determined by the

boundary conditions in (B.2). Specifically, we have

kD = Bξ+z
ξ+−1 + F1α+z

α+−1 + F2

(
1− 1

γ

)
z−

1
γ + F3,

0 = Bξ+(ξ+ − 1)zξ+−2 + F1α+(α+ − 1)zα+−2 + F2

(
1

γ
− 1

)
1

γ
z−

1
γ
−1.

Finally, for a given initial wealth x, income level q, and ν, the parameter λ∗(ν) in
(52) should satisfy the following relationship:

−x =
∂Jν(λ

∗(ν), q)

∂λ
= qψ′(λ∗(ν)qγ),

that is, we need to solve

−x = q

(
Bξ+z

ξ+−1 + F1α+z
α+−1 + F2

(
1− 1

γ

)
z−

1
γ + F3

)
.
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