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A Calculating Equilibrium Prices: Global Problem and

PDE

We provide a strategy to calculate equilibrium permit prices within our model as the

solution of a system of partial differential equations (PDEs). Permit prices are determined

by cumulative economy-wide emissions xt according to Proposition 2, but it is not simply

possible to evaluate the expectation in expression (7) since the dynamics of this nontradable

underlying is driven by the companies’ endogenous abatement measures. More specifically,

economy-wide abatement ξt results as the sum of the companies’ abatement strategies

that solve the individual optimization problems (4). We can show, however, that the

equilibrium economy-wide abatement strategy ξt can be obtained by solving a global problem

on aggregate emission volumes. In this global problem, a central planner optimizes economy-

wide abatement in light of possible penalties for exceeding emissions, while the gains and

losses from emissions trading cancel out on aggregate.

Proposition 6 (Global Problem). For a competitive equilibrium with optimal individual

abatement strategies ξi, i ∈ I, the aggregate abatement strategy ξ with ξt =
∑

i∈I ξ
i
t solves

the global problem

min
ξ
E0

{∫ Tn

0

e−rtC(ξt)dt+
n∑
j=1

e−rTjpj(xTj − qj)+

}
,(A-1)

1



with aggregate abatement cost function C as defined in the proof and economy-wide emissions

xt following the dynamics (8). The permit price of the ongoing compliance period is equal to

the instantaneous marginal abatement costs of the economy,

Sk(t) =
∂C

∂ξ
(ξt), t ∈ [Tk−1, Tk].(A-2)

The other way round, for a solution ξ of the global problem (A-1), the S1, . . . , Sn defined by

equation (7) are equilibrium permit price processes.

The first part of the Proposition implies, together with Proposition 2, that the

equilibrium price processes S1, . . . , Sn are unique, as they are determined by the aggregate

abatement strategy of the economy according to equation (7), which is the (unique) solution

of the global problem (A-1). The existence of the equilibrium is formally established by

the second part of the Proposition, and we formally construct the corresponding trading

and abatement strategies that solve the individual optimization problems (4) in the proof in

Appendix C.

We derive the solution of the global problem (A-1) in terms of a system of PDEs.

For that we follow a backward induction approach, starting at the last compliance period

[Tn−1, Tn] and proceeding to the periods [Tn−2, Tn−1], . . . , [0, T1]. For each compliance period

k, we include the period k + 1 solution into the terminal condition and settle the problem

by dynamic programming. We state the resulting system of PDEs in here for the case of

business-as-usual emissions following an arithmetic Brownian motion (17) and a quadratic

abatement cost function (18) as used in the calibration, and refer to the proof in Appendix C

for the derivation in the general case.
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Proposition 7 (PDEs). For the global problem (A-1), optimal abatement ξt at time t ∈

[Tk−1, Tk] is given by

ξt =
1

γ
er(t−Tk−1)∂Vk

∂x
(t, xt, yt),(A-3)

where Vk is the time-Tk−1 expected value of an optimal strategy starting at Tk−1. Vk solves

the characteristic PDE

∂Vk
∂t

= −yt
∂Vk
∂x

+
1

2γ
er(t−Tk−1)

(
∂Vk
∂x

)2

− ∂Vk
∂y

µy −
1

2

∂2Vk
∂x2

σ2
e −

1

2

∂2Vk
∂y2

σ2
y(A-4)

with boundary condition

Vk(Tk, xTk , yTk) = e−r(Tk−Tk−1)(pk(xTk − qk)+ + Vk+1(Tk, xTk , yTk))(A-5)

and Vn+1 = 0.

As shown by Proposition 6, the solution for optimal economy-wide abatement at time

t directly implies the equilibrium permit price of the ongoing compliance period through

equation (A-2). Thus, permit prices can be computed by numerically solving the system of

PDEs (A-4), (A-5), starting from period n and proceeding backwards.

B Effects of Risk Aversion on Emission Permit Prices

In this section, we depart from the assumption of risk-neutral agents in our model and

outline the effects of risk aversion on emission permit prices. The existing literature (Seifert,

Uhrig-Homburg, and Wagner (2008), Carmona, Delarue, Espinosa, and Touzi (2013)) pro-

vides several technical results for the case of risk-averse agents in one-period emission trading
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systems, but refrains from a detailed economic discussion of related effects.

While the risk-neutral (linear utility) case allows us to consider the cash-flows from

emissions trading separately from the state of the general economy, this is not possible

anymore under standard specifications of risk aversion, such as CRRA preferences or, more

general, recursive preferences as proposed by Epstein and Zin (1991). Rather, it becomes

necessary to account for the overall consumption level of agents in different states of the

world. For our discussion, we do so by introducing an exogenously specified pricing kernel

Λt into the company’s optimization problem (4), yielding

min
(θi,ξi)

E0

{∫ Tn

0

ΛtC
i(ξit)dt+

n∑
j=1

∫ Tj

0

ΛtSj(t)θ
i
j,tdt+

n∑
j=1

ΛTjpj(x
i
Tj
−Qi

j)
+

}
,(A-6)

and solve for the equilibrium along the lines of Section II.B. In particular, this generalizes

the characterization of emission permit prices in Proposition 2 to

Sk(t) =
n∑
j=k

Et

{
ΛTj

Λt

1{xTj>qj}

}
pj,(A-7)

replacing discounting with the risk-free rate by the stochastic discount factor.

To understand the effects of risk aversion on emission permit prices, we need to

analyze the correlation of Λt with the emissions of the economy, xt. At first sight, it seems

natural to assume that a state of high emissions xt means that the level of production and

consumption in the economy is high, translating to low marginal utility. In this case, Λt

and xt would be negatively correlated, leading to a stronger discounting of possible penalties

pk and therefore lower emission permit prices today. In other words, agents would have to

pay penalties for exceeding emissions when they can easily afford them. Consequently, this

would lead to lower levels of emission abatement as well, as marginal abatement costs and
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emission permit prices are equated in equilibrium also for the case of risk aversion.

However, recall that the original motivation for introducing an emission trading

system at all is that high emissions are associated with the risk of climate change, which

brings along significant growth risks for the economy (see Pindyck (2012)). This effect works

in the opposite direction, and it is very well possible that it outweighs the aspect of higher

productivity levels, implying that high emissions stand for a “bad state” of the economy. If

that is the case, Λt and xt would be positively correlated, turning the aforementioned effects

around: Emission permit prices are higher than in the risk-neutral case, and the amount of

abatement actions implemented increases as well.

Finally, let us discuss how these effects work over different horizons, i.e., how risk

aversion changes the contribution of compliance periods in the near and remote future to

the value of today’s emission permit prices. If we assume that the growth risks related to high

emissions dominate other effects, it follows that a scenario of excessive emissions for a remote

compliance period is particularly harmful to the economy, as it means that emissions have

been high over an extended period of time. In contrast, a scenario where emissions are high

only in the short run is associated with limited growth risks. Consequently, possible penalties

for remote compliance periods would be discounted much less strongly relative to the risk-

neutral case, and the value components attributable to those future periods become more

important for today’s emission permit prices. This effect is amplified if agents put a heavier

weight on longer-term risks, as in case of a preference for early resolution of uncertainty. In

other words, agents’ risk aversion together with emissions-related growth risks would induce

a fat right tail of the risk-neutral distribution, which would be even more pronounced over

longer horizons.
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C Proofs of Theoretical Results

Proof of Proposition 1. We characterize the optimal trading and abatement strategies

(θi, ξi) of the individual companies for given permit price processes S1(t), . . . , Sn(t). The

resulting optimality conditions relate the company’s marginal abatement costs and the

expected penalty payments to the given permit prices. We first decompose the individ-

ual optimization problem (4) into a recursive system of n simpler problems, one for each

compliance period of the emission trading system, including the value function V i
k of the

period k problem into the terminal condition of the period k − 1 problem, with V i
n+1 = 0:

V i
k (t, xit, y

i
t, Q

i
k,t, . . . , Q

i
n,t)

= min
(θik,ξ

i
k)
ETk−1

{∫ Tk

t

e−r(s−Tk−1)Ci(ξis)ds+
n∑
j=k

∫ Tk

t

e−r(s−Tk−1)Sj(s)θ
i
j,sds

+ e−r(Tk−Tk−1)(pk(x
i
Tk
−Qi

k,Tk
)+ + V i

k+1(Tk, x
i
Tk
, yiTk , Q

i
k+1,Tk

, . . . , Qi
n,Tk

))

}
,

(A-8)

for t ∈ [Tk−1, Tk] and k = 1, . . . , n, where (θik, ξ
i
k) is the restriction of (θi, ξi) to the time inter-

val [Tk−1, Tk] and we introduce the additional state variablesQi
k,t =

k∑
j=1

(
aij +

∫ min{t,Tj}
0

θij,sds
)

in generalization of Qi
k = Qi

k,Tk
. According to the dynamic programming principle (see

Bertsekas (1976)), an optimal solution (θi, ξi) of the original problem is also a solution of the

decomposed problem (A-8), and V i
1 is identical to the value function of the original problem

for t ∈ [0, T1]. The dynamics of the state variables follow from equations (3), (1), and the

definition of Qi
k,t as

dxit = (yit − ξit)dt+ σiedW
i
t ,

dyit = µiy(t)dt+ σiy(t)dZ
i
t ,(A-9)
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dQi
l,t =

l∑
j=k

θil,tdt, l = k, . . . , n.

Note that yit is a Markovian diffusion processes with deterministic coefficients. We de-

rive optimality conditions for the trading and abatement strategy (θi, ξi) by applying the

stochastic maximum principle to the problems (A-8), proceeding recursively from k = n to

k = 1.1 A strategy (θin, ξ
i
n) for period n that minimizes the costs according to objective (A-8)

max imizes the Hamiltonian

(A-10) Hn(t, xi, yi, θi, ξi, ρn) = ρn,xi(t) · (yit − ξit) + ρn,yi(t) · µiy(t)

+ ρn,Qi
n
(t) · θin,t − e−r(t−Tn−1)(Ci(ξit) + Sn(t)θin,t).

at every point in time t ∈ [Tn−1, Tn], where (ρn,xi , ρn,yi , ρn,Qi
n
) are the adjoint processes

corresponding to the state variables (xi, yi, Qi
n). Differentiating the Hamiltonian (A-10)

with respect to the control variables and setting the derivatives to zero yields the optimality

conditions

(A-11)

∂Hn

∂ξi
= −ρn,xi(t)− e−r(t−Tn−1)∂C

i

∂ξi
(ξit) = 0,

∂Hn

∂θin
= ρn,Qi

n
(t)− e−r(t−Tn−1)Sn(t) = 0.

It remains to derive the adjoint processes ρn,xi and ρn,Qi
n
, which are defined by the stochastic

differential equations

(A-12)
dρn,xi(t) = ωn,xi(t)dW

i
t + ζn,xi(t)dZ

i
t ,

dρn,Qi
n
(t) = ωn,Qi

n
(t)dW i

t + ζn,Qi
n
(t)dZi

t ,

1See Yong and Zhou (1999), Chapter 3 for a comprehensive introduction of the stochastic maximum

principle for optimal control problems. For our problem, we apply the stochastic maximum principle for the

case of a nonsmooth terminal condition, see Chighoub, Djehiche, and Mezerdi (2009).
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with stochastic processes (ωn,xi , ωn,Qi
n
, ζn,xi , ζn,Qi

n
) and terminal conditions

(A-13)
ρn,xi(Tn) = −e−r(Tn−Tn−1)1{xiTn>Q

i
n,Tn
}pn,

ρn,Qi
n
(Tn) = e−r(Tn−Tn−1)1{xiTn>Q

i
n,Tn
}pn.

We can directly identify the solution2

(A-14)
ρn,xi(t) = −e−r(Tn−Tn−1)Pt

{
xiTn > Qi

n,Tn

}
pn,

ρn,Qi
n
(t) = e−r(Tn−Tn−1)Pt

{
xiTn > Qi

n,Tn

}
pn.

The adjoint processes can be interpreted as the shadow price of the corresponding state

variable. For example, ρn,Qi
n

is the value that can be attributed to having one marginal unit

of period-n permits more. Here, this is the discounted penalty weighted by the probability

of penalties to accrue, which makes perfect economic sense.

Inserting the adjoint processes into equations (A-11), we arrive at the condition

(A-15)
∂Ci

∂ξi
(ξit) = e−r(Tn−t)Pt

{
xiTn > Qi

n,Tn

}
pn = Sn(t),

which proves Proposition 1 for t ∈ [Tn−1, Tn] and k = n.

Before proceeding to k = n − 1, note that under suitable regularity conditions the

negative of the adjoint process for a state variable equals the first derivative of the value

function with respect to the same variable (see Clarke and Vinter (1987)), that is

−ρn,xi(t) =
∂V i

n

∂xi
, −ρn,yi(t) =

∂V i
n

∂yi
, −ρn,Qi

n
(t) =

∂V i
n

∂Qi
n

(A-16)

for t ∈ [Tn−1, Tn).

Now consider the optimal control problem (A-8) for k = n− 1. In this case the Hamiltonian

2For the existence of a regular solution we refer to Carmona et al. (2013).
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is given by

(A-17) Hn−1(t, xi, yi, θi, ξi, ρn−1) = ρn−1,xi(t) · (yit − ξit) + ρn−1,yi(t) · µiy(t)

+ ρn−1,Qi
n−1

(t) · θin−1,t + ρn−1,Qi
n
(t) · (θin−1,t + θin,t)

− e−r(t−Tn−2)(Ci(ξit) + Sn−1(t)θin−1,t + Sn(t)θin,t),

and as before we obtain the optimum by differentiating with respect to the control variables

and setting the derivatives to zero:

(A-18)

∂Hn−1

∂ξi
= −ρn−1,xi(t)− e−r(t−Tn−2)∂C

i

∂ξi
(ξit) = 0,

∂Hn−1

∂θin−1

= ρn−1,Qi
n−1

(t) + ρn−1,Qi
n
(t)− e−r(t−Tn−2)Sn−1(t) = 0,

∂Hn−1

∂θin
= ρn−1,Qi

n
(t)− e−r(t−Tn−2)Sn(t) = 0.

It is left to insert the adjoint processes (ρn−1,xi , ρn−1,Qi
n−1
, ρn−1,Qi

n
) solving the equations

(A-19)

dρn−1,xi(t) = ωn−1,xi(t)dW
i
t + ζn−1,xi(t)dZ

i
t ,

dρn−1,Qi
n−1

(t) = ωn−1,Qi
n−1

(t)dW i
t + ζn−1,Qi

n−1
(t)dZi

t ,

dρn−1,Qi
n
(t) = ωn−1,Qi

n
(t)dW i

t + ζn−1,Qi
n
(t)dZi

t ,

with terminal conditions

(A-20)

ρn−1,xi(Tn−1) = −e−r(Tn−1−Tn−2)(1{xiTn−1
>Qi

n−1,Tn−1
}pn−1

+
∂V i

n

∂xi
(Tn−1, x

i
Tn−1

, yiTn−1
, Qi

n,Tn−1
)),

ρn−1,Qi
n−1

(Tn−1) = e−r(Tn−1−Tn−2)1{xiTn−1
>Qi

n−1,Tn−1
}pn−1,

ρn−1,Qi
n
(Tn−1) = −e−r(Tn−1−Tn−2) ∂V

i
n

∂Qi
n

(Tn−1, x
i
Tn−1

, yiTn−1
, Qi

n,Tn−1
),

After inserting the derivatives of V i
n according to equations (A-14) and (A-16), we identify
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the solution

(A-21)

ρn−1,xi(t) = −
n∑

j=n−1

e−r(Tj−Tn−2)Pt

{
xiTj > Qi

j,Tj

}
pj,

ρn−1,Qi
n−1

(t) = e−r(Tn−1−Tn−2)Pt
{
xiTn−1

> Qi
n−1,Tn−1

}
pn−1,

ρn−1,Qi
n
(t) = e−r(Tn−Tn−2)Pt

{
xiTn > Qi

n,Tn

}
pn.

Using the adjoint processes in the first order conditions (A-18) finally yields the optimality

conditions

(A-22)

∂Ci

∂ξi
(ξit) =

n∑
j=n−1

e−r(Tj−t)Pt

{
xiTj > Qi

j,Tj

}
pj = Sn−1(t),

e−r(Tn−t)Pt
{
xiTn > Qi

n,Tn

}
pn = Sn(t),

which proves Proposition 1 for t ∈ [Tn−2, Tn−1] and k = n − 1. Proceeding along the same

lines for k = n− 2 to k = 1 completes the proof of Proposition 1.

Proof of Proposition 2. As the optimality condition (6) holds for all companies i1, i2 ∈ I,

we have

(A-23)
n∑
j=k

e−r(Tj−t)Pt

{
xi1Tj > Qi1

j

}
pj =

n∑
j=k

e−r(Tj−t)Pt

{
xi2Tj > Qi2

j

}
pj, t ∈ [0, Tk],

for k = 1, . . . , n, which especially implies 1{xi1Tk>Q
i1
k }

= 1{xi2Tk>Q
i2
k }

. Under this condition,

xiTk > Qi
k for one i ∈ I is equivalent to xiTk > Qi

k for all i ∈ I, and also equivalent to∑
i∈I x

i
Tk

>
∑

i∈I Q
i
k. Consequently, Proposition 2 follows from condition (6), as xTk =∑

i∈I x
i
Tk

and qk =
∑

i∈I Q
i
k.

Proof of Proposition 3. We write the period-k emission permit price Sk as a function of

time t and of the state variables xt and yt with dynamics (8) and (9). Applying Itô’s Lemma
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yields

dSk =
∂Sk
∂t

dt+
∂Sk
∂x

dx+
∂Sk
∂y

dy +
1

2

∂2Sk
∂x2

dx2 +
∂2Sk
∂x∂y

dxdy +
1

2

∂2Sk
∂y2

dy2

= µSk
Skdt+

√(
∂Sk
∂x

σe

)2

+

(
∂Sk
∂y

σy(t)

)2

Sk
SkdBt,

(A-24)

with µSk
=

∂Sk
∂t

+
∂Sk
∂x

(yt−ξt)+
∂Sk
∂y

µy(t)+ 1
2

∂2Sk
∂x2

σ2
e+ 1

2

∂2Sk
∂y2

σ2
y(t)

Sk
and Bt = Wt + Zt. Therefore, the

relative volatility of Sk is given by expression (12), which proves the Proposition.

Proof of Proposition 4. The backwardation of a forward contract with maturity t is

defined as B(t, t) = S1(t)− e−r(t−t)F (t, t), where the case B(t, t) ≤ 0 is called contango, and

B(t, t) > 0 describes a backwardation. A backwardation is called strong if F (t, t) < S1(t),

and weak otherwise. From equation (13), it directly follows that B(t, t) = 0 for forwards

with maturity in the same compliance period, t ∈ [t, T1), which proves Proposition 4a).

On the other hand, it follows from equation (14) that B(t, t) = e−r(T1−t)Pt {xT1 > q1} p1 for

forwards maturing in the following compliance period, t ∈ (T1, T2). Therefore, inter-period

forwards are in contango if Pt {xT1 > q1} = 0, and in backwardation otherwise. Finally, it

follows that the condition for strong backwardation, F (t, t) < S1(t), is fulfilled if and only if

Pt {xT1 > q1} > (er(T1−t) − e−r(t−T1))S1(t)
p1

, which completes the proof of Proposition 4b).

Proof of Proposition 5. According to equation (16) and the definition of the time-

aggregated convenience yield Dt(t), we have

(A-25) F (t, t) = er(t−t)Et

{
e−Dt(t)

}
S1(t).
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From equation (13) it follows that Et

{
e−Dt(t)

}
= 1 for all intra-period forwards t ∈ [t, T1),

which is equivalent to Dt(t) = 0 for all t ∈ [t, T1), proving Proposition 5a). On the

other hand, we directly obtain Proposition 5b) for inter-period forwards t ∈ (T1, T2) from

equations (14) and (A-25).

Proof of Proposition 6. To prove the Proposition, we show first that a competitive

equilibrium of the model yields a solution of the global problem on aggregate volumes,

(A-1). Second, we prove that a solution of the global problem (A-1) gives rise to permit price

processes and individual trading and abatement strategies that characterize a competitive

market equilibrium.3

For the first step, let us assume that a competitive equilibrium is given in form permit

price processes S1, . . . , Sn as well as individual trading and abatement strategies (θi, ξi) that

solve the individual optimization problems (4). It is immediately clear that the combination

of the optimal individual strategies, (Θ,Ξ) = (θi, ξi)i∈I , solves any linear combination of the

individual problems, especially the sum, which is

(A-26) min
(Θ,Ξ)

E0

{∑
i∈I

(∫ Tn

0

e−rtCi(ξit)dt+
n∑
j=1

e−rTjpj(x
i
Tj
−Qi

j)
+

)}
.

Note that this is the joint cost problem of a central planner, and the fact that the equilibrium

trading and abatement strategies solve this problem implies that a competitive equilibrium

3Our approach partly builds on Seifert et al. (2008) and Carmona, Fehr, and Hinz (2009). In the appendix

of Seifert et al. (2008) it is shown that the global problem acting on aggregate volumes is equivalent to the

sum of all companies’ individual solutions, under the crucial assumption that all companies’ emissions are

driven by the same Wiener process. Without this assumption, Carmona et al. (2009) prove for a discrete-

time framework with one compliance period that the solution of the global problem is optimal also for the

individual companies.
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of our model is also Pareto efficient. In the joint cost problem, gains and losses from trading

emission permits cancel out due to the market clearing condition.

We can now reformulate the joint cost problem (A-26) to the simplified aggregate

problem (A-1). For that, recall that a competitive equilibrium equates the probability of

penalties across companies according to equation (6) in Proposition 1, which implies

(A-27)
∑
i∈I

(xiTk −Q
i
k)

+ = (xTk − qk)+

for k = 1, . . . , n. Further, define the aggregate abatement cost function C as

(A-28) C(ξt) =
∑
i∈I

Ci(t, ci
−1

(ĉi(ξ ît))),

where î ∈ I is one arbitrarily chosen single company, ci = ∂Ci

∂ξi
is the first derivative of Ci,

ci
−1

is its inverse function, and ξ ît is implicitly defined through ξt =
∑
i∈I
ci
−1

(ĉi(ξ ît)). C is well-

defined because, first, ci(ξit) is equal for all companies i ∈ I for a competitive equilibrium

according to condition (5) of Proposition 1, and second, ci is strictly increasing and thus

invertible due to the strict convexity of Ci. Together with the differentiability of Ci, it

follows that C is strictly convex and differentiable with respect to ξt and it is

(A-29)
∑
i∈I

Ci(ξit) = C(ξt).

By using these aggregate functions in the objective (A-26), it follows that the aggregate

abatement strategy of a competitive model equilibrium solves the global problem (A-1)

on aggregate volumes. Equation (A-2) then follows directly from condition (5) of the

competitive equilibrium together with the fact that we have ∂C
∂ξ

(ξt) = ∂Ci

∂ξi
(ξit) by definition

of the aggregate abatement function C.
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Note that this first part of the Proposition directly implies the uniqueness of the

equilibrium price processes S1, . . . , Sn, which are determined by the aggregate abatement

strategy ξ of a competitive equilibrium according to Proposition 2, and therefore by the

(unique) solution of problem (A-1). The equilibrium is also unique with respect to the

individual abatement strategies ξi, which follow directly from aggregate abatement due to

the strict convexity of the abatement cost functions. On the other hand, for the individual

trading strategies θi we only have the restriction

(A-30) 1{xiTk>Q
i
k} = 1{xTk>qk}

with k = 1, . . . , n for all companies i ∈ I, which results from condition (6) in Proposition 1

and Proposition 2, and we will show that indeed all sets of trading strategies fulfilling this

condition support the equilibrium. Intuitively, equilibrium trading strategies allocate the

available permits in such way that a single company can only be long (short) of permits at

the end of a compliance period if the whole economy is long (short) of permits, while it is

irrelevant how permits are distributed among companies beyond this condition and especially

within a compliance period.

Now we establish the existence of the competitive model equilibrium by proving the

second part of the Proposition. For that, assume that an abatement strategy ξ∗ solving the

global problem (A-1) is given, and construct permit price processes S1, . . . , Sn according to

Proposition 2, equation (7), as

(A-31) S∗k(t) =
n∑
j=k

e−r(Tj−t)Pt

{
x∗Tj > qj

}
pj, t ∈ [0, Tk].

The asterisks indicate that economy-wide realized emissions x∗t follow the dynamics (8) with
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abatements ξ chosen according to ξ∗.

It is straightforward to recover a solution (Θ∗,Ξ∗) of the joint cost problem (A-26)

from ξ∗ by inverting the process from before, i.e., we define abatement strategies ξi
∗

for the

single companies with ξ∗t =
∑

i∈I ξ
i
t
∗

according to the optimality conditions

(A-32)
∂Ci

∂ξi
(ξit
∗
) =

n∑
j=k

e−r(Tj−t)Pt

{
x∗Tj > qj

}
pj, t ∈ [Tk−1, Tk],

and choose a market-clearing trading strategy Θ∗ that fulfills condition (A-30) for k =

1, . . . , n for all companies i ∈ I.

We show that given the permit price processes (A-31), the solution (Θ∗,Ξ∗) of the

joint cost problem (A-26) is also optimal for the individual problems (4), establishing the

existence of a competitive market equilibrium with equilibrium permit prices S∗1 , . . . , S
∗
n.

For that, expand the expected value in objective (4) by adding and subtracting the term

n∑
j=1

∫ Tj
Tj−1

e−rtS∗j (t)ξ
i
tdt and split it in two parts according to

E0

{∫ Tn

0
e−rtCi(ξit)dt+

n∑
j=1

∫ Tj

0
e−rtS∗j (t)θ

i
j,tdt+

n∑
j=1

e−rTjpj(x
i
Tj −Q

i
j)

+

}

= E0

{∫ Tn

0
e−rtCi(ξit)dt−

n∑
j=1

∫ Tj

Tj−1

e−rtS∗j (t)ξ
i
tdt

}

+ E0

{ n∑
j=1

(∫ Tj

0
e−rtS∗j (t)θ

i
j,tdt+

∫ Tj

Tj−1

e−rtS∗j (t)ξ
i
tdt+ e−rTjpj(x

i
Tj −Q

i
j)

+

)}
.

(A-33)

We rewrite the first expectation value as

(A-34) E0

{ n∑
j=1

∫ Tj

Tj−1

e−rt(Ci(ξit)− S∗j (t)ξit)dt
}

by subdividing the first integral. Obviously, this term is minimized by all abatement

strategies ξi fulfilling
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(A-35)
∂Ci

∂ξi
(ξit) = S∗k(t), t ∈ [Tk−1, Tk].

Since both an individually optimal strategy and (Θ∗,Ξ∗) fulfill this condition (see equa-

tions (5) and (A-31), (A-32)), the resulting value is the same for both strategies.

To transform the second expectation value in expression (A-33), note that for an

individually optimal strategy we have

e−rTkpk(x
i
Tk
−Qi

k)
+

=e−rTkpk1{xiTk>Q
i
k}(x

i
Tk
−Qi

k)

=e−rTk(S∗k(Tk)− S∗k+1(Tk))

(∫ Tk

0

(yit + eit − ξit)dt−
k∑
j=1

(aij +

∫ Tj

0

θij,tdt)

)(A-36)

due to condition (6) and we further insert the definitions of xiTk and Qi
k. Using this in

the second term of expression (A-33), reordering sums and integrals shows that the control

variables cancel out for an individually optimal strategy and the resulting value is

(A-37) E0

{ n∑
j=1

e−rTj(S∗j (Tj)− S∗j+1(Tj))(

∫ Tj

0

(yit + eit)dt− qij)
}
.

Since the optimal strategy of the global problem also fulfills condition (6), it results in

the same value. Overall, this means that (Θ∗,Ξ∗) solves the individual optimization prob-

lems (4), and S∗1 , . . . , S
∗
n are equilibrium permit price processes, which completes the proof

the Proposition.

Proof of Proposition 7. We decompose the stochastic optimal control problem (A-1)

into n simpler problems as in the proof of Proposition 1, that is we consider the system
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(A-38) Vk(t, xt, yt) = min
ξk

ETk−1

{∫ Tk

t

e−r(s−Tk−1)C(ξs)ds

+ e−r(Tk−Tk−1)(pk(xTk − qk)+ + Vk+1(Tk, xTk , yTk))

}
,

for t ∈ [Tk−1, Tk] and k = 1, . . . , n, where Vk is the value function of the period k problem,

Vn+1 = 0, and ξk is the restriction of the strategy ξ to [Tk−1, Tk].

Each of the single optimization problems in equation (A-38) can be settled by the

standard dynamic programming approach along the lines of Sethi and Thompson (2006).4

The principle of optimality yields

(A-39) Vk(t, xt, yt) = min
ξt
ETk−1

{
e−r(t−Tk−1)C(ξt)dt+ Vk(t+ dt, xt + dxt, yt + dyt)

}
.

On the other hand, by applying Itô’s Lemma to Vk(t, xt, yt) with dynamics of xt and yt as

given in equations (8) and (9) we get

(A-40) ETk−1
{dVk} =

(
∂Vk
∂t

+
∂Vk
∂x

(yt − ξt) +
∂Vk
∂y

µy(t) +
1

2

∂2Vk
∂x2

σ2
e +

1

2

∂2Vk
∂y2

σ2
y(t)

)
dt.

Using this in condition (A-39) leads to the Hamilton-Jacobi-Bellman (HJB) equation

(A-41) 0 = min
ξt

{
e−r(t−Tk−1)C(ξt) +

∂Vk
∂t

+
∂Vk
∂x

(yt − ξt)

+
∂Vk
∂y

µy(t) +
1

2

∂2Vk
∂x2

σ2
e +

1

2

∂2Vk
∂y2

σ2
y(t)

}
.

By differentiating the right-hand side with respect to ξt and setting the derivative to zero

we obtain the solution

(A-42) ξt = c−1(er(t−Tk−1)∂Vk
∂x

),

4See also Seifert et al. (2008). Recall that Section 3.3 of Carmona et al. (2013) applies to our problem,

and we impose standard regularity conditions on Vk.
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where c stands for ∂C
∂ξt

. By inserting the solution (A-42) into equation (A-41), we finally

arrive at the characteristic PDE

(A-43)
∂Vk
∂t

= −e−r(t−Tk−1)C(c−1(er(t−Tk−1)∂Vk
∂x

))

− ∂Vk
∂x

(yt − c−1(er(t−Tk−1)∂Vk
∂x

))− ∂Vk
∂y

µy(t)−
1

2

∂2Vk
∂x2

σ2
e −

1

2

∂2Vk
∂y2

σ2
y(t),

and the boundary condition

(A-44) Vk(Tk, xTk , yTk) = e−r(Tk−Tk−1)(pk(xTk − qk)+ + Vk+1(Tk, xTk , yTk))

follows from equation (A-38). Inserting the specific case of a quadratic abatement cost func-

tion according to equation (18) into the equations (A-42) and (A-43) yields the Proposition.

D Simulation of Volatility Smiles

To characterize the volatility smile in emissions markets within our calibrated model,

we perform an extensive simulation study of permit option prices for a number of different

time points, emissions scenarios, and option maturities. To be precise, emission permit

options are typically written on permit futures with the same maturity5 rather than on the

spot permit itself, and the price of a European call option with strike K and maturity t is

given by the discounted expected payoff in our risk-neutral setting, that is

(A-45) C(t, t,K) = e−r(t−t)Et

{(
F (t, t)−K

)+
}
.

Given t, t, xt, and yt, we calculate call option prices (A-45) by Monte–Carlo simulation

5We abstract from the fact that there are usually a few days between the option’s expiry and the maturity

date of the futures contract.
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and compute the related Black (1976) implied volatility IVATM at-the-money, i.e., for strike

K = F (t, t), as well as for one strike price above and one below the current futures price,

given by K± = F (t, t)(1 ± IVATM
√
t− t). For each scenario considered, we capture the

slope of the volatility smile by
IVK+−IVK−
K+−K− , such that positive (negative) values stand for an

upward-(downward-)sloping volatility smile, and values close to zero imply that the smile is

almost symmetric.

Given this procedure, we compute the slope of the volatility smile for 150 different

scenarios of realized and prevailing emissions, time points, and option maturities. For the

sake of brevity we report results only for the setting of two compliance periods and low

abatement costs, but we obtain qualitatively similar results for all other cases. As Figure 3

illustrates, the volatility smile in emissions markets is downward-sloping or almost symmetric

for the vast majority of emissions scenarios, while there are no cases with a clearly upward-

sloping smile. In fact, the slope is negative for 141 of the 150 scenarios. The strongest

upward-slope is 0.002 which is, compared to the strongest downward-slope of -0.0166, very

close to a symmetric smile. Further, the downward-slope of the volatility smile is strongest

for scenarios of very low emissions. These results are in accordance with the negative relation

of emission permit prices and volatilities and reveal how this pattern translates to option

prices, which we summarize by Prediction 3.
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