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This Internet Appendix contains derivations, details on estimation, and additional empirical

results. Section A derives equations in the paper. Section B provides information about the Markov

chain Monte Carlo procedure to estimate the predictive system and ICAPM parameters. Section

C reports results for a Bayesian predictive regression approach to estimate the intertemporal risk

factor and additional results that accompany the primary specifications in the paper.

A Derivations

A.1 Derivation of Equation (7)

Equation (1) implies that the covariance from equation (3),

Vih = Covt

rei,t+1, (Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j

 ,
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will be positively rewarded when γ > 1. Given the predictive system in equation (6), the intertem-

poral hedging factor implied by the model can be expressed as

fh,t+1 = (Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j (A1)

≈ (Et+1 − Et)
∞∑
j=1

ρj(rf,t+j+1 + rem,t+1+j) (A2)

= (Et+1 − Et)
∞∑
j=1

ρjrf,t+j+1 + (Et+1 − Et)
∞∑
j=1

ρjrem,t+1+j (A3)

=

∞∑
j=1

ρj(Et+1 − Et)rf,t+j+1 +

∞∑
j=1

ρj(Et+1 − Et)rem,t+j (A4)

=

∞∑
j=1

ρjφj−1r (rf,t+2 − (1− φr)Er − φrrf,t+1) +

∞∑
j=1

ρjφj−1m (rem,t+1 − (1− φm)Em − φmrem,t)

(A5)

=
rf,t+2 − (1− φr)Er − φrrf,t+1

φr(1− φrρ)
+
rem,t+1 − (1− φm)Em − φmrem,t

φm(1− φmρ)
(A6)

=
ηr,t+1

φr(1− φrρ)
+

ηm,t+1

φm(1− φmρ)
. (A7)

where the equality in equation (A4) reflects the expectation of the market excess return in equation

(6.1) and the law of iterated expectations, the equality in equation (A5) comes from the AR(1)

structure of the market risk premium and real risk-free rate in equations (6.5) and (6.6) of the

predictive system, and equation (A7) uses the definitions of ηm,t+1 and ηr,t+1 from equations (6.5)

and (6.6). Note that since risk-free rates are determined prior to the period in which they are paid,

Etrf,t+1 = rf,t+1 and Et+1rf,t+2 = rf,t+2 in the derivation.

A.2 Derivation of Equation (10)

Equation (10) provides the k-horizon variance ratio as a function of the R2 from a predictive

regression of excess market returns on expected returns and the correlation between shocks to mar-

ket returns and expected future returns, ρmm. Given that I am developing priors based on variance
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ratios from historical information, the proper variance ratio to consider in the prior predictive anal-

ysis is based on the true variance of returns conditional on the predictive system parameter set Ω.

The true variance of multiperiod returns is

V ar(rem,t→t+k|Ω) = V ar

(
k∑
i=1

rem,t+i

)
(A8)

= V ar

(
k∑
i=1

rem,t−1+i +
k∑
i=1

ηm,t+i

)
(A9)

= V ar

( k∑
i=1

φi−1m

)
rem,t +

k−1∑
i=1

 i∑
j=1

φj−1m

 ηm,t+i +
k∑
i=1

ηm,t+i

 , (A10)

where rem,t→t+k represents the cumulative k-period log excess return on the stock market portfolio.

Based on this equation,

V ar(rem,t→t+k|Ω) =
k∑
i=1

V ar(ηm,t+i) +
k−1∑
i=1

 i∑
j=1

φj−1m

2

V ar(ηm,t+i) (A11)

+ 2
k∑
i=1

 i∑
j=1

φj−1m

Cov(ηm,t+i, ηm,t+i) +

(
k∑
i=1

φi−1m

)2

V ar(rem,t).

Thus,

V ar(rem,t→t+k|Ω) = kσ2m +
1

(1− φm)2

(
k − 1− 2φm

1− φk−1m

1− φm
+ φ2m

1− φ2(k−1)m

1− φ2m

)
σ2m (A12)

+
2

1− φm

(
k − 1− φm

1− φk−1m

1− φm

)
ρmmσmσm +

(1− φkm)2

(1− φm)2
σ2m

1− φ2m

The variance of one-period returns is

V ar(rem,t+1|Ω) = σ2m +
σ2m

1− φ2m
=

σ2m
1−R2

, (A13)

where R2 is the fraction of the unconditional variance of the equity premium to the total uncondi-
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tional variance of stock returns,

R2 =

σ2
m

1−φ2m

σ2m +
σ2
m

1−φ2m

. (A14)

Equation (A12) can be rewritten as

V ar(rem,t→t+k|Ω) = k
σ2m

1−R2

[
1 +A(k)(R2)

1
2 (1−R2)

1
2 ρmm +B(k)R2

]
, (A15)

where A(k) and B(k) are constants conditional on φm and k,

A(k) = 2

(
1 + φm
1− φm

) 1
2
(

1 +
1

k

(
−1− φm

1− φk−1m

1− φm

))
(A16)

and

B(k) = −1 +
1 + φm
1− φm

(
1 +

1

k

(
−1− 2φm

1− φk−1m

1− φm
+ φ2m

1− φ2(k−1)m

1− φ2m
+

(1− φkm)2

1− φ2m

))
. (A17)

Finally, using the definition of the k-period variance ratio in equation (9) along with equations

(A13) and (A15),

VR(k) = 1 +A(k)(R2)
1
2 (1−R2)

1
2 ρmm +B(k)R2. (A18)

The A(k) and B(k) constants are positive for φm > 0 and increasing in k, and the function

(R2)
1
2 (1 − R2)

1
2 is positive and increasing in R2 over the plausible range of R2 ∈ [0.0, 0.5]. If

ρmm < 0 and R2 > 0, the second term in equation (A18) is negative and the third term is positive.

The predictive regression R2 thus has both positive and negative effects on the variance ratio when

ρmm < 0, and the two parameters interact to determine whether the variance ratio is less than or

greater than one.

B Estimation

Draws from the posterior distribution of the parameters can be obtained using the MCMC

technique outlined in this appendix. Section B.1 contains the steps to estimate the intertemporal
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risk factor using the predictive system approach of Pástor and Stambaugh (2009). Section B.2

details the hierarchical Bayes approach to estimate the prices of risk and other parameters of

interest for the ICAPM.

B.1 Estimation of the Intertemporal Risk Factor

The following four steps draw a sequence of the market risk premium, real risk-free rate, and

related parameters from the system of equations (6). These steps are closely related to those of

Pástor and Stambaugh (2009) with the risk-free rate and inflation added into the system. I take

500,000 draws from the posterior distribution and discard the first 100,000 as a burn-in period.

From the remaining draws, I keep every fourth draw to reduce serial dependence, which results in

a sample of 100,000 draws from the posterior distribution.

1. Draw {rem,t}Tt=1, {rf,t+1}Tt=1, {πt}Tt=1|Ex, Em, Er, Eπ, φx, φm, φr, φπ, Σ using a forward-

filtering, backward-sampling (FFBS) step. All parameter distributions in this step are con-

ditioned on the previous draws of Ex, Em, Er, Eπ, φx, φm, φr, φπ, and Σ, but the condi-

tioning is suppressed in the notation for simplicity. The set of historical and current returns

and state variables observable at time t is denoted by Dt. Defining rt ≡ [rem,t rn,t πt]
′,

rt ≡ [rem,t rf,t+1 πt]
′, Er ≡ [Em Er Eπ]′, and φr =


φm 0 0

0 φr 0

0 0 φπ

, the VAR has the

form


rt − Er

xt − Ex

rt − Er

 =


0 0 A

0 φx 0

0 0 φr



rt−1 − Er

xt−1 − Ex

rt−1 − Er

+


ut

vt

wt

 ,

ut

vt

wt

 ∼ N(0,Σ), (B1)

where A =


1 0 0

0 1 1

0 0 1

. Define φ̃ =


0 0 A

0 φx 0

0 0 φr

 and Σ ≡


Σuu Σuv Σuw

Σvu Σvv Σvw

Σwu Σwv Σww

.
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(a) Forward Filtering : The filtering step is used to find sequences for time t = 1, ..., T of the

parameters of the distributions

rt|Dt−1 ∼ N(at, Pt) (B2)

and

rt|Dt ∼ N(bt, Qt). (B3)

The prior distribution of rt before observing data from time t is given by equation (B2).

Once the data from time t is observed, realizations of the market return, nominal risk-free

rate, inflation, and state variables give information about the market risk premium, real

risk-free rate, and expected inflation. After observing this information, the distribution

of rt is updated to equation (B3). Define zt = [r′t x′t]
′, Ez = [(AEr)

′ E′x]′, and

at = E(rt|Dt−1), bt = E(rt|Dt), Pt = V ar(rt|Dt−1),

Qt = V ar(rt|Dt), ft = E(zt|Dt−1), Rt = V ar(zt|rt, Dt−1),

St = V ar(zt|Dt−1), Gt = Cov(zt, rt|Dt−1).

(B4)

Also define V as the unconditional variance of [z′ r′]′. Then

V =


Vrr Vrx Vrr

Vxr Vxx Vxr

Vrr Vrx Vrr

 (B5)

can be calculated as vec(V ) = [I − (φ̃⊗ φ̃)]−1vec(Σ). Let Vzz =

 Vrr Vrx

Vxr Vxx

.

To begin drawing the time series of rt, first note that b0 = Er and Q0 = Vrr. Also,

r1|D0 ∼ N(a1, P1), (B6)
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where a1 = Er and P1 = Vrr. Then note that

z1|D0 ∼ N(f1, S1), (B7)

where f1 = Ez and S1 = Vzz. Further, G1 = Vzr. Then information about r1 is derived

from the observation of z1 since

z1|r1, D0 ∼ N(e1, R1), (B8)

where e1 = f1 +G1P
−1
1 (r1 − a1) and R1 = S1 −G1P

−1
1 G′1. Combining this information

using Bayes’ rule,

r1|D1 ∼ N(b1, Q1), (B9)

where

b1 = Q1

P−11 a1 + P−11 G′1R
−1
1 (G1P

−1
1 a1 + (z1 − f1))

 , (B10)

and

Q1 =
(
P−11 + P−11 G′1R

−1
1 G1P

−1
1

)−1
. (B11)

7



Continuing for t = 2, ..., T , we have

at =(I − φr)Er + φrbt−1, (B12)

Pt =φrQt−1φ
′
r + Σww, (B13)

ft =

 Abt−1

(I − φx)Ex + φxxt−1

 , (B14)

St =

 AQt−1A
′ + Σuu Σuv

Σvu Σvv

 , (B15)

Gt =

 AQt−1φ
′
r

0

+

 Σuw

Σvw

 , (B16)

Rt =St −GtP−1t G′t, (B17)

bt =Qt

P−1t at + P−1t G′tR
−1
t (GtP

−1
t at + (zt − ft))

 , (B18)

Qt =
(
P−1t + P−1t G′tR

−1
t GtP

−1
t

)−1
. (B19)

The sequences of at, bt, ft, Gt, Pt, Qt, and St are retained for the backward sampling

step.

(b) Backward Sampling : Draw rt|at, bt, ft, Gt, Pt, Qt, St for t = 0, ..., T . First, draw

rT ∼ N(bT , QT ). (B20)

Then draw rt for t = T − 1, ..., 0, where rt is the last three elements of the vector

ζt|ζt+1, Dt ∼ N(ht, Ht), (B21)
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where

ht =


rt

xt

bt

+ φ̃

 St+1 Gt+1

G′t+1 Pt+1


−1  zt+1 − ft+1

rt+1 − at+1

 , (B22)

Ht =


0 0 0

0 0 0

0 0 Qt

− φ̃
 St+1 Gt+1

G′t+1 Pt+1


−1

φ̃′, (B23)

where

φ̃ =



0 0 0 0

0 0 0 0

0 0 0 0

QtA
′ 0 0 Qtφ

′
r


. (B24)

The draw of rt−1 is the k+ 4 through k+ 6 elements of ζt, and this draw defines rem,t−1,

rf,t, and πt−1. Based on the draws of rem,t and rf,t along with the φm, φr, Em, and

Er parameters, we can calculate ηm,t and ηr,t from equations (6.5) and (6.6) for use in

estimating the intertemporal risk factor.

2. Draw [E′x E′r]
′|{rt}Tt=1, φx, φr,Σ ∼ N(Ẽxr, Ṽxr). Let Exr = [E′x E′r]

′. The prior for Exr is

Exr ∼ N(Exr0 , Vxr0). (B25)

The prior for Exr is centered at zero and diffuse, so the elements of Exr0 are set to zero and

Vxr0 is set to 100I. Information about Exr is obtained from the dynamics of the time series

of [x′t r′t]
′. Defining

L1 =

 φx 0

0 φr

 (B26)

and L2 = I − L1, the posterior distribution of Exr is (conditioning is suppressed for ease of
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notation),

Exr|· ∼ N(Ẽxr, Ṽxr), (B27)

where

Ẽxr =Ṽxr

V −1xr0
Exr0 + L′2Σ

−1
vw

T∑
t=1


 xt

rt

− L1

 xt−1

rt−1



 .

and

Ṽxr =
(
V −1xr0

+ TL′2Σ
−1
vwL2

)−1
. (B28)

3. Draw φx, φr|{rt}Tt=1, Ex, Er,Σ. Let xk ≡ (xk2, ..., x
k
T )′ be the (T − 1)× 1 vector of predictor k

in periods t = 2, ..., T . Let x(l) be the (T − 1)×K matrix of the K vectors of realizations of

the predictors in periods t = 1, ..., T − 1. Also let rj ≡ (rj2, ..., r
j
T )′ and rj(l) ≡ (rj1, ..., r

j
T−1)

′

where rjt is the market risk premium, real risk-free rate, or expected inflation for j of 1, 2,

and 3, respectively, let Exk be the k-th element of Ex, and let Erj be the j-th element of Er.

Define

z =



x1 − ιT−1Ex1
...

xK − ιT−1ExK

r1 − ιT−1Er1

r2 − ιT−1Er2

r3 − ιT−1Er3


(B29)
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and

Z =



x(l) − ιT−1E′x 0 0 0 0 0

0
. . . 0 0 0 0

0 0 x(l) − ιT−1E′x 0 0 0

0 0 0 r1(l) − ιT−1Er1 0 0

0 0 0 0 r2(l) − ιT−1Er2 0

0 0 0 0 0 r3(l) − ιT−1Er3


.

(B30)

Then z is a [(T −1)(K+3)]×1] vector and Z is a [(T −1)(K+3)]× (K2 +3) matrix. Further

define b ≡ (vec(φ′x)′ diag(φr)
′)′. The prior distribution of b is

b ∼ N(b0, Vb0)× 1b∈S , (B31)

where 1b∈S is equal to one if b is in the space S, which is the space such that the eigenvalues

of φx lie inside the unit circle and each of the three diagonal elements of φr is in (−1, 1).

When b is in S, xt and each element of rt are stationary. For the uninformative prior results

in Section III, the prior parameters are set to produce uninformative priors for b by setting

the elements of b0 to zero and Vb0 = 100I. In Section IV, the first element of b0 is 0.97,

the first element of Vb0 is 0.25, and draws of φm are restricted to be in (0, 1), such that the

priors are somewhat informative about the persistence of the equity premium. This prior

information is introduced to facilitate the prior predictive analysis with variance ratios in

Section IV.A and has relatively little effect on ICAPM test inferences as shown in Internet

Appendix C.2. Information about b arises from the dynamics of the state variables and the

market risk premium, real risk-free rate, and expected inflation. The posterior distribution

of b is (conditioning is suppressed for notational convenience),

b|· ∼ N(b̃, Ṽb)× 1b∈S , (B32)
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where

b̃ =Ṽb

V −1b0
b0 + Z ′(Σ−1vw ⊗ IT−1)z

 ,

and

Ṽb =
(
V −1b0

+ Z ′(Σ−1vw ⊗ IT−1)Z
)−1

. (B33)

Draws of b can be obtained by drawing from N(b̃, Ṽb) and accepting the draw if b ∈ S.

Computational efficiency if often gained by drawing one of the last three elements of b from

its marginal truncated normal distribution before drawing the remaining elements from the

implied conditional normal distribution. The parameters φm and φr are found using the

definition of b.

4. Draw Σ|{rt}Tt=1, Ex, Er, φx, φr,Σ
(p),M11,M22, where Σ(p) denotes the previous draw of Σ.

The predictive system allows for non-zero correlation between the error terms of realized

market excess returns and the market risk premium. Pástor and Stambaugh (2009) note that

this correlation is likely negative and develop a method for placing priors on this correla-

tion. Whereas the correlation between unexpected market excess returns and the market risk

premium is likely negative, there is no similar expectation for the correlations between the

error terms corresponding to the risk-free rate and inflation terms. I therefore follow Pástor

and Stambaugh (2009) to place informative priors on the correlation between the error terms

from equations (6.1) and (6.5) in some specifications, but put an uninformative prior on the

remaining correlations.

Denote the first element of u corresponding to the error term for the market excess return as

u1, the remaining two elements of u as u2, the first element of w corresponding to the error
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term for the market risk premium as w1, and the remaining two elements as w2. Then

Σ ≡



Σu1u1 Σu1u2 Σu1v Σu1w1 Σu1w2

Σu2u1 Σu2u2 Σu2v Σu2w1 Σu2w2

Σvu1 Σvu2 Σvv Σvw1 Σvw2

Σw1u1 Σw1u2 Σw1v Σw1w1 Σw1w2

Σw2u1 Σw2u2 Σw2v Σw2w1 Σw2w2


. (B34)

Define

Σ11 ≡

 Σu1u1 Σu1w1

Σw1u1 Σw1w1

 , (B35)

and

Σ̂11,0 ≡

 M11 M12

M12 M22

 , (B36)

where M11,M12, and M22 are prior parameters and M12 is a hyperparameter for Σ. A

posterior draw of Σ can be obtained using the following two-step process.

(a) Draw M12|Σ(p),M11,M12 ∼ p(M12|Σ11), where

p(M12|Σ11) = |Σ̂11,0|
T0−K−4

2 exp

(
−T0

2
tr(Σ−111 Σ̂11,0)

)
, M12 ∈ (c

√
M11M22, c

√
M11M12).

(B37)

The prior parameter value T0 determines the prior precision for the prior on Σ11. Pástor

and Stambaugh (2009) note that T0 represents the number of pseudo-observations from a

hypothetical prior sample. As discussed in the paper, I consider cases with uninformative

or informative priors. For the uninformative case, T0 = rank(Σ) + 3 = 13 such that the

prior has a minimal impact on the posterior. Informative priors in the paper use T0 =

T/2, such that the prior is assumed to contain half as many pseudo-observations as the

number of observations in the sample. TheM11 andM22 parameters vary across the prior

specifications in the grid over R2 prior parameter values. The R2 prior takes 13 evenly

spaced values between 0% and 3%, and a value of x% for this prior parameter indicates
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that M11 is set such that (100-x)% of market variance is attributable to unexpected

shocks and M22 produces x% of the variance from variation in expected returns given

the AR(1) process for returns with an assumed prior persistence parameter of 0.975.

Finally, the prior parameters c and c affect the prior correlation between shocks to

current and future expected returns, ρmm. In the ρmm dimension, the grid has 13 points

for c that are evenly spaced between −0.9 and 0.9. These gridpoints produce a grid over

the prior mean of ρmm that ranges from −0.9 (when c = −0.9) to 0.0 (when c = 0.9).

See the Technical Appendix of Pástor and Stambaugh (2009) for details on drawing M12

from this distribution. The draw of M12 defines a new draw of Σ̂11,0.

(b) Draw Σ|{rt}Tt=1, Ex, Er, φx, φr, Σ̂11,0. First compute the time series of residuals (ut, vt, wt)

for t = 1, ..., T as


ut

vt

wt

 =


rt

xt

rt

−


0 0 A

0 φx 0

0 0 φr



rt−1

xt−1

rt−1

−


0 0 0

0 I − φx 0

0 0 I − φr




0

Ex

Er

 . (B38)

Let X denote the T × 2 matrix of [u1,t w1,t] and Y2,T be the T × (K + 4) matrix of

[u2,t vt w2,t]. The posterior distribution of Σ11 is inverse Wishart,

Σ11|· ∼ Inverse Wishart(T0Σ̂11,0 + T Σ̂11, T + T0 −K − 4), (B39)

where Σ̂11 = X ′X/T . Further, let Ĉ = (X ′X)−1X ′Y2,T , Ω̂ = (Y2,T − XĈ)′(Y2,T −

XĈ)/T , VC = (X ′0X0+X ′X)−1, C̃ = VC

[
(X ′0X0)Ĉ0 + (X ′X)Ĉ

]
, and D = Ĉ ′0X

′
0X0Ĉ0+

Ĉ ′X ′XĈ − C̃ ′V −1C C̃. The prior parameters Ĉ0 and X ′0X0 are prior parameters for the

covariances between state variables and the market-related shocks, and the prior mean

Ĉ0 is set to be a 2× (K + 4) matrix of zeros and X ′0X0 = 10−6I, such that the prior is

uninformative. Then the posterior distribution of Ω is

Ω|· ∼ Inverse Wishart(S0Ω̂0 + T Ω̂ +D,T + S0), (B40)
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where S0 and Ω̂0 are prior parameter values. I set S0 to be K + 7, which produces an

uninformative prior with Ω̂0 = 0.01I. Then letting c̃ = vec(C̃), the posterior distribution

of c = vec(C) is

c|Ω, · ∼ N(c̃,Ω⊗ VC). (B41)

Finally, given (Σ11, C,Ω), construct a posterior draw of Σ using Σ11 ≡

 Σu1u1 Σu1w1

Σw1u1 Σw1w1

,


Σu2u1 Σu2w1

Σvu1 Σvw1

Σw2u1 Σw2w1

 = CΣ11, and


Σu2u2 Σu2v Σu2w2

Σvu2 Σvv Σvw2

Σw2u2 Σw2v Σw2w2

 = Ω + CΣ11C
′. The corre-

lation between u1 and w1 implied by the draw of Σ11 is denoted by ρmm in the paper.

Based on the draws of ηm,t, ηr,t, φm, and φr, the time series of the intertemporal risk factor is

calculated for each draw using equation (7).

B.2 Testing the ICAPM

The following steps draw from the posterior distribution of the prices of risk for the ICAPM

factors. The hiearchical Bayes approach is similar to the one developed by Davies (2010). I take

100,000 draws from the posterior distribution conditional on the draws from the predictive system

above, and I discard the first 20,000 draws as a burn-in period. Inferences are made using the

remaining 80,000 draws.

1. Draw βi,y|σ2i,y, {fh,t,y}Tt=1, λy, σ
2
y ∼ N(βi,y, V β,i,y) for i = 1, ..., Ny and y = 1, ..., Y , where Ny

is the number of assets in period y, βi,y = [αi,y βmi,y βhi,y]
′,

βi,y = V β,i,y

(
σ−2i,yX

′
1,yR

e
i,y + σ−2y X ′2,y(R

e
i,y − λ0,y)

)
, (B42)

V β,i,y =
(
σ−2i,yX

′
1,yX1,y + σ−2y X ′2,yX2,y

)−1
, (B43)

X1,y =
[
ιT {rem,t,y}Tt=1 {fh,t,y}Tt=1

]
, Rei,y = {rei,t,y}Tt=1, X2,y = [0 λm,y λh,y],

R
e
i,y = rei,y +

s2i,y
2 , and s2i,y is the sample return variance for firm i in period y. For firms with
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missing returns during period y, the X1,y matrix is altered to match the months of data in

Rei,y.

2. Draw σ2i,y|βi,y, {fh,t,y}Tt=1, ν, s
2 ∼ Inverse Gamma( s

2

2 ,
ν
2 ) for i = 1, ..., Ny and y = 1, ..., Y ,

where ν = ν + T , s2 = νs2 + s2, and

s2 =
T∑
t=1

(
rei,t,y − αi,y − βmi,yrem,t,y − βhi,yfh,t,y

)2
. (B44)

The prior parameters ν and s2 can be viewed as the number of pseudo-observations and the

sum of squared errors from those observations under the prior. I set ν = 4 and s2 equal to

the average sample variance of the errors from time-series OLS regressions matching equation

(8.1).

3. Draw λy|{βi,y}
Ny
i=1, σ

2
y , λ, Vλ ∼ N(λ̂y, V̂λy) for y = 1, ..., Y , where

λ̂y = V̂λy(V
−1
λ λ+ σ−2y X ′1,yR

e
y), (B45)

V̂λy = (V −1λ + σ−2y X ′1,yX1,y)
−1, (B46)

λy = [λy,0 λy,m λy,h]′, X1,y =
[
ιNy {βmi,y}

Ny
i=1 {βhi,y}

Ny
i=1

]
, and R

e
y = {Rei,y}

Ny
i=1.

4. Draw σ2λy|λy, {βi,y}
Ny
i=1, νλ, s

2
λ ∼ Inverse Gamma(

s2λ
2 ,

νλ
2 ) for y = 1, ..., Y , where νλ = νλ +Ny,

s2λ = νλs
2
λ+s2λ, and s2λ =

∑Ny
i=1

(
R
e
i,y − λ0,y − λm,yβmi,y − λh,yβhi,y

)2
. I set νλ = 4 and s2λ equal

to the average sample variance of the errors from cross-sectional OLS regressions matching

equation (8.2) where the betas are those estimated using OLS to set the prior in step 2.

5. Draw Vλ|λ, {λy}Yy=1, g,G ∼ Inverse Wishart(Y + g,
∑Y

y=1(λy − λ)(λy − λ)′ +G), where g = 6

and G = gI.
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6. Draw λ|{λy}Yy=1, Vλ, V , λ ∼ N(λ̃, Ṽλ), where

λ̃ = Ṽλ

(Vλ/Y )−1
Y∑
y=1

λy
Y

+ V −1λ

 , (B47)

Ṽλ =
(
(Vλ/Y )−1 + V −1

)−1
, (B48)

λ = [0 0 0]′, and V = 100I, which creates a diffuse prior for λ.

C Additional Empirical Results

C.1 Estimation of the Intertemporal Risk Factor Based on a Predictive Regres-

sion Approach

The primary specification of the intertemporal risk factor in the paper is based on the predictive

system of Pástor and Stambaugh (2009). In this appendix, I use an alternative predictive regression

approach to estimate the intertemporal risk factor. In particular, the posterior distribution of the

risk factor is produced using a Bayesian predictive regression. The predictive regression is estimated

with diffuse normal-inverse-Wishart priors such that the posterior means of the Bayesian predictive

regression coefficients closely match their ordinary least squares (OLS) counterparts.

The first step to produce a posterior distribution of the intertemporal risk factor is to estimate

the following equations using a Bayesian multivariate regression,

rem,t = am +Bmxt−1 + νm,t, (C1.1)

rn,t+1 − πt = ar +Brxt−1 + νr,t, (C1.2)

νt ∼ N(0,Σ∗). (C1.3)

The predictive regression MCMC chain first produces 25,000 independent draws from the posterior

distribution. The predictive regression approach assumes that the expected market return and real

risk-free rate are perfect linear functions of the predictor variables, such that rem,t ≡ am+Bmxt and
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rf,t+1 ≡ ar+Brxt. Each draw from the posterior distribution of the predictive regression coefficients

from equation (C1) produces a time series of the expected market return and real risk-free rate.

Figure C.1 shows the posterior means and 90% credible intervals for these time series. Compar-

ing the predictive regression estimates in Figure C.1 to the predictive system estimates in Figure

1 reveals similar time-series patterns, though the predictive regression approach tends to produce

more extreme movements in the market risk premium. Notably, the 90% credible interval for the

market risk premium from the predictive regression is much tighter than the corresponding credible

interval using the predictive system. Pástor and Stambaugh (2012) note that allowing for imperfect

prediction of the market risk premium using a predictive system increases parameter uncertainty

relative to the predictive regression model, which assumes that the risk premium is an exact linear

function of the observed state variables. Pástor and Stambaugh (2009) suggest a diagnostic to test

whether a predictive regression is correctly specified, in the sense that expected market return is an

exact linear function of the state variables. Specifically, the autocorrelation of the residuals should

be zero if the predictive regression is properly specified. Figure C.2 shows the posterior distribu-

tion of the autocorrelation of predictive regression residuals. The posterior distribution is tightly

centered around 0.09 and all 25,000 draws are positive. Thus, the diagnostic test provides strong

evidence that a predictive system should be used in place of a predictive regression to account for

predictor imperfection, in line with the primary specifications in the paper.

Next, for each of the 25,000 posterior draws of the time series {rm,t}Tt=0 and {rf,t+1}Tt=0, I

estimate the autoregressions

rem,t = (1− φm)Em + φmr
e
m,t−1 + ηm,t (C2)

and

rf,t+1 = (1− φr)Er + φrrf,t + ηr,t (C3)

using Bayesian regressions with ηm,t ∼ N(0, σ2m) and ηr,t ∼ N(0, σ2r ). I draw the φm and φr parame-

ters and the time series of ηm,t and ηr,t from the autoregressions from the posteriors. Equation (7) is
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then used to calculate the posterior draw of the intertemporal risk factor time series corresponding

to each of the 25,000 posterior draws.

Table C.I shows the posterior means of the parameters from equations (C1) to (C3). Figure C.3

plots the posterior distributions of the predictive regression coefficients for the market risk premium

from the Bayesian predictive regression. These posteriors can be compared with the posteriors of

the implied predictive regression slopes from the predictive system with uninformative priors that

are shown in Figure 3. Unlike the predictive regression approach, the predictive system allows

for these predictor variables to be imperfect predictors for the market risk premium. As such, the

impact of each state variable on the predicted market return can differ across the two specifications.

Both the market risk premium and real risk free rate are estimated to be highly persistent processes

with autoregression coefficient posterior means of 0.96 and 0.98, respectively.

Summary statistics for the intertemporal risk factor implied by the predictive regression ap-

proach are given in Table C.II. Consistent with the tighter credible interval on the market risk

premium observed in Figure C.1 relative to the corresponding predictive system estimates in Figure

1, uncertainty about the hedging factor is much smaller with the predictive regression approach.

The average posterior standard deviation of monthly factor draws is 1.98% for the predictive regres-

sion compared with 3.84% for the predictive system (shown in Table II). The predictive regression

enforces a constraint that the market risk premium is a linear function of given state variables, and

Pástor and Stambaugh (2012) note that it is easier to learn about return predictability with this

assumption. The predictive system with imperfect prediction does not make this assumption, such

that it is likely to more accurately reflect uncertainty about the market risk premium if the perfect

prediction assumption of the predictive regression is violated.

Table C.III reports results from testing the ICAPM using the intertemporal risk factor implied

by the predictive regression approach. The ICAPM test results using the predictive regression

factor are similar to the results from the predictive system approach with uninformative priors in

the paper. The estimated price of risk for the intertemporal risk factor is 0.25% per month with

a 90% credible interval of −0.30% to 0.80%. The posterior mean of the ICAPM RMSE using the

predictive regression is somewhat larger than the predictive system approach with uninformative
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priors in the paper, but the two models generally produce similar inferences.

Overall, the results using a predictive regression approach largely match those from using the

predictive system approach in the paper. I concentrate on the predictive system approach in the

paper because I am able to place informative priors on economically meaningful quantities using

that method. Further, the predictive system fully accounts for uncertainty in the market risk

premium by allowing for imperfect predictors, which is important for measuring the impact of

uncertainty about the intertemporal hedging factor for ICAPM inferences.

C.2 Supplementary Results for Primary Specification

Table C.IV reports posterior means of the predictive system parameters under uninformative

priors. This predictive system is used in the ICAPM tests in Section III of the paper.

The discussion in Section IV.A.3 refers to variance decomposition results based on the predictive

systems with informative priors. Following Campbell and Ammer (1993), total stock market return

variance can be decomposed into components attributable to variation in cash flows, the market

risk premium, and the risk-free rate:

V ar(rem,t+1) = V ar

 ∞∑
j=0

ρj∆dt+1+j

+ V ar

 ∞∑
j=1

ρjrem,t+1+j

 (C4)

+ V ar

 ∞∑
j=1

ρjrf,t+1+j

− 2Cov

 ∞∑
j=0

ρj∆dt+1+j ,
∞∑
j=1

ρjrem,t+1+j


− 2Cov

 ∞∑
j=0

ρj∆dt+1+j ,
∞∑
j=1

ρjrf,t+1+j

+ 2Cov

 ∞∑
j=1

ρjrem,t+1+j ,
∞∑
j=1

ρjrf,t+1+j

 .

Further, the variance attributable to discount rate variation is given by V ar
(∑∞

j=1 ρ
jrem,t+1+j

)
+

V ar
(∑∞

j=1 ρ
jrf,t+1+j

)
+ 2Cov

(∑∞
j=1 ρ

jrem,t+1+j ,
∑∞

j=1 ρ
jrf,t+1+j

)
. Figure C.4 shows quantiles of

posteriors for the proportion of total stock market return variance attributable to cash flows (Panel

A), discount rates (Panel B), the market risk premium (Panel C), and the risk-free rate (Panel D)

across prior specifications.

Figure 7 in the paper shows quantiles of posteriors for the time-series standard deviation and
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the correlation between the market and intertemporal risk factors across prior specifications. Fig-

ures C.5 and C.6 report information about the remaining intertemporal risk factor statistics that

are reported in Table II for the case with uninformative priors. Specifically, Figure C.5 displays

posteriors of the time-series mean of the intertemporal risk factor, and Figure C.6 shows the time-

series average of the posterior standard deviation of the intertemporal risk factor for each prior

specification. In line with the results in Figure 7, the posterior uncertainty about the intertemporal

risk factor tends to be lower in the cases in which intertemporal risk is significantly priced.

Figures C.7 and C.8 provide versions of Figures 4 and 9 that do not use interpolation across the

gridpoints. For each gridpoint in the 13 by 13 grid, I calculate the percentage of draws in which

historical variance ratios for horizons of two to eight years lie outside of the 90% credible intervals

from a prior predictive analysis. I also calculate the percentage of posterior draws in which the price

of risk for the intertemporal risk factor, λh, is negative. To create Figures 4 and 9 in the paper, I

interpolate across the gridpoints and show the regions in which the interpolated values satisfy the

conditions. Figures C.7 and C.8 report results using information only from the gridpoints without

interpolation. This analysis ignores some information from the percentages at each gridpoint but

avoids the assumptions of the interpolation.

Figure C.9 provides a version of Figure 9 with intertemporal risk factors that are estimated using

a predictive system with an uninformative prior for the persistence parameter of the market risk

premium, φm. The predictive systems in Section IV of the paper are estimated with a somewhat

informative prior, φm ∼ N(0.97, 0.25) and φm ∈ [0, 1]. I specify this prior in the paper to facilitate

the prior predictive analysis for the variance ratios, which is used to determine what region of the

prior parameter space is reasonable given historical data. A comparison of Figures 9 and C.9 shows

that ICAPM inferences are similar under the uninformative and informative priors on φm. Figure

C.9 does not show the region associated with the prior predictive analysis. Given an uninformative

prior for φm that is centered at zero, φm < 0 in half of draws from the prior. Variance ratios that are

calculated with a negative value for the persistence of the market risk premium are highly variable

across draws, and this scenario does not provide a reasonable reflection of reality. I therefore

omit the prior predictive analysis from Figure C.9 and use a base specification with a somewhat
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informative prior for φm in the paper.
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Table C.I: Predictive Regression Parameter Estimates

This table presents parameter estimates for the predictive regression model given by equations (C1) to (C3)
with uninformative priors. Mean draws from the posterior distribution of each parameter are shown. The TERM ,
DEF , DY , and RF variables are the term spread, default spread, dividend yield, and short rate state variables,
respectively. The reported figures for the Σ∗ parameter are multiplied by 100 for ease of presentation and
interpretation. The sample period is January 1952 – December 2014.

rem,t = am +Bmxt−1 + νm,t
rn,t − πt = ar +Brxt−1 + νr,t
νt ∼ N(0,Σ∗)

rem,t = (1 − φm)Em + φmr
e
m,t−1 + ηm,t

rf,t+1 = (1 − φr)Er + φrrf,t + ηr,t

am -0.86
ar 0.07

TERM DEF DY RF
Bm 0.30 0.26 0.49 -0.16
Br -0.06 -0.00 -0.03 0.04

Σ∗ × 100 rem,t rn,t − πt
rem,t 1850.56 2.20

rn,t − πt 2.20 2.53

φm 0.96
φr 0.98

Table C.II: Intertemporal Risk Factor Time-Series Statistics Using a Predictive
Regression Approach

This table presents statistics for the intertemporal risk factor, which is estimated based on the predictive re-
gression in equations (C1) to (C3). The mean, standard deviation, and correlation with the market factor reported
for the intertemporal risk factor are calculated as averages of these time-series statistics across posterior draws, and
the numbers in brackets show the 90% credible interval for the posterior distribution of each statistic. The average
factor uncertainty is the time-series mean of the posterior standard deviation of the monthly intertemporal risk
factor. The mean and standard deviation are reported in percent per month. The sample period is January 1952 –
December 2014.

Intertemporal
Statistic Risk Factor

Mean 0.00
[−0.32, 0.32]

Standard Deviation 4.23
[2.11, 7.28]

Correlation with Market Factor −0.41
[−0.57, −0.18]

Average Factor Uncertainty 1.98
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Table C.III: Estimated Prices of Risk for ICAPM Factors Using a Predictive Regres-
sion Approach

This table reports the prices of risk for the market and intertemporal risk factors. The intertemporal risk
factor is estimated based on the predictive regression in equations (C1) to (C3). The table shows estimates for
the prices of risk from the system of equations (8) along with the root mean squared error (RMSE). The numbers
in brackets show the 90% credible interval for the posterior distribution of each parameter. The sample period is
January 1952 – December 2014.

Etr
e
i + Vii

2
= λ0 + λmβ

m
i + λhβ

h
i

Model λ0 λm λh RMSE

ICAPM – Predictive Regression 0.237 0.576 0.247 1.946
[−0.152, 0.628] [0.223, 0.926] [−0.303, 0.803] [1.788, 2.117]

Table C.IV: Predictive System Parameter Estimates

This table presents parameter estimates for the predictive system in equation (6) under the base specifica-
tion with uninformative priors. Information on the prior distributions for this model is given in Internet Appendix
B. Mean draws from the posterior distribution of each parameter are shown. The TERM , DEF , DY , and RF
variables are the term spread, default spread, dividend yield, and short rate state variables, respectively. The
reported figures for the Σ parameter are multiplied by 100 for ease of presentation and interpretation. The sample
period is January 1952 – December 2014.

rem,t = rem,t−1 + ηm,t
rn,t = rf,t + πt−1 + ηn,t
πt = πt−1 + ηπ,t
xt = (I − φx)Ex + φxxt−1 + ηx,t
rem,t = (1 − φm)Em + φmr

e
m,t−1 + ηm,t

rf,t+1 = (1 − φr)Er + φrrf,t + ηr,t
πt = (1 − φπ)Eπ + φππt−1 + ηπ,t
ηt ∼ N(0,Σ)

Em 0.47 φm 0.97
Er 0.05 φr 0.98
Eπ 0.24 φπ 0.98

TERM DEF DY RF φx TERM DEF DY RF
Ex 0.90 1.01 2.86 3.83 TERM 0.95 0.00 0.00 0.01

DEF 0.07 0.96 -0.01 -0.00
DY -0.04 -0.01 0.96 0.01
RF -0.04 0.00 0.00 0.99

Σ × 100 rem,t rn,t πt TERM DEF DY RF rem,t rf,t+1 πt
rem,t 1870.80 -1.51 0.29 -1.85 12.82 -74.48 -24.44 -10.77 -0.29 -1.49
rn,t -1.51 0.14 -0.01 -0.02 -0.33 0.20 0.54 -0.07 0.05 0.02
πt 0.29 -0.01 1.15 -0.09 -0.00 0.12 0.08 0.01 0.01 -0.01

TERM -1.85 -0.02 -0.09 1.15 0.38 0.01 -1.18 0.28 -0.05 -0.07
DEF 12.82 -0.33 -0.00 0.38 6.69 -1.16 -8.87 1.72 -0.68 -0.19
DY -74.48 0.20 0.12 0.01 -1.16 7.31 2.26 0.99 0.17 0.03
RF -24.44 0.54 0.08 -1.18 -8.87 2.26 17.57 -3.07 1.31 0.30
rem,t -10.77 -0.07 0.01 0.28 1.72 0.99 -3.07 1.04 -0.23 -0.06
rf,t+1 -0.29 0.05 0.01 -0.05 -0.68 0.17 1.31 -0.23 0.28 -0.09
πt -1.49 0.02 -0.01 -0.07 -0.19 0.03 0.30 -0.06 -0.09 0.18
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Figure C.1: Predictive Regression Estimates of Latent Processes

This figure shows estimates of the time series of the market risk premium (Panel A) and
real interest rate (Panel B) from the predictive regression in equation (C1). The black solid lines
represent the posterior means and the red dotted lines show 90% credible intervals for the latent
processes. Each variable is expressed in percent per month. The sample period is January 1952 –
December 2014, and NBER recessions are shaded.
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Autocorrelation of νm,t

Figure C.2: Posterior of Autocorrelation of Predictive Regression Errors

This figure shows the posterior distribution of the autocorrelation of the error term from
the Bayesian predictive regression in equation (C1). The autocorrelation should be zero if the
predictive regression is properly specified, and zero is denoted by the dotted line. The sample
period is January 1952 – December 2014.
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Figure C.3: Posteriors of Predictive Regression Coefficients

This figure shows posterior distributions of the predictive regression slopes from the Bayesian
predictive regression in equation (C1). The slopes measure the relation between the market risk
premium and the term spread, default spread, dividend yield, and short rate. The sample period
is January 1952 – December 2014.
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Panel A: Return Variance from Cash Flows
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Panel B: Return Variance from Discount Rate

Figure C.4: Variance Decomposition Posteriors

This figure shows quantiles of the posterior distributions of components of stock return variance
across specifications of the prior parameters for the predictive regression R2 and correlation
between shocks to current returns and the market risk premium. The figure reports posteriors of
the proportions of total stock market return variance that are attributable to cash flows (Panel
A), discount rates (Panel B), the market risk premium (Panel C), and the risk-free rate (Panel D).
The box shows the median and 25th and 75th percentiles, and the whiskers encompass the 90%
credible interval. The variance decomposition is estimated with the predictive system in equation
(6) with informative priors as described in Section IV.A. The sample period is January 1952 –
December 2014.
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Panel C: Return Variance from Market Risk Premium
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Panel D: Return Variance from Risk-Free Rate
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Figure C.5: Posteriors of the Intertemporal Risk Factor Mean across Prior Specifica-
tions

This figure shows quantiles of the posterior distributions of the time-series mean of the in-
tertemporal risk factor across specifications of the predictive system prior parameters for the
predictive regression R2 and correlation between shocks to current returns and the market risk
premium. The box shows the median and 25th and 75th percentiles, and the whiskers encompass
the 90% credible interval. The intertemporal risk factor is estimated with the predictive system in
equation (6) with informative priors as described in Section IV.A. The mean of the intertemporal
risk factor is expressed in percent per month. The sample period is January 1952 – December
2014.
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Figure C.6: Average Uncertainty about the Intertemporal Risk Factor across Prior
Specifications

This figure shows the time-series average of the posterior standard deviation of the intertemporal
risk factor across specifications of the predictive system prior parameters for the predictive
regression R2 and correlation between shocks to current returns and the market risk premium.
For each month in the sample, I calculate the posterior standard deviation of fh,t and report the
time-series average of these standard deviations. The intertemporal risk factor is estimated with
the predictive system in equation (6) with informative priors as described in Section IV.A. The
average standard deviation is expressed in percent per month. The sample period is January 1952
– December 2014.

31



0% 1% 2% 3%
Prior on R

2

-0.9

-0.6

-0.3

0.0

P
r
io
r
M
e
d
ia
n
o
f
ρ
m
m̄

Figure C.7: Region of the Prior Parameter Space that is Consistent with Historical
Variance Ratios

This figure shows the region of the prior parameter space in which the historical variance
ratios at horizons of two to eight years lie within the 90% credible interval of the variance ratios
from a prior predictive analysis. The prior parameter space is a two-dimensional grid over prior
parameters corresponding to the predictive regression R2 and the correlation between shocks to
current returns and the market risk premium, ρmm. This figure differs from Figure 4 in the paper
because this figure does not use interpolation over the gridpoints for the proportion of posterior
draws in which the historical variance ratios lie outside of the 90% credible interval. Historical
variance ratios are calculated using annual real stock market return data from 1802–1951.

32



0% 1% 2% 3%
Prior on R

2

-0.9

-0.6

-0.3

0

P
r
io
r
M
e
a
n
o
f
ρ
m
m̄

Figure C.8: Region of the Prior Parameter Space in which Intertemporal Risk is Priced

This figure shows the region of the prior parameter space in which zero is not in the 90%
credible interval of the price of risk for the intertemporal risk factor in dark gray, the region from
Figure C.7 in which the historical variance ratios at horizons of two to eight years lie within the
90% credible interval of the variance ratios from a prior predictive analysis in light gray, and
the overlapping region in black. The prior parameter space is a two-dimensional grid over prior
parameters corresponding to the predictive regression R2 and the correlation between shocks
to current returns and the market risk premium, ρmm. This figure differs from Figure 9 in the
paper because this figure does not use interpolation over the gridpoints for the proportions of
posterior draws in which the historical variance ratios and λh lie outside of the 90% credible
interval. Historical variance ratios are calculated using annual real stock market return data from
1802–1951, and the sample period for ICAPM tests is January 1952 – December 2014.
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Figure C.9: Region of the Prior Parameter Space in which Intertemporal Risk is
Priced with Uninformative Prior on Market Risk Premium Persistence

This figure shows the region of the prior parameter space in which zero is not in the 90%
credible interval of the price of risk for the intertemporal risk factor in dark gray. The prior
parameter space is a two-dimensional grid over prior parameters corresponding to the predictive
regression R2 and the correlation between shocks to current returns and the market risk premium,
ρmm. This figure differs from Figure C.8 because the intertemporal risk factor is estimated using
a predictive system with an uninformative prior on the persistence parameter for the market risk
premium, φm. The sample period is January 1952 – December 2014.
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