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A Physical moment generating function

We derive the closed-form moment generating function (MGF) for the one-factor skew affine realized
variance (SARV) model under the physical probability measure. Note that our generalized skew
affine realized variance (GSARV) model is a straightforward two-factor extension or a convolution

of two SARV models. The dynamics of log-returns are modelled as

Rip1 =74+ (A —&) ht + 241,

with
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and sgr)l are i.i.d. N(0,1).

From hg > w, we have
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where
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In addition to A, the other constant terms in the conditional expectation of returns have the

following expressions
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Thus, the one-step-ahead joint conditional MGF of return and variance writes
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Using the Cholesky representation, we can rewrite

® _ (2 (3)
Eir1 = Pei1 T V1= pPey

where F [61(5_2'_)161(3_)1} = 0. Moreover, by exploiting the identity
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for z distributed as a standard normal random variable, one can check that
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Hence,
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To ease notation, define
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Accordingly, the one-step-ahead joint conditional MGF of return and variance can be reexpressed

in a compact form as
Ey [exp (uRit1 + vhiy1)] = exp (A (u,v) he + B (u,v))

with
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Thus, the physical one-step-ahead moment generating function (MGF) is exponentially affine.

Interestingly, the MGF of the general two-factor model can be deduced as
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with
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We conjecture that the multi-step MGF is also of the affine form. First, define

M
‘I’t,t+M(U) = Et[eXp(UZRHj)]

= exp(C(u, M)'hy + D(u, M)).

Taking advantage of the affine structure of the model we can compute

Virpnmr(u) = Eifexp(u ZRt+y = Ey[Ei1[exp(u ZRt+]
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= Eilexp(uRit1 + C(u, M) b1 + D(u, M))]

— exp(A(u, C(u, M))'hy + B(u, C(u, M) + D(u, M)),
which yields the following recursive relationship

CluyM+1) = A(u,C(u, M)),

D(u,M+1) = B(u,C(u,M))+ D(u, M),
including the following initial conditions

C(u,1) = A(u,0),

D(u,1) = B(u,0),

where A and C' are 2-by-1 vector-valued functions.

B Additional model properties for physical estimation

We investigate additional empirical properties of the various models. Namely, we explore the ability
of each specification to generate realistic historical conditional volatility paths, consistent volatility

of variance dynamics, and coherent conditional correlation patterns between returns and variances.



For each model in Figure A1, we plot the daily conditional volatility computed as the square
root of hyyq1. Clearly, the GARCH model does a poor job in replicating extreme volatility episodes
in our sample window, as compared to the other models. All models (except GARCH) appear
to track the market spot volatility in a similar way. However, the one-factor ARV specification
tends to exhibit slightly stronger spikes than two-factor CGSARV and GSARV models, probably
because two-factor models are not directly maximized on RV, but rather on upside and downside

components of RV.

The time paths of upside and downside conditional volatilities from two-factor models are
presented in the left and right columns of Figure A2, respectively. Two-factor CGSARV, and

GSARV models produce nearly identical temporal patterns for conditional semi volatilities.

The dynamics of model-based conditional volatility of variance in Figure A3 support the previ-
ous observations. Recall that the conditional volatility of variance is calculated as the square root

of

Vart(htﬂ) = Vart(hu,tﬂ)—l—Vart(hd’tH),
where

Varg(hji1) = 201? (1+ 27]2 (hjs —wj)), for j =u,d.

Except for the GARCH model that entails a relatively low and smooth conditional volatility of
variance, all models deliver high (resp. low) conditional variability in variance when volatility is
high (resp. low), consistent with observed empirical regularities. Moreover, two-factor specifications
generate similar time series of conditional volatilities of upside and downside variances, as shown

in Figure A4.

Figure A5 plots the time series of conditional correlations between return and variance, which

are computed using

Riy1,h Riy1,h
Corry(Rig1, hiey1) = 200 (R t1, husi) + cots (Boys, d’Hl),

Vi1 Varg(hig)

where,
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Models under consideration display important differences in this regard. One-factor models imply
conditional correlation values that are all negative. Specifically, the conditional correlation moves
close to its lower bound of -1 for the GARCH model, and is constant at about -0.1 for the ARV
model. By contrast, the conditional correlation alternates between negative and positive values
in the CGSARV and GSARV specifications. Moreover, Figure A6 illustrates that these last two
models yield positive (resp. negative) conditional correlations of return and upside (resp. downside)
variance, consistent with the observed empirical evidence. These results lends additional credibility
to the proposed GSARV model and underscores its ability to deliver option prices that closely reflect

the real-world empirical regularities.

C Risk Neutralization

In this appendix, we derive the risk-neutralization formulas for the general model. We assume an

exponential pricing kernel of the following form
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We need to impose the no-arbitrage condition
ER [exp (Ris1)] = Ex My exp (Ren)] = exp ().
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Hence,

(1—2( p2 1/5 >u2—|—2[1/8]) (1—2(1—p2)V§t )>—|—p1/1t )}

EtQ [exp (usj 41 T vE; t+1)} E, |:Mt+1 exp <u5(1t)+1 + vsﬁ)ﬂ)}
) (27
(1—2( ,02)1/§J))v —1—2{ (25 )(1—2(1—p2) (1 )) +pu( ])]v—l—quv
2

= eXp 9
(1= g 2P 40— )P0
and
1 2j 2j .
ROECRe e (1=2(0= %) 17) + i) 1-2(1-p*) vy
Ejt+1 1_ 21/(1]‘) _ 21/5?]‘) Y4(1—p )l/g])l/(t 37 2V§j) _ Qng) +4(1-p )Vét )Ié?])
9 :
@ -Q V%t]) (1 -2 (1 - /)2) Vét )> + PVEt 7 1-2 (1 — p2) 1/%])
i1 N (1-) (2') (17). (25)° (15) (24) (15) (25) |’
8 1= 20" = 205" + 4 (1= p?) gy vy 1= 205" — 205" + 4 (1 = p?) 1y 1y
Q _ Q (-
Pjg = COTTy \Ejit1s Jt+1 ; N
¢ )- Vi-20- )1 - 20— )y

We will only consider constant Véi D and Vét ) We posit

(1) (24) 2\ ,,(13), (24)
i 1 -2y — 2u4 +4<1fpj)1/2 Vs

K = -
' 1-2(1-p2) f¥)
; 1-— 21/§1j) — 2V§2j) +4 <1 — pJQ) I/élj)l/§2j)
Ky = ,
2 1—92 (1 p]) (1])

, A v (129 (1 - p2) 82 1 p )
gtlil = \/’:i (gg‘,lt)ﬂ t <,<;j (1 E 5 (1])/);) V)ézj))J ! ) )
o O (1=2(0-2) ) 4ol
Eii+1 ﬁg (1 S (1 - p?) Vélj)) .

£*2)
] t+1




Thus,
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To preserve the same structure, we also want to have
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The variance spread is defined as
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can be cast as
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Finally, we apply the general risk neutralization procedure to each of the models, and provide
the corresponding risk-neutral dynamics. Specific formulas for one-factor models are presented

below.

C.1 Heston and Nandi Affine GARCH model
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C.2 ARV
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The mapping between the risk-neutral and the physical variances is given by
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C.4 GSARV

The computations follow the same steps as above given that the GSARV is a straightforward

two-factor extension of the single factor SARV.
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Figure Al: Daily Conditional Volatilities
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These figures present the daily conditional volatilities, v/h¢, implied by the parameters estimated for each model in the historical
optimization from January 02, 1990 through August 28, 2013.
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Figure A2: Daily Upside and Downside Conditional Volatilities
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These figures present daily upside (left column) and downside (right column) conditional volatilities, y/hu,t and y/hq ¢, implied
by the parameters estimated for two-factor models in the historical optimization from January 02, 1990 through August 28,
2013.
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Figure A3: Daily Conditional Volatilities of Variances
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These figures present the daily conditional volatilities of variances, y/Var(ht+1), implied by the parameters estimated for each
model in the historical optimization from January 02, 1990 through August 28, 2013.
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Figure A4: Daily Conditional Volatilities of Upside and Downside Variances
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These figures present daily conditional volatilities of upside (left column) and downside (right column) variances, v/Vars(hu,t+1)
and /Vart(hg,41), implied by the parameters estimated for two-factor models in the historical optimization from January 02,
1990 through August 28, 2013.
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Figure A5: Daily Conditional Correlations between Returns and Variances
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These figures present the daily conditional correlations between returns and variances, Corri(Ri+1,ht+1), implied by the
parameters estimated for each model in the historical optimization from January 02, 1990 through August 28, 2013.
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Figure A6: Daily Conditional Correlations between Returns and Upside, and Downside Variances
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These figures present daily conditional correlations between returns and upside (left column), and downside (right column)
variances, Corri(R41,hu,e+1) and Corry(R¢y1,hq,141), implied by the parameters estimated for two-factor models in the
historical optimization from January 02, 1990 through August 28, 2013.
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