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This document provides additional results that are omitted from the paper due to space

considerations.

e Section A discusses estimates of the expected recovery and the default intensity for

each firm in our sample.

e Section B presents a case study of Fannie Mae and examines its time-varying

recovery rate dynamic.

e Section C presents results showing that the long-run equilibrium relationship between
senior and subordinate CDS spreads does not breakdown during subprime crisis,
indicating that our findings are not driven by structural change in the relative liquidity

between senior and subordinate CDS.
e Section D examines the robustness of our model estimates to subperiod tests.
e Section E examines out-of-sample pricing performance of the CDS valuation model.

e Section F examines the robustness of our main conclusions to an alternative

estimation procedure, i.e., a joint estimation approach.

e Section G presents evidence that the model can fit the simulated data reasonably

well.

e Section H shows that the default intensity dynamic does not affect the relative CDS

spreads between senior and subordinate contracts.

e Section I discusses the importance of using multiple-seniority CDS term structures

for estimating time-varying recovery rates.



A. Expected Recovery: Individual Firms

Table TA1 reports the time-series averages of the expected recovery at three different
maturities for each firm in our sample. The results are reported separately for senior and
subordinate contracts. The table also reports the time-series averages of 1-year default
probabilities implied by the model. The 1-year default probability at time ¢ is calculated as
1 — Qi[m >t + h], where Q[T > t + h| is the survival probability between current period ¢ up
until time ¢ + h, where h = 12 months. To see how the default probability is related to the
expected recovery rates, the last two columns in Table IA1 report the time-series
correlations between the 1-year expected recovery and the 1-year default probability for
senior and subordinate contracts.

Table TA1 shows the expected recovery for senior contracts on Fannie Mae and
Freddie Mac, the two government-backed entities, are among the highest in our sample.
Their expected recovery for subordinate contracts are significantly lower. The correlations
between the 1-year recovery and the 1-year default probability are mostly negative,
suggesting that on average, the recovery rate at default decreases when the likelihood of

default rises.

B. Time-varying Recovery: A Case Study

This section examines how important news arrivals impact the time-series dynamic of
expected recovery rate at an individual firm level. We focus our study on a government
sponsored entity Fannie Mae. We chose this firm because it was severely impacted by the
subprime crisis as well as drawing widespread media attention.??

The top two panels in Figure IA1 plot the time series of 1-year expected recovery for
Fannie Mae. The panels below plot its time series of market-observed and model-implied
five-year CDS spreads, model-implied 1-year default probabilities, and 1-year trailing stock
return. Looking at the second-row panels, the market-observed CDS spread (black line) and
the model-implied CDS spread (grey line) have almost identical time-series dynamics. These
results show that the CDS model performs well in fitting the spreads of senior and
subordinate contracts.

Figure TA1 shows the expected recovery of Fannie Mae varies substantially over time.
Its time-series average of expected recovery on a five-year senior contract is 70.15%. This

value is relatively large compared to other firms in our sample, which reflects its sponsorship

23We observe similar results for Freddie Mac, another government-sponsored entity in our

sample.



by the U.S. government. An important news item that significantly impacted Fannie Mae
occurred on June 9, 2003.2* Figure IA1 shows the expected recovery of Fannie Mae drops
significantly in mid-2003, before climbing back to their conventional values.

Figure IA1 shows the expected recovery of Fannie Mae fell by as much as 50% in
2007 relative to its pre-crisis level. However, its recovery level started increasing in early
2008 and eventually exceeded its pre-crisis period values. Interestingly, while the expected
recovery increased, CDS spreads of Fannie Mae widened, and its 1-year default probability
rose sharply (bottom-left panel). In other words, the default risk of of Fannie Mae became
positively correlated with their recovery rate during the crisis. The rising recovery rates of
Fannie Mae during the subprime crisis can be linked to the government bail out when on
July 24, 2008, the United States Congress passed the Housing and Economic Recovery Act
of 2008 (HERA).?* This bill was intended to restore confidence in Fannie Mae by
strengthening regulations and injecting capital into their mortgage funding. As a result,
Fannie Mae’s CDS spread fell in the end of March 2008, while in the mean time, its 1-year
expected recovery rose back to and eventually surpassing its pre-crisis level.

As shown in Figure IA1, we argue that the increase in expected recovery of Fannie
Mae in 2008 is due to the government bail out. The model-implied default probability of
Fannie Mae increase by roughly 400% from mid-2007 to Sep. 2008. However, its CDS
spreads only increase by about 100%, suggesting the recovery rates of its debt must increase
in order to balance the rapid rise in the default probability. Our results in Figure TA1
provide an economic insight linking the effect of government bailout to the borrowing costs
in the debts market.

240n that day, Freddie Mac was re-audited for three prior years because its previous auditor,
Arthur Andersen, mis-applied accounting rules. As a result of the news, Freddie Mac’s stock
plunged 16% on that day. This accounting malpractice received wide media attention and its effect
spread to Fannie Mae because lawmakers were pushing for more oversights among these
government-sponsored entities.

25The bill authorized the Federal Housing Administration to guarantee up to $300 billion in new
fixed rate mortgages for subprime borrowers, if lenders would write-down principal loan balances to

90% of current appraisal value.



C. Robustness Check: Price Discovery during the Financial Crisis

We follow Blanco, Brennan and Marsh (2005), and Norden and Weber (2009, 2012),
among others, and estimate a two-stage vector error correction model (VECM) on daily
changes in senior and subordinate CDS spreads. In the first stage, we estimate the long-run
relationship between senior and subordinate CDS spreads according to

(C-9) CDS?YE = a, + pODSPEN + p,CRISIS, + E; ;.

7,T,t 9,7,

where CDSPEN and CDSPYP are senior and subordinate spreads of firm i with maturity 7
on day t. CRISIS; is a time-series dummy equal to 1 from Dec. 2007 to June 2009, which
corresponds to the subprime recession period defined on NBER’s website. We estimate the
above model (C-9) for each firm across all maturities. We include maturity fixed effects in
the regression.

The residual term, E; .4, in equation (C-9) can be interpreted as the error correction
term. In the second stage, we apply lags of residual £; -, and estimate the short-run relation
between daily changes in senior and subordinate CDS spreads. The second-stage regression
model is given by

(C-10)  ACDS?EN = 61, + MEiri1 + BIACDSPEN | + 4 ACDSSUE  + ¢

2,7t 1,T,t— 1,7, t—

(C-11)  ACDSPYE = 6y + NoEiry1 + BoACDSEN | + 9 ACDSPVE |+ ¢4,

2,7t 1, T, t— 1,7, t—

where ACDSPEY and ACDS?UP denote the change in senior and subordinate CDS
spreads, respectively. Equation (C-9) suggests that when the residual term E; ;,  is
positive, the subordinate CDS spread level is too high relative to that of the senior contract.
Consequently, the subordinate CDS spread will decrease while the senior CDS spread will
increase. Therefore, if the equilibrium relation between senior and subordinate CDS spreads
holds, we expect the sign on A; in equation (C-10) to be positive, and the sign on Ay in
equation (C-11) to be negative.

Table IA3 reports results for the regression model in equations (C-10)-(C-11). We
report estimates for two samples. The first is the full sample for which we have data
available from Jan. 2001 to May 2012. The second period corresponds to the subprime crisis
spanning from Dec. 2007 to June 2009. Table IA3 shows the coefficients on the error
correction terms F; ., are correctly signed and statistically significant in the full sample as
well as during the crisis period. The results suggest that there is a long-run equilibrium
relation between senior and subordinate CDS spreads, and importantly, the relationship
holds during the financial crisis. Table IA3 shows the negative coefficients on lagged CDS

spread changes, supporting the mean-reverting dynamic of CDS spreads. Importantly, we



find that the mean-reverting property of CDS spreads changes is statistically significant for

senior and subordinate contracts, and that this finding holds during the financial crisis.

D. Robustness Check: Subperiod Analysis

This section reports results from the subperiod analysis of the CDS valuation model.
We provide evidence showing that our estimation results are fairly stable when we estimate
the model using different sample periods.

For each of 46 firms in our sample, we reestimate the model on 2 subperiods. The first
is from Jan. 1, 2001 to June 30, 2007, corresponding to the “pre-crisis” period. The second
subperiod is from July 1, 2007 to May 31, 2012, which includes the subprime crisis period
and the post-crisis period; we refer to it as the “crisis/post-crisis” period. This analysis
yields 2 x 46 = 92 sets of new parameter estimates. We compare the model parameters and
the recovery rate dynamics estimated from these two subperiods against those estimated
using the full-sample period, which is from Jan. 1, 2001 to May 31, 2012. We examine the
stability of our model estimates by looking at their parameter deviations in Table A4, and
visually by plotting their recovery dynamics in Figure TA2. We discuss our findings below.

Table IA4 reports cross-firm average deviations (in %) of model parameters estimated
from the two subperiod samples against those obtained from the full sample. The percentage
deviation of each model parameter is first calculated firm by firm. For instance, if 65 and 6
are the two parameters that we estimate from the subsample and full-sample periods,
respectively, we calculate its percentage deviation as (65 — 6f) /65 x 100. We then report the
average deviation of each parameter (in %) across 46 firms in Table IA4. Panel A reports
average deviations of the loading coefficients, while Panel B reports average deviations of
state-variable dynamics. In each panel, results from the two subperiods are reported: the
pre-crisis period, and the crisis/post-crisis period.

Panel A of Table IA4 shows that the loading coefficients are very stable across sample
periods. Their percentage deviations range between —6.15% and 3%. On average, we find
the loading coefficients estimated from the two subperiods tend to be smaller than those
obtained from the full-sample period (i.e., negative percentage deviations). Nevertheless,
these deviations are fairly small suggesting the stability in loading-coefficient estimates of
the default intensity dynamic, and the loss-given-default (LGD) dynamics of senior and
subordinate contracts. At this point, we note that it is difficult to interpret, by looking at
these parameter deviations alone, how the levels of model-implied default intensity and
recovery rate levels are directionally affected. This is because the dynamics of default
intensity and LGDs are quadratic in the state variables; see equations (5) and (6) in the

main text. We will later discuss deviations in the model-implied default intensity and



recovery rate dynamics using a visual representation in Figure TA2.

Panel B of Table IA4 reports parameters that govern the dynamic of latent state
factors X3, X4, and Xj5. Overall, we find that deviations in the factor-dynamic parameters
are larger than the loading-coefficient parameters shown in Panel A. The deviations in their
parameters are between —19.24% and 18.33%. We expect this finding because X3, X, and
X5 are latent-state variables. Therefore, the length and when the sample starts can
substantially affect the results.

We find the dynamic of latent factor X5, which drives the loss-given-default (LGD)
dynamic is more stable than the dynamic of latent factors X3 and X,, which drive the
default intensity dynamic. This finding is intuitive and expected because the default
intensity dynamic is explained by two latent factors (X3 and X,), while only one factor
drives the LGD dynamic (X5). As a result, there is more degree of freedom in the modeling
of the intensity dynamic.

Overall, results in Panel A of Table A4 indicate that the loading coefficients are
stable when estimated using a subperiod. The latent-factor dynamic, on the other hand,
shows more deviations but we believe these magnitude are within reasonable range. Looking
at parameter deviations in IA4 does not give a clear picture of how the default intensity and
LGD dynamics are affected when the model is estimated using a subperiod sample. As
mentioned previously, this is because we assume a quadratic specification in the default
intensity and LGD.? For a better representation of deviations in the default intensity and
recovery rate dynamics, we present our findings visually in Figure [A2.

Figure IA2 plot results comparing the recovery rate and the default intensity implied
by subperiod estimates against those implied by full-sample estimates. We plot daily
cross-firm averages of the 1-year expected recovery, the slope of expected recovery, and the
1-year default probability. The left-column panels compare pre-crisis results against
full-sample results. The right-column panels compare crisis/post-crisis results against
full-sample results. In all panels, the dark solid line represents subperiod estimates, while the
dotted line represents full-sample estimates. We find very little deviation in the time series of

1-year expected recovery (top panels) and 1-year default probability (bottom panels). This

26We use the quadratic specification because it guarantees that our the default intensity dynamic
and the LGD dynamics are always positive. See for examples, Longstaff (1989), Constantinides
(1992), Ahn, Dittmar and Gallant (2002), Leippold and Wu (2002), Li and Zhao (2006), Ang,
Boivin, Dong and Loo-Kung (2011), and Doshi, Ericsson, Jacobs, and Turnbull (2013) for

applications of quadratic term structure models.



indicates that our estimates of the recovery-rate level and the default-intensity level are
remarkably stable and robust to a subperiod test.

We find some deviations in the slope of expected recovery levels between the
full-sample and subperiod results. This is shown in the middle panels of Figure IA2. Recall
that the slope of expected recovery is the relative difference in expected recovery levels at
the 10-year and 1-year horizons. Thus, while we find that the level of expected recovery at
the 1-year horizon can be precisely pinned down as shown in the top panels of Figure TA2,
its estimate is less stable at a longer horizon (i.e., 10 years). Nevertheless, the two time series
of expected-recovery shown in the middle panels share close resemblance; they tend the

move in the same direction. We also emphasize that these deviations are economically small.

E. Out-of-sample Tests

We examine out-of-sample pricing implications for our model. For continuity with the
subperiod analysis shown in Section D, we split our sample into two periods: the “pre-crisis”
period, which is from Jan. 2001 to June 2007; and the “crisis/post-crisis” period, which is
from July 2007 to May 2012. We use parameter estimates from the pre-crisis period to price
CDS out-of-sample in the crisis/post-crisis period. Table IA5 reports the results.

The procedure for calculating out-of-sample CDS pricing errors are as follows. We
first re-estimate the model firm-by-firm using CDS data from the pre-crisis period. This
yields 46 sets of new parameters, one for each firm. Before we can apply these parameters to
price CDS contracts in the out-of-sample period, we need to we filter out daily latent factors
X3, X and X 57t.27 For each firm, we apply its estimates obtained from the pre-crisis period
to filter daily state variables X3,, X4; and X5, from July 2007 to May 2012.?® We then apply
these parameter estimates together with daily filtered state variables to price CDS contracts.

Table TA5 reports average CDS pricing errors for the crisis/post-crisis period, i.e.,
July 2007 to May 2012. We report two measures of pricing errors: the relative
root-mean-squared-error (RMSE) in Panel A, and the absolute percentage error (APE) in
Panel B. In each panel, we report both in-sample pricing errors and out-of-sample pricing

eITrors.

#"We do not need to filter latent factors X, and X because they are identified from the term
structure of default-free rates.
28This procedure implies that while our parameters are truly out-of-sample, the latent factors

are filtered using in-sample information.



On average, Table TA5 shows that out-of-sample errors can be twice as large as their
corresponding in-sample pricing errors. Looking at senior CDS contracts, we find that the
model prices out-of-sample 1-year CDS fairly well, but not for longer-maturity CDS
contracts. We believe that these relatively large out-of-sample pricing errors are due to the
substantial increase in firms’ default intensities following the subprime crisis. As illustrated
in the top panels of Figure 2, we find that the 1-year default probability starts increasing
substantially in 2007, when our out-of-sample period begins.

For subordinate CDS contracts, out-of-sample pricing errors are twice as large as
their corresponding in-sample errors. Across all maturities, we find that out-of-sample
pricing errors for subordinate contracts are larger than those reported for senior contracts.
We believe that the relatively worse out-of-sample pricing performance for subordinate
contracts derive from two aspects. The first is the drastic increase in default probability at
the beginning of the subprime crisis, which affects both senior and subordinate CDS
contracts. The second aspect is the relatively more volatile and steeper slope of expected
recovery in the post-crisis period for subordinate contracts relative to those for senior
contracts. This is evidenced by the two middle panels in Figure 2, which show that the slope
of expected recovery becomes significantly more negative for subordinate CDS contracts
after the subprime crisis. These drastic changes in the default probability and in the slope of
expected recovery found in subordinate CDS contracts may explain why out-of-sample
pricing errors (i.e., crisis/post-crisis period) are larger for subordinate contracts.

Overall, we find that the model’s out-of-sample performance is modest, and relatively
weak for subordinate contracts. These findings are expected because the out-of-sample
period that we use corresponds to a drastically different economic cycle from the period
where the model parameters were fitted to CDS data. One implication from this
out-of-sample analysis is that it is important to update the model parameters frequently, and
using a rolling-window estimation. This is because model parameters that govern the default

intensity and recovery rate dynamics are highly sensitive to changes in the economic cycle.

F. Robustness Check: Joint Estimation

We conduct an alternative estimation procedure, i.e., a joint estimation of model
parameters across firms, to check if our main results would change substantially. This
robustness test affects the second-step estimation procedure only, where the default intensity
dynamic and the LGD dynamic are estimated. Instead of estimating default-intensity
parameters and loss-given-default (LGD) parameters firm by firm, we estimate them using
CDS information on 17 financial firms all at once. We choose to focus on firms in the

financial industry because they were most severely affected by the 2008 subprime crisis,



which affects their term structure of expected recovery rates. We do not estimate the default
intensity and LGD dynamics on all 46 firms in our sample simultaneously because prior
studies find that the default probability and LGD dynamics are industry specific (e.g.,
Chava and Jarrow (2004)). This finding is also supported by our results in Table 5, which
show that default probability and expected recovery rate differ across industries.

The joint estimation method yields one set of parameter estimates and time series of
latent factors. On the other hand, firm-by-firm estimation yields 17 sets of parameter
estimates and time series of latent factors, i.e., one set for each firm. Table IA6 presents
results comparing estimates obtained from the joint estimation against those estimated firm
by firm. Parameter estimates and their standard errors are reported for the joint estimation.
For the firm-by-firm estimation, we report the distribution of each model parameter. We
visually present results comparing the recovery rate and default intensity levels obtained
from the two estimation methods in Figure TA3.

Looking at the parameters in Table A6, we find that the joint estimation estimates
always lie between the 25th and 75th percentiles of their corresponding parameters’
distribution obtained from the firm-by-firm estimations. This finding suggests that
parameter estimates obtained using the two different estimation methods are comparable. In
other words, we find the joint estimation method yields parameter estimates that are
representative of the median firm in the financial industry. Standard errors of
joint-estimation parameter estimates are fairly small suggesting that they are precisely
estimated. This finding is expected because the number of data that goes into the joint
estimation is large, consisting of senior and subordinate CDS spreads of 17 financial firms.

Figure IA3 provides a visual presentation of results obtained from the two estimation
methods. Here, we plot daily time series of 1-year expected recovery level, the slope of
expected recovery term structure, and the 1-year default probability. The left-column panels
plot results from the firm-by-firm estimation; they represent averaged time series across 17
financial firms. The right-column panels plot results from the joint estimation. We find that
the 1-year expected recovery time series are very comparable between the two estimation
methods.

Looking at the slope of expected recovery and the 1-year default probability, we find
that time-series estimates from the joint estimation are able to match the level and the
general pattern of the averaged time-series estimates obtained from the firm-by-firm
estimation. However, the joint-estimation time series (right-column) are less volatile
compared to the averaged results obtained from the firm-by-firm estimation
(left-column). We believe this finding is intuitive because joint-estimation results produce
one set of estimates that is representative of a firm in the financial industry. On the other

hand, in the firm-by-firm estimation, parameter estimates can vary significantly among



firms, resulting in a larger fluctuation in their averaged time series of default probability and
term structure of expected recovery. Nevertheless, results from the joint estimation of
financial firms yield a similar conclusion as those obtained from the firm-by-firm estimation.
That is, the level of expected recovery varies significantly through time and worsens during
the subprime crisis period. Also, the term structure of expected recovery for financial firms
spike above (or close to) 0, during and after the subprime crisis period, indicating the

inversion of the term structure of expected recovery levels for financial firms.

G. DMonte Carlo Simulation Study: Model Pricing Errors

We evaluate the model performance at fitting the simulated data. Specifically, we
examine the model’s pricing errors against their “true” values along three dimensions: CDS
spreads, expected recovery rates, and binary CDS spreads. Table IA7 reports the results. In
Panel A, we report the means and standard deviations of simulated CDS spreads, expected
recovery rates, and binary CDS spreads. A binary CDS spread is priced similarly to a
standard CDS contract but with a 0 recovery rate when the firm defaults (i.e. the LGD is
100%). There is no recovery risk in binary CDS contracts due to the certainty of 0%
recovery, and hence their spreads reflect only the default risk. We use binary CDS spreads as
our benchmark for evaluating the robustness of the estimates for the default intensity
dynamic. Overall, the simulated samples show an increasing term structure of CDS and
binary CDS spreads, while expected recovery rates decrease as the default horizon increases.

Panel B of Table IA7 summarizes the means and standard deviations of absolute
percentage pricing errors for CDS spreads, expected recovery rates, and binary CDS spreads
grouped by maturity and seniority levels. Results in Panel B show the pricing error is
slightly higher for shorter-maturity CDS contracts. Nevertheless, the absolute percentage
errors in pricing CDS spreads, on average, are small and fall under 5%. Expected recovery
rates and binary CDS spreads are also reasonably well estimated with absolute errors below
11% relative to their true values, respectively. These relatively small pricing errors for
expected recovery rates and binary CDS spreads suggest that we can estimate the recovery

and intensity dynamic fairly well.

H. Default Intensity and CDS Spreads Ratio

In this section, we show the default intensity dynamic does not affect the relative
CDS spreads between senior and subordinate contracts. Thus, the relative term structure of
senior to subordinate CDS spreads are identified by their loss-given-default dynamics. From

the main paper, we recall that the default intensity dynamic depends on four latent factors.
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Its dynamic is given by
(C-12) )\t == (Oé[) + ale,t + O{QXQJ + Oé3X3’t + 014X47t)2 .

The first two factors, X, and Xy, are estimated from the default-free term structure. The
third and fourth factors, X3, and X, are specific to the default intensity and describe the
changes in intensity dynamic not already captured by the changes in the default-free term
structure.

When pricing CDS spreads, the default intensity behaves as an additional discount
factor. Therefore, senior and subordinate CDS spread levels are affected proportionally when
there is a shock to the intensity factors. As a result, the ratio of senior to subordinate CDS
spreads do not vary as the intensity factors change. This intuition explains why the ratio of
senior and subordinate CDS spreads are determined by their loss-given-default dynamic, and
not their default intensity dynamic. Figure IA4 illustrates why the intensity factors do not
impact the ratio of senior to subordinate CDS spreads. Using the base case parameters in
Table 7 of the main text, we simulate 100 sample paths of daily senior and subordinate CDS
spreads with five-year maturity. Each simulated sample consists of 1500 days. The results in
this figure correspond to daily average values across 100 samples. The middle and bottom
panels plot daily cross-sectional averages of five-year senior and subordinate CDS spreads,
respectively. The top panel of Figure [A4 plots the ratio of senior to subordinate CDS
spreads with five years to maturity. In each panel, we plot the results for three sets of
intensity loading parameters. The first is the base line result which uses the base case
parameters reported in Table 7. For the two other cases, we simply multiply intensity
loadings of all four factors in equation (C-12) by 5 and 10.

The top panel of Figure IA4 shows that the ratios of senior to subordinate CDS
contracts are always below one, indicating that the LGD of senior CDS is lower than that of
subordinate CDS. More importantly, we find the five-year CDS ratio plots appear almost
identical under the three sets of intensity loading parameters. The results from Figure [A4
confirm that shocks to the intensity dynamic affect CDS spreads of different seniorities
proportionally. Therefore, the LGDs of senior and subordinate contracts are the primary

determinants affecting their CDS spreads ratio.

I. Identifying Time-varying Default Intensity and Recovery

This section discusses the importance of using multiple-seniority CDS contracts to
identify the recovery rate and default intensity dynamics. We argue that the term structure
of multiple-seniority CDS contracts is required to separately identify the time-varying

default intensity dynamic from the time-varying recovery rate dynamic.
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To support our argument, we estimate a constant recovery model on CDS data
generated by the model with stochastic recovery and stochastic default intensity.?? That is,
we estimate a model that misspecifies the recovery rate dynamic but not the default
intensity dynamic. Our objective is to show that if we use the term structure of
single-seniority CDS contracts in the estimation, the average recovery level can be recovered,
but errors from misspecifying the recovery dynamic will cause systematic biases in the
default intensity estimates. However, if term structure of multiple-seniority CDS contracts
are used, errors from misspecifying the recovery dynamic will not severely impact the default
intensity estimates because such estimation approach imposes a strict identification
mechanism on the default risk.

Using the CDS data simulated in Section A, we estimate the constant recovery rate
model on two distinct samples. The first estimation sample relies on simulated CDS spreads
of senior and subordinate contracts (multiple seniority). In the second estimation sample, we
estimate the model only on simulated senior CDS spreads (single seniority). The simulated
data that we use consists of 100 paths each with 1500 observations; see Panel A of Table IA7
for their summary statistics.

Table TA8 reports absolute percentage pricing errors from the two estimation
samples. We report the means and standard deviations of pricing errors for senior CDS
spreads, binary CDS spreads, and expected recovery rates of senior contracts. We examine
pricing errors only for senior contracts to facilitate a fair comparison between the two
estimation samples. Absolute pricing error for senior recovery rates is calculated against the
time-series averages of their simulated values (Panel A of Table IAT).

As expected, Table IA8 shows the pricing errors for senior CDS spreads are
substantially smaller for the estimation sample that uses only senior contracts. This finding
is not surprising because the model is optimized to fit only senior CDS spreads. However,
this relatively small senior CDS pricing errors come at the expense of systematic biases in
the default intensity estimates. Table IA8 shows the errors from pricing binary CDS spreads
are much smaller when the model is estimated using both senior and subordinate CDS
contracts. Because binary CDS spreads are only affected by default risk, we use them as our
benchmark for evaluating the robustness of the default intensity estimates. The absolute
pricing errors of binary CDS spreads are between 6.8-12.5% when estimated using
multiple-seniority contracts; see estimation sample (1), and 17.7-23.7% when estimated

using single-seniority contracts; see estimation sample (2).

29Under our modeling framework, the constant recovery rate model is obtained by setting the

parameters (31, 32 and (5 in equation (6) to 0.
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Table TAS8 reports the absolute percentage errors for senior recovery rates calculated
against the time-series average of their simulated values, which is 50%. We find the errors
are smaller when the model is estimated using both multiple-seniority CDS contracts.
Nevertheless, the errors from the two estimation samples are fairly small, suggesting the
model can roughly identify the average recovery level even when the true data generating
process is a stochastic recovery model.

We next analyze the source of pricing errors for senior CDS spreads in the two
estimation samples. Because the model that we estimate misspecifies the recovery rate
dynamic to be constant, we expect the model’s CDS pricing errors to vary with the
time-varying recovery rates, which are absent from the model. Failure to find a strong
relationship between the pricing errors and the time-varying recovery rates would suggest
that this misspecification is absorbed as biases in other parameter estimates of the model.
To test this conjecture, we estimate the following pooled regression of daily log CDS pricing

errors on daily log implied LGDs:
(C-13) log(CDS},) — log(@t) = a” + blog (Implied LGD],) + €4,

where C'DS], and C’/D?] . are the model-generated and "true” simulated 7-year CDS spreads
of simulation path ¢ on day t. The Implied LG D7, is the LGD level for 7-year CDS contracts.
For each of the 100 simulation paths, we estimate the model in equation (C-13)
across five CDS maturities.®® We find the regression adjusted R? value for the estimation
sample (1) is, on average, 65.5%, while for the estimation sample (2), it is only 2.6%. These
results show that when the model is estimated on multiple-seniority CDS spreads, CDS
pricing errors correctly reflect time variations in the LGD which is absent from the constant
recovery rate model. However, if we estimate the constant recovery model using
single-seniority CDS spreads, time variations in the recovery rate is incorrectly picked up by
the intensity dynamic, suggesting that the default intensity is severely biased. In this latter

case, the intensity dynamic no longer reflects only the default risk, but also the recovery risk,

30Tt is calculated as the ratio of CDS spreads to binary CDS spread with the same maturity.
This definition is drawn from the fact that binary CDS assume 0% debt recovery upon default and
hence must have bigger spreads relative to CDS contracts of the same maturity. Therefore, the
ratio of CDS to binary CDS spreads of the same maturity must be between 0 and 1, which reflects
the implied loss rate on the debt value insured by the CDS contract. We use the implied LGD as

our instrument that proxies for time-varying recovery dynamics.
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which explains why binary CDS spreads in Table IAS8 are severely mispriced for the
estimation sample (1).

Overall, these results confirm the importance of using the term structure of senior
and subordinate CDS spreads when estimating time-varying recovery model. That is, the use
of multiple-seniority CDS contracts imposes a stricter identification mechanism on the
default intensity, making it less likely to pick up changes in CDS spreads that are due to

time-varying recovery rates.
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Table IA2: Accounting for Bid—ask Spreads: Parameter Estimates for Fannie Mae

We estimate the CDS valuation model using time-series data of senior and subordinate CDS
contracts written on Fannie Mae with maturities of 1, 3, 5, 7, and 10 years. We report re-
sults from two estimation methods. The first method, labeled Without bid/ask, does not
account for CDS bid and ask spreads. In the second method, labeled With bid/ask, we in-
clude daily bid and ask information of Fannie Mae when filtering state variables and con-
structing the optimization function. Daily bid and ask data are collected from Bloomberg.
We account for CDS bid ask spreads by assuming that the 7-maturity senior contracts
on day t are priced with normally distributed errors with mean 0 and standard deviations
oS BN (1) | BidiEN (t,7) — AskfEN (t,7)|, where 057N (7) is a constant, and Bid/®N (1) and
AskPEN (1) refer to day t's bid and ask spreads of the T-maturity senior contracts. We assume
T-maturity subordinate contracts are priced with normally distributed errors with mean 0

and standard deviations o5U” (1) | Bid?Y® (1) — AskUP (7)|, where the variables are defined

analogously. Panel A reports the factor loadings of the default intensity dynamic, the loss
given default (LGD) of senior CDS contracts, and the LGD of junior CDS contracts on the
latent factors. See Appendix Table Al for summary of the model parameters. Panel B re-
ports the structural parameters that drive the factor dynamics of state variables X3, Xy, and
X5 under the physical and risk-neutral measures. Standard error is reported (in parentheses)
beneath each estimate.

Panel A: Estimates of the factor loading parameters for Fannie Mae

Default intensity (A, Senior loss given default Subordinate loss given default
Constant X, X, Constant X, X, Constant X, X, ).
(X.OX 100 o x 100 oy x 100 Bosen Blsen sten Bosub Blsub stub Bssub

Without bid/ask spread

-0.18 -3.36 -37.34 1.22 -7.72 -1.70 0.77 -0.22 -11.40 0.67
(1.2E-03) (1.9E-02) (4.5E-02)| (6.6E-03) (3.2E-02) (2.6E-02)| (6.6E-02) (6.3E-02) (7.8E-02) (5.0E-02)
With bid/ask spread

-0.19 -3.73 -32.57 1.22 -7.67 -2.02 0.76 -0.24 -12.85 0.62
(6.9E-03) (6.8E-02) (3.3E-02) | (2.2E-03) (2.6E-02) (2.2E-02)| (8.1E-02) (7.0E-02) (6.5E-02) (3.2E-02)

Panel B: Estimates of factor dynamics of X5, X,, and X; for Fannie Mae

Intensity factor Xg Intensity factor X, Recovery factor X;

[l pSP psx100  03x100 D4 p4P pyx100  0,x100 D5 p5P Psx100  05x100
Without bid/ask

0.9900 0.9899 0.0001 0.0124 0.9976 0.9956 -0.0001 0.0088 0.9992 0.9872 -0.0321 1.7490
(2.4E-06) (2.0E-01) (3.0E-06) (5.5E-05)| (1.0E-04) (6.7E-03) (1.2E-05) (3.2E-05)]| (4.5E-05) (2.0E-02) (6.6E-04) (1.5E-02)
Without bid/ask

0.9900 0.9787 0.0001 0.0104 0.9981 0.9934 -0.0001 0.0114 0.9991 0.9958 -0.0359 1.7506
(2.1E-06) (1.2E-01) (3.0E-06) (7.8E-05)]| (5.8E-05) (1.2E-02) (7.2E-06) (6.9E-05)| (5.7E-05) (1.4E-02) (4.8E-04) (1.3E-02)
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Table IA3: Price Discovery Between Senior and Subordinate CDS Spreads

This table reports the estimation results from the second stage of a Vector Error Correction
Model (VECM) for CDS contracts with 1, 3, 5, 7, and 10 years to maturities. In the first stage,
we estimate the long-run relationship between senior and subordinate CDS spreads according
to

CDS?YP = o, + pCDS?EN 4+ p,CRISIS, + E; 1,

1,7, 2,7t

where CDSPEN and CDSPYB are market-observed senior and subordinate spreads of firm i

with maturity 7 on day ¢t. CRISIS; is a time-series dummy equal to one from Dec. 2007 to
June 2009. In the second stage, we estimate the following regression model.

ACDSEN = 5, + MEi 1 + BIACDSEN | + v ACDSPYE |+ ¢,

2,7, 1,7, t— 1,7, t—

ACDSSUB = (527— + )\QEZ'J—’t_l + BQACDSSENl + ’}/QACDSSUB 1 + Ei ity

2,7t 2,7, t— 1, T, t—

where AC’DSfftN and AC’DS{?%B denote the change in senior and subordinate CDS spreads,
respectively. We report regression results for two periods. The first is the full sample which we
have data available from 2001 to 2012; see data availability in Table 1 of the main text. The
sample consists of firms described in Table 1. We report regression results for two periods.
The first is the full sample for which we have data available from 2001 to 2012; see data
availability in Table 1. The second period spans from Dec. 2007 to June 2009, representing
the subprime crisis. The crisis period is defined following the NBER’s business cycle dating
committee. The table also reports adjusted R-squared, number of observations, and clustering
for each regression. We include maturity fixed effects in the regressions. Robust standard error
clustered at the firm and maturity levels is reported (in bracket) beneath each estimate. *,

** and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Full sample Crisis period (Dec 07—dJun 09)
Dependent variable Dependent variable
A CDS®™N, A CDS®VB, A CDS®™N, A CDS®YB,
(1) (2) (3) (4)
E¢q 0.044%** -0.052%** 0.051%** -0.061***
(0.0129) (0.0178) (0.0178) (0.0224)
A CDS®™N -0.202%%* 0.083%* -0.205%** 0.080%**
(0.0286) (0.0187) (0.0308) (0.0210)
A CDS®® 0.153%** -0.114%%+ 0.040%** -0.109%*
(0.0347) (0.0419) (0.0556) (0.0437)
Fixed effects Yes Yes Yes Yes
Adj. R-squared 0.069 0.038 0.073 0.041
No. observations 371820 371800 79005 78990
No. clusters 230 230 220 220
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Table IA4: Subperiod Analysis of Parameter Estimates

This table reports results examining the stability of model parameters using subperiod esti-
mations. For each of 46 firms in our sample, we re-estimate their CDS valuation model on
two non-overlapping periods. We report the average deviation of subperiod estimates (in %)
relative to their corresponding values estimated over the full-sample period (Jan. 2001 to May
2012). The percentage deviation of each model parameter is first calculated firm by firm. For
instance, if 0, and 0 are the two parameters that we estimate from the subsample and full-
sample periods, respectively, we calculate its percentage deviation as (65 — 0¢) /6 x 100. We
then report the average deviation of each parameter (in %) across 46 firms. We consider two
subperiods. The first subperiod is from Jan. 2001 to June 2007, which is before the subprime
crisis period. The second subperiod is from July 2007 to May 2012, corresponding to the start
of the subprime crisis to the end of our sample. Panel A reports factor loadings of the default
intensity, the senior LGD, and the subordinate LGD on the latent factors. In Panel B, we
report the distribution of parameter estimates that drive the factor dynamic of X3, Xy, and
X5. See Appendix Table Al for summary of the model parameters.

Panel A: Deviation in factor loadings relative to the full-sample estimates

Default intensity (A,) Senior loss given default Subordinate loss given default
Constant Xy Xy Constant Xy Xy Constant Xy Xy X5
o o o B sen B sen B sen B sub B sub B sub B sub
1 2 0 1 2 0 1 2 5

Before the crisis: January 2001 to June 2007
-5.53%  -6.15% -1.37T% | -2.15%  -0.20% -0.03% | -2.56%  -1.27% -0.84% 1.78%

During and post-crisis: July 2007 to May 2012
-4.26%  -1.32% -2.30% | -2.23% -5.01% 1.57% | -1.95% -5.59% -4.42% 3.00%

Panel B: Deviation in factor dynamic of Xg, X4, and X; relative to the full-sample estimates

Intensity factor X; Intensity factor X, Recovery factor X;

P P P
Ps3 Ps Hs O3 Pyq Pyq By Oy Ps Ps Bs 05

Before the crisis: January 2001 to June 2007
0.10% 0.04% -19.94% 4.46% | 0.27% 0.00% -9.45% 7.17% | 0.12% 0.33% -6.02% -0.82%

During and post-crisis: July 2007 to May 2012
0.22% 0.05% -9.21% 19.13%]0.36% 0.23% -6.53% 18.33%| 0.15% 0.27% -7.62% 4.51%
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Table IA5: Out-of-sample CDS Pricing

This table reports average CDS pricing errors for a subperiod from July 2007 to May 2012,
which we refer to as the “crisis/post-crisis” period. We report pricing errors calculated using in-
sample parameter estimates and out-of-sample parameter estimates. In-sample pricing errors
are calculated using parameters that are fitted to CDS data from July 2007 to May 2012.
Out-of-sample pricing errors are calculated using parameters fitted to CDS data from Jan.
2001 to June 2007, which we refer to as the “pre-crisis” period. We report two measures of
average in-sample fit. Panel A reports the relative root-mean-squared-error (RMSE). Panel
B reports the mean of absolute percentage error (APE).The relative RMSE for maturity A
contracts is calculated as

CDS(j,h) = CDSM(j, h)\*
1 MSE =
Relative RMS GZ( CDS(h) )

where G is the number of observations used, and C'DS(j, h) and CDSM(j, h) are the market-
observed and model-implied spreads. Similarly, the absolute percentage error is calculated
as

h) — CDS™(j, h)|

B ‘C’DS 7,
APE = Z CDS(j,h)

We report the average values of relative RMSE and APE in percentage terms for five matu-
rities: 1-year, 3-year, 5-year, 7-year, and 10-year.

Senior Subordinate

lyr 3Yr 5Yr 7Yr 10Yr lyr 3Yr 5Yr 7Yr 10Yr

Panel A. Relative RMSE (%)

In-sample pricing 15.1 114 9.2 8.4 9.9 149 126 9.1 8.8 10.1
Out-of-sample pricing 19.2 182 13.7 14.7 18.3 29.8 20.0 13.8 14.7 18.7

Panel B. Absolute Percentage Error (%)

In-sample pricing 11.4 8.4 7.0 6.2 7.4 11.9 9.1 6.7 6.5 7.7
Out-of-sample pricing 148 158 11.3 11.8 15.0 243 16.7 11.2 119 154
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Table IA6: Joint Estimation Results using Financial Firms: A Robustness Check

We report parameter estimates of the CDS valuation model on 17 financial firms obtained
using two estimation methods: (1) Firm-by-firm estimation, and (2) Joint estimation. Firm-
by-firm estimation is the main method that we use in the paper. The credit-risk parameters
are estimated for each firm individually, resulting in 17 sets of parameter estimates. For this
estimation method, we report the distribution of parameter estimates. In the joint estimation,
we fit the model to all 17 financial firms at once using one set of parameters. For this method,
we report the parameter estimates and their standard errors in parentheses. Panel A reports
loading coefficients of the default intensity, the senior LGD, and the subordinate LGD on
latent state variables. In Panel B, we report the distribution of parameter estimates that
drive the dynamic of X3, X4, and Xj5. See Appendix Table Al for summary of the model
parameters. The sample period is from Jan. 2001 to May 2012. The 17 financial firms in our
sample are denoted with an asterisk in Table 1.

Panel A: Factor loading parameters

Default intensity (A,) Senior loss given default Subordinate loss given default

Constant X, X, Constant X, X, Constant X, X, X,

X100 0,X100 apx 100 B B BT | B BT BT B
Estimates from a joint estimation across 17 financial firms
Estimate 0.097 -1.615 -1.815 0.747 -0.977 -1.949 0.488 -0.131 -0.395 0.766
Std errors (0.001) (0.023) (0.079) | (0.029) (0.011) (0.013) | (0.043) (0.002) (0.013) (0.149)
Distribution of parameter estimates from firm-by-firm estimations on 17 financial firms
25% 0.007 -5.753  -6.508 0.611 -1.578  -3.578 0.207 -2.558  -8.353 0.235
50% 0.093 -2.016  -3.204 0.804 -0.567  -1.797 0.343 -0.665 0.047 0.670
75% 0.308 -0.455 4.216 1.055 0.156 -0.614 0.773 0.904 1.168 0.925
Mean 0.147 -5.155 1.122 0.903 -1.454  -1.586 0.480 -0.757  -1.597 0.600
Std deviation | 0.537 11.315 26.342 0.455 2.643 4.438 0.531 3.857 6.098 0.408
Panel B: Parameters in the factor dynamics of X;, X, and X5

Intensity factor Xg Intensity factor X, Recovery factor X5
05 ps mpx100 0100 | p, pi w100 0100 | ps s Bsx100  05x100

Estimates from a joint estimation across 17 financial firms
Estimate 0.9574 0.9998 -0.0011 0.0205 [ 0.9989 0.9989 0.0001 0.0093 | 0.9996 0.9982 -0.0107 1.4376
Std errors [ (0.0037) (0.0028) (0.0005) (0.0007)|(0.0001) (0.0012) (0.0000) (0.0001)[(0.0018) (0.0007) (0.0004) (0.0209)

Distribution of parameter estimates from firm-by-firm estimations on 17 financial firms

25%

50%

75%

Mean

Std deviation

0.9606 0.9994 -0.0055 0.0101 | 0.9943 0.9994 -0.0001 0.0086
0.9977 0.9995 0.0001 0.0141 | 0.9986 0.9996 0.0001 0.0102
0.9996 0.9998 0.0007 0.0255 | 0.9998 0.9998 0.0003 0.0112
0.9857 0.9993 -0.0011 0.0339 | 0.9495 0.9988 -0.0001 0.0100
0.0192 0.0011 0.0087 0.0680 | 0.1756 0.0034 0.0006 0.0035

-0.0321
-0.0098
0.0021
-0.0200
0.0455

1.3866
1.5651
2.2386
1.9663
1.1465

0.9992
0.9996
0.9997
0.9979
0.0061

0.9978
0.9982
0.9991
0.9983
0.0011
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Table IA7: Monte Carlo Simulation Study: Pricing Errors

We simulate 100 paths of daily CDS and binary CDS spreads over 1500 days using the “true”
base case parameters reported in Table 7. Panel A reports the means and standard deviations
of simulated CDS spreads, as well as their corresponding values of expected recovery rates
and binary CDS spreads. CDS spreads data are simulated with normally distributed noise.
We assume the noise term’s standard deviation is five percent of the model-implied spread
level. CDS are priced using the valuation model shown in Section D. Binary CDS are priced
similarly to standard CDS contracts with the exception of 0% recovery when the firm defaults.
Consequently, only the default risk is priced in binary CDS spreads. All the beta coefficients in
equation (6) are set to 0 such that LGD = 1 when we price binary CDS contracts. In Panel B,
we summarize pricing errors from estimating the full stochastic recovery model on each of the
100 simulated CDS samples. The estimation exercise yields 100 sets of parameter estimates.
Using these parameter estimates, we price senior and subordinate CDS contracts and calculate
their absolute percentage pricing errors with respect to their ”true” values implied by the base
case parameters. We report the means and standard deviations of absolute percentage errors
for CDS spreads, expected recovery rates, and binary CDS spreads.

Panel A: Data simulated using the base case parameters

Senior contracts Subordinate contracts

1Yr 3 Yr 5Yr 7Yr 10Yr 1Yr 3Yr 5Yr 7Yr 10Yr

Simulated data

CDS spreads (bps)
Mean 18.9 30.5 39.3 46.0 53.3 29.3 45.3 57.0 65.7 75.1
Std deviation 10.1 11.1 11.3 11.1 10.6 154 164 164 16.0 15.0

Recovery rates (%)
Mean 54.6 51.0 49.1 48.1 472 31.0 295 286 281 27.6
Std deviation 0.9 0.5 0.4 0.2 0.1 0.6 0.4 0.3 0.2 0.1

Binary CDS spreads (bps)
Mean 426 65.0 81.0 92.7 105.0
Std deviation 22.0 23.3 23.2 22.5 21.1

Panel B: Pricing errors from estimating the full stochastic recovery model

Senior contracts Subordinate contracts

1Yr 3 Yr 5Yr 7Yr 10Yr 1Yr 3Yr 5Yr 7Yr 10Yr

Absolute percentage error

CDS spreads (bps)
Mean 7.8% 4.2% 2.8% 1.9% 2.1% 3.1% 3.0% 29% 1.9% 2.1%
Std deviation 1.9% 2.0% 1.9% 1.1% 0.9% 2.0% 1.0% 1.0% 1.0% 1.0%

Recovery rates (%)
Mean 10.3% 8.4% 6.2% 4.2% 2.9% 10.7% 9.1% 7.2% 6.6% 4.9%

Std deviation 41% 3.0% 3.4% 1.9% 1.0%  4.0% 3.1% 3.2% 3.0% 2.0%

Binary CDS spreads (bps)
Mean 10.1% 7.1% 5.2% 5.7% 5.5%

Std deviation 4.0% 3.4% 29% 3.1% 3.4%
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Table IA8: Robust Identification of the Recovery Level and Default Risk: A Simulation
Study

This table illustrates the importance of using multiple-seniority CDS term structures to ro-
bustly identify the dynamics of recovery rate and default risk. We report errors from estimat-
ing a constant recovery model on CDS data simulated by a stochastic recovery model. We
simulated 100 samples of CDS data, each with 1500 daily observations, using the base case
parameters reported in Table 7. CDS spreads data are simulated with normally distributed
noise. We assume the noise term’s standard deviation is five percent of the model-implied
spread. The means and standard deviations of the simulated data are summarized in Panel
A of Table IA7. We estimate a constant recovery rate model on simulated CDS data using
two different samples. In the first estimation sample, we use simulated CDS spreads for se-
nior and subordinate contracts. In the second estimation sample, only CDS spreads for senior
contracts are used. The constant recovery rate model that we use is obtained by setting param-
eters 1, P2 and f5 in equation (6) to 0. Our simulated data consists of 100 sample paths, and
therefore each estimation sample yields 100 sets of parameter estimates. Using the parameters
estimated from these two estimation samples, we price senior CDS and binary CDS contracts
and calculate their absolute percentage pricing errors with respect to "true” values implied by
the base case parameters. Binary CDS are priced similarly to standard CDS contracts with
the assumption of 0% recovery on the underlying security when the firm defaults (i.e., LGD is
100%). We report the absolute percentage pricing errors for senior CDS spreads, binary CDS
spreads, and expected recovery rates of senior contracts.

Estimation sample (1) Estimation sample (2)

Senior and subordinate CDS

spreads Senior CDS spreads only

Absolute percentage error

1Yr 3Yr 5Yr 7Yr 10Yr 1Yr 3Yr 5Yr 7Yr 10Yr

Senior CDS spreads

Mean 13.2% 6.1% 4.7% 4.0% 54% 11.1% 52% 3.8% 3.4% 2.9%
Std deviation 4.0% 21% 1.6% 1.5% 1.3% 3.7% 24% 1.8% 1.6% 1.5%
Binary CDS spreads

Mean 12.56% 9.0% 7.3% 7.3% 6.8% 23.7% 20.7% 19.1% 18.5% 17.7%
Std deviation 4.9% 4.3% 3.6% 3.6% 3.8% 8.0% 10.8% 13.0% 14.3% 14.9%
Recovery of senior contracts

Mean 2.7% 7.1%

Std deviation 2.9% 6.2%
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Figure IA1l: Fannie Mae: A case study

This figure plots various time-series properties and estimates for Fannie
Mae. The top two panels plot time series of expected recovery at the 1-
year horizon for senior and subordinate contracts. Panels in the second
row plot the market observed (in gray) and model-implied CDS spreads (in
black) for senior and subordinate contracts with five-year maturity. Panels
in the third row plot the model-implied 1-year default probability and the
trailing 1-year cumulative return of the firm. The bottom-left panel plots
the time series of option-implied volatilities calculated using at-the-money
put options with 30 days to maturity. The bottom-right panel plots the
trailing 1-year cumulative return of the firm. We highlight certain portions
of the plot in the top two panels using a dark-colored line to indicate the
events discussed in the text.
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Figure IA2: Subperiod analysis of model estimates

This figure reports results examining the stability of model estimates in
subsample periods. For each of the 46 firms in our sample, we re-estimate
its CDS valuation model on two non-overlapping periods and compare their
results to those obtained using the full-period estimation (Jan. 2001 to
May 2012). The left-column panels compare the full-period estimates to
the subperiod estimate from Jan. 2001 to June 2007, which corresponds to
the “pre-crisis” period. The right-column panels compare the full-period
estimate to the subperiod estimate from July 2007 to May 2012, which
corresponds to the “crisis/post-crisis” period. We report the time-series
averages of 1-year expected recovery of senior contracts (top panels), slope
of expected recovery for senior contracts (middle panels), and 1-year de-
fault probability (bottom panels). In each panel, results from the subperiod
estimation are plotted using bold line, while the full-period results are plot-
ted using normal black line.
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Figure IA3: Firm-by-firm vs Joint estimations: Evidence from financial firms

We plot time series of 1-year expected recovery, slope of expected recov-
ery, and 1-year default probability for 17 financial firms obtained using the
firm-by-firm estimation method (left-column panels) and the joint estima-
tion method (right-column panels). The financial firms in our sample are
denoted with an asterisk in Table 1. Firm-by-firm estimation is the method
that we use in the main paper. Here, the credit-risk parameters are esti-
mated for each firm individually. This method yields 17 sets of parameter
estimates, and 17 sets of daily time series of default probability and recov-
ery rates. Time-series plots for the firm-by-firm estimation represent the
average values across financial firms. In the joint estimation method, we
estimate the model using all 17 financial firms at once. This yields one set
of parameter estimates, and one set of daily times-series default probability
and recovery rates.
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Figure IA4: Default intensity loading and CDS spreads ratio

This figure illustrates the impact of default intensity loading on the CDS

spreads of senior and subordinate contracts. Using the base case parame-
ters in Table 7, we simulate 100 samples of 5-year seniorvand subordinate
CDS spreads. Each simulated sample consists of 1500 days. The results
in this figure correspond to daily average values across 100 samples. The
middle and bottom panels plot daily sample averages of five-year senior
and subordinate CDS spreads, respectively. The top panel plots the ratio
of senior to subordinate CDS spreads. In each panel, we plot the results for
three sets of intensity loading parameters. The solid black line labeled Data
plots the results generated using the base case parameters as reported in
Table 7. The grey-dashed line plots the results generated when multiply-
ing the loadings of all factors by 5. The grey-dashed-dotted line plots the
results generated when multiplying the loadings of all factors by 10.
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Figure IA5: Simulation study results

We plot results from estimating the term structure of CDS spreads simu-
lated using parameters reported in Table 7. We simulate 100 sample paths
of daily CDS spreads with 1, 3, 5, 7, and 10 years to maturity. CDS data are
simulated with normally distributed noise. We set the noise term’s stan-
dard deviation equal to five percent of the model-implied spread level. We
estimate the model on each simulation path using the method described
in Section A of the main text. The top panel reports results for the ex-
pected 1-year recovery, and the middle panel reports results for the average
term structure of recovery. We plot the mean of the model estimates us-
ing a grey-dashed line. One standard deviation band (S.D band) is plotted
on top of the mean of model estimates. Solid lines in the top two pan-
els plot the mean values of 1-year expected recovery and term structure
of expected recovery, calculated using the “true” simulated data. We do
not plot the standard deviation band around the results calculated using
the simulated data to avoid visual clustering. The bottom panel plots the
sample mean and standard deviation of daily percentage pricing errors for
five-year senior contract.
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