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A. Proofs of Section II (Cascade Models)

Throughout the appendix, we make explicit the dependence of the response function with respect to

the number of factors:

a j,n(τ) =
K j ∗ · · · ∗Kn(τ)

κ j
=

n

∑
i= j

αi, j,nKi(τ)(IA1)

for all τ ∈ R+ and j ≤ n.

Proof of Proposition 1

We prove by induction that for all n≥ 1,

xn,t = θr +
n

∑
j=1

a j,n(t)(x j,0−θr)+
n

∑
j=1

σ j

∫ t

0
a j,n(t− s)dWj,s,(IA2)

where a j,n(·) is given by (IA1).

Consider the one-factor case (n = 1). We infer from Assumption 1 and Ito’s lemma that

d(eκ1tx1,t) = eκ1t(κ1θr dt +σ1dW1,t).

Integrating both sides and then dividing by eκ1t , we obtain that property (IA2) holds for n = 1.

We now assume that property (IA2) holds for an n-factor structure. Ito’s lemma implies

d(eκn+1txn+1,t) = eκn+1 t(κn+1xn,tdt + σn+1dWn+1,t). We integrate both sides and divide them by
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eκn+1t , which yields:

xn+1,t = e−κn+1txn+1,0 +
∫ t

0
κn+1e−κn+1(t−s)xn,s ds+σn+1

∫ t

0
e−κn+1(t−s)dWn+1,s.

Substitute out xn,s according to equation (IA2),

∫ t

0
κn+1e−κn+1(t−s)xn,s ds = θr(1− e−κn+1t)+

n

∑
j=1

(x j,0−θr)a j,n+1(t)

+
n

∑
j=1

σ j

∫ t

0
κn+1e−κn+1(t−s)

[∫ s

0
a j,n(s−u)dWj,u

]
ds.

We apply Fubini’s theorem for stochastic integrals to the last terms, and conclude that property (IA2)

holds for the n+1-factor structure.

Proof of Proposition 2

Lemma IA1. If τ > 0 is a local optimum of the response function a j,n, then a′′j,n(τ) = κ j+1a′j+1,n(τ).

Proof. We know from (IA1) that

a j,n(τ) =
κ j+1

κ j

∫
τ

0
K j(τ− s)a j+1,n(s)ds.

We differentiate this relation with respect to τ and obtain a′j,n(τ) = κ j+1a j+1,n(τ)−κ ja j,n(τ) for all

τ, which in turn implies a′′j,n(τ) = κ j+1a′j+1,n(τ)−κ ja′j,n(τ) for all τ. An interior local optimum of

a j,n therefore satisfies a′′j,n(τ) = κ j+1a′j+1,n(τ). �

Single-peakedness. We now show by backward induction that for all j = n− 1, · · · ,1, the function
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a j,n(·) is single peaked and reaches a maximum at τ̄ j,n. Furthermore, τ̄1,n ≥ ·· · ≥ τ̄n,n.

The property holds for j = n−1, as is shown in the main text. Assume now that the property

holds for j+1≤ n. Let τ̄ j,n denote the smallest local maximum of a j,n. We know that a′′j,n(τ̄ j,n)≤ 0,

and that a′′j,n(τ̄ j,n) = κ j+1a′j+1,n(τ̄ j,n). Hence a′j+1,n(τ̄ j,n) ≤ 0, which implies that τ̄ j,n ≥ τ̄ j+1,n. If

the function a j,n(·) is nonmonotonic on [τ̄ j,n,+∞), there exists a local minimum τ > τ̄ j,n. Since

τ > τ̄ j,n ≥ τ̄ j+1,n, we know that a′′j,n(τ) = κ j+1a′j+1,n(τ)< 0, which is a contradiction. We conclude

that a j,n(·) is single peaked and reaches a maximum at τ̄ j,n ≥ τ̄ j+1,n.

Closed-form expressions and upper bound. The analytical solutions and proofs for the convolutions

of exponential density functions are given, among other places, in Akkouchi (2008). The inequality

∑
n
j=1 a j,n(τ)≤ 1 can be proved for all n by a forward recursion. Starting at n= 1, the inequality holds

since a1,1(t) = e−κ1t ≤ 1 for t ≥ 0. We now assume that the inequality holds for an (n− 1)-factor

structure. We infer that

n

∑
j=1

a j,n(t) = e−κnt +
∫ t

0
κne−κn(t−s)

n−1

∑
j=1

a j,n−1(s)ds.

The inequality ∑
n−1
j=1 a j,n−1(s)≤ 1 for all s implies that ∑

n
j=1 a j,n(t)≤ 1.
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Proof of Proposition 3

Under the affine specification, the exponential-affine bond pricing coefficients satisfy the following

system of ordinary differential equations (Duffie and Kan (1996)):

b′ (τ) = en−κ
Q>b(τ) ,(IA3)

c′ (τ) = b(τ)>κ
Q

θ
Q− 1

2
b(τ)>Σb(τ) ,(IA4)

with initial conditions b(τ) = 0 and c(τ) = 0, where en denotes a vector with the value one in the nth

position, and 0 otherwise. We now derive the solutions b(τ) and c(τ) when risk premia are constant

(Λ = 0).

Price loadings. The matrices κ and κQ coincide and, by equation (IA3), the function b(τ) =

[b1,n(τ), · · · ,bn,n(τ)]
> satisfies

b′j,n(τ) =−κ jb j,n(τ)+κ j+1b j+1,n(τ), j = 1, ...,n−1,(IA5)

b′n,n(τ) = 1−κnbn,n(τ).(IA6)

Equation (IA6) implies that bn,n(τ) = (1−e−κnτ)/κn =
∫

τ

0 an,n(s)ds. We infer from (IA5) that for all

j ∈ {1, · · · ,n−1},

d
dτ

[
eκ jτb j,n(τ)

]
= eκ jτκ j+1b j+1,n(τ),

and thus b j,n = (κ j+1/κ j)K j ∗b j+1,n. By a simple recursion, the function b j,n is equal to (κn/κ j)K j ∗
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...∗Kn−1 ∗bn,n, and its derivative is therefore

b′j,n = κ
−1
j K j ∗ ...∗Kn−1 ∗Kn = a j,n.

We conclude that

b j,n (τ) =
∫

τ

0
a j,n(τ

′)dτ
′ =

n

∑
i= j

αi, j,n
(
1− e−κi τ

)
,(IA7)

for all j ∈ {1, ...,n−1}.

Intercept. By (IA4), the function cn (τ) satisfies

cn (τ) = θrκ1

∫
τ

0
b1,n (τ)dτ−

n

∑
j=1

γ jσ
2
j

∫
τ

0
b j,n (s)ds− 1

2

n

∑
j=1

σ
2
j

∫
τ

0
b2

j,n (s)ds.

Since by (IA7)

∫
τ

0
b j,n (s)ds =

n

∑
i= j

αi, j,n

(
τ− 1− e−κiτ

κi

)
,

∫
τ

0
b2

j,n(s)ds =
n

∑
i= j

n

∑
k= j

αi, j,nαk, j,n

[
τ− 1− e−κiτ

κi
− 1− e−κkτ

κk
+

1− e−(κi+κk)τ

κi +κk

]
,

the expression provided for cn(τ) holds.

Long-run level of the state vector under Q. As we explain in Section II.C of the main text, the

log-run mean of the state vector under Q is given by

θ
Q = (κQ)−1(κ1θr− γ1σ

2
1,−γ2σ

2
2, . . . ,−γnσ

2
n)
>(IA8)
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under any affine risk premium specification. When risk premia are constant, the matrix κ−1 is lower

triangular matrix with elements (κ−1)i, j = κ
−1
j if j ≤ i. We then easily verify that equation (IA8)

reduces to

θ
Q =

(
θr− γ1σ

2
1/κ1,θr− γ1σ

2
1/κ1− γ2σ

2
2/κ2, ...,θr−

n

∑
i=1

γiσ
2
i /κi

)>
,

and we conclude that the proposition holds.

Long-Run Yield under Constant Risk Premia

We infer from Proposition 3 that

y∞ = lim
τ→+∞

c(τ)
τ

= θrκ1

n

∑
i=1

αi,1,n−
n

∑
j=1

γ jσ
2
j

n

∑
i= j

αi, j,n−
n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

αi, j,nαk, j,n.

We integrate (IA1) and obtain:

∫ +∞

0
a j,n(τ)dτ =

1
κ j

=
n

∑
i= j

αi, j,n.(IA9)

The long-run yield therefore satisfies

y∞ = θr−
n

∑
j=1

σ2
j

κ2
j

(
γ jκ j +

1
2

)
.
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B. Proofs of Section III (Convergence)

Proof of Proposition 4

To develop intuition, we begin by showing pointwise convergence of the response functions. Let

{E`}∞
`=1 denote a sequence of independent random variables, where E` has probability density func-

tion (p.d.f.) K` for each `. For a given j, the characteristic function of E j + ...+En (n≥ j) is

ψ j,n(ξ) = Eeiξ(E j+...+En) =

[
n

∏
`= j

(
1− iξ

κ`

)]−1

.

Since ∑
∞
`= j κ

−1
` < ∞, the sequence of characteristic functions ψ j,n(ξ) converges pointwise to

ψ j,∞(ξ) =

[
∞

∏
`= j

(
1− iξ

κ`

)]−1

.

The limiting function ψ j,∞(ξ) is continuous at ξ = 0 and is therefore the characteristic function of a

probability distribution P∞ on the real line. Since ψ j,∞(ξ) is also integrable, the distribution P∞ is ab-

solutely continuous with respect to Lebesgue measure, and we denote by g∞ its p.d.f. By Lebesgue’s

dominated convergence theorem, the sequence of p.d.f.’s K j ∗· · ·∗Kn converges pointwise to g∞. The

sequence of response functions {a j,n(τ)}n therefore has a pointwise limit as n→∞ for every τ∈R+.

Uniform Convergence of the Response Functions

The geometric progression of the adjustment speeds allows us to derive an analytical expression for

the limiting response function, as we now show. By Proposition 2, the coefficients αi, j,n (1 ≤ j ≤
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i≤ n) satisfy:

αi, j,n =
1
κ j

(−1)i− jb−(i− j)(i− j+1)/2

F(n− i)F(i− j)
,(IA10)

where F(0) = 1 and F(k) = (1−b−1)...(1−b−k) for all k≥ 1. The sequence {F(k)} is decreasing,

converges to a strictly positive limit F∞, and satisfies

F(k)−F∞

F(k)
= 1−

+∞

∏
i=k+1

(
1−b−i)≤ +∞

∑
i=k+1

b−i =
b−k

b−1
(IA11)

for all k. As n goes to infinity, the coefficient αi, j,n therefore converges to

ᾱi, j =
1
κ j

(−1)i− jb−(i− j)(i− j+1)/2

F∞ F(i− j)
,(IA12)

for every i and j, 1≤ j ≤ i. Furthermore, we obtain from (IA11) the useful inequalities

|αi, j,n− ᾱi, j| ≤
b−(i− j)(i− j−1)/2

(1−b−1)κ1 F2
∞

b−n,(IA13)

n

∑
i= j

∣∣αi, j,n− ᾱi, j
∣∣≤ C0

(1−b−1)κ1
b−n,(IA14)

∞

∑
i= j

κi|ᾱi, j| ≤C0, ,(IA15)

where C0 = F−2
∞ ∑

∞
`=0 b−`(`−1)/2.

We now show that the sequence of response functions of factor j, {a j,n(τ)}∞
n= j, converges
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uniformly on R+ to

ā j(τ) =
+∞

∑
i= j

ᾱi, jKi(τ).(IA16)

By (IA15), the function ā j(τ) is well-defined for every τ. Since

a j,n(τ)− ā j(τ) =
n

∑
i= j

(αi, j,n− ᾱi, j)Ki(τ)−
∞

∑
i=n+1

ᾱi, jKi(τ),(IA17)

the inequality
∣∣a j,n(τ)− ā j(τ)

∣∣≤∑
n
i= j κi|αi, j,n− ᾱi, j|+∑

∞
i=n+1 κi|ᾱi, j| holds for all τ∈R+. We infer

from (IA12) and (IA13) that

∣∣a j,n(τ)− ā j(τ)
∣∣≤C1b j−n,(IA18)

where C1 =
(

b+∑
∞
`=0 b−`(`−3)/2

)
/[(b− 1)F2

∞]. We conclude that convergence is uniform on R+.

Furthermore, since each function a j,n is continuous, the limiting response function is continuous.

L2 Convergence of the Response Functions

Lemma IA2. There exists C2 ∈ R+ such that

+∞

∑
i=`

∣∣ᾱi, j
∣∣‖Ki‖2 ≤C2 b j/2−`(IA19)

for all j and `, 1 ≤ j ≤ `. The limiting response function of factor j is therefore square-integrable

and satisfies
∥∥ā j
∥∥

2 ≤C2 b− j/2.
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Proof. Since ‖Ki‖2 =
√

κi/2, the series ∑
+∞

i=`

∣∣ᾱi, j
∣∣‖Ki‖2 is bounded above by

1
F2

∞

√
κ j

+∞

∑
i=`

b−(i− j)2/2 ≤ 1
F2

∞

√
κ j

+∞

∑
i=`

b−(i− j)+1/2 =
b

F2
∞

√
κ1b j/2

b−(`− j)

1−b−1 .

We conclude that the lemma holds with C2 = b2/[(b−1)
√

κ1F2
∞]. �

We also show:

Lemma IA3. There exists C3 ∈ R+ such that ‖a j,n− ā j‖2 ≤C3 b j/2−n for all j and n, 1≤ j ≤ n.

Proof. Equation (IA17) and Lemma IA2 imply that ‖a j,n− ā j‖2≤∑
n
i= j |αi, j,n−ᾱi, j|

√
κi+C2 b j/2−n.

We infer from (IA13) that

n

∑
i= j
|αi, j,n− ᾱi, j|

√
κi ≤C′3 b j/2−n,(IA20)

where C′3 = ∑
∞
`=0 b−(`−1)2/2/

[
(1−b−1)

√
κ1F2

∞

]
. Letting C3 = C′3 +C2, we conclude that the in-

equality ‖a j,n− ā j‖2 ≤C3 b j/2−n holds. �

The sequence of response functions {a j,n}∞
n= j therefore converges to ā j in L2.

Scaling of the Limiting Response Functions

The exponential densities satisfy: Ki+1(τ) = bKi(bτ) for all i≥ 1. Furthermore by (IA10), the coef-

ficients of the response functions satisfy αi+1, j+1,n+1 = αi, j,n/b for all i, j,n. Hence

a j+1,n+1(τ) =
n

∑
i= j

αi+1, j+1,n+1Ki+1(τ) =
n

∑
i= j

b−1
αi, j,n bKi(bτ) = a j,n(bτ).
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We let n go to infinity and conclude that ā j+1(τ) = ā j(bτ).

Proof of Proposition 5

L2 Convergence of the Short Rate Process

The processes

y∞,t =
+∞

∑
j=1

σ j

∫ t

0
ā j(t− s)dWj,s and z∞,t = θr +

∞

∑
j=1

ā j(t)(x j,0−θr)

are well-defined under Conditions 1 and 2. Indeed, Lemma IA2 implies that ∑
+∞

j=1 σ2
j‖ā j‖2

2 ≤

C2
2 ∑

+∞

j=1 b− jσ2
j < ∞ and ∑

∞
j=1 ‖ā j‖2 |x j,0−θr| ≤C2 ∑

∞
j=1 b− j/2|x j,0−θr|< ∞. Consider

yn,t =
n

∑
j=1

σ j

∫ t

0
a j,n(t− s)dWj,s and zn,t = θr +

n

∑
j=1

a j,n(t)(x j,0−θr).

We now verify that the sequences yn and zn respectively converge to y∞ and z∞ in L2(Ω× [0,T ]).

Convergence of the stochastic component yn. Since

yn,t− y∞,t =
n

∑
j=1

σ j

∫ t

0
(a j,n− ā j)(t− s)dWj,s−

+∞

∑
j=n+1

σ j

∫ t

0
ā j(t− s)dWj,s,

we know that

EP [(yn,t− y∞,t)
2]≤ n

∑
j=1

σ
2
j‖a j,n− ā j‖2

2 +
+∞

∑
j=n+1

σ
2
j‖ā j‖2

2,
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and infer from Lemmas IA2 and IA3 that:

EP [(yn,t− y∞,t)
2]≤C2

3

n

∑
j=1

b j−2n
σ

2
j +C2

2

+∞

∑
j=n+1

b− j
σ

2
j .

We observe that ∑
n
j=1 b j−2nσ2

j ≤ b−n
(

∑
∞
j=1 b− jσ2

j

)
+∑

n
j=bn/2c+1 b− jσ2

j , where b·c denotes the in-

teger part of a real number. We conclude that under Condition 1, ‖yn− y∞‖L2(Ω×[0,T ]) converges to

0.

Convergence of the deterministic component zn. We observe that

‖zn− z∞‖L2(Ω×[0,T ]) ≤
n

∑
j=1
‖a j,n− ā j‖2 |x j,0−θr|+

∞

∑
j=n+1

‖ā j‖2 |x j,0−θr|.

Lemmas IA2 and IA3 imply that

‖zn− z∞‖L2(Ω×[0,T ]) ≤C3

n

∑
j=1

b j/2−n|x j,0−θr|+C2

∞

∑
j=n+1

b− j/2|x j,0−θr|.

The inequalities ∑
bn/2c
j=1 b j/2−n|x j,0− θr| ≤ b−n/2

∑
∞
j=1 b− j/2|x j,0− θr| and ∑

n
j=bn/2c+1 b j/2−n|x j,0−

θr| ≤ ∑
n
j=bn/2c b

− j/2|x j,0 − θr|, combined with Condition 2, imply that ‖zn− z∞‖L2(Ω×[0,T ]) con-

verges to 0. We conclude that the process xn = yn + zn converges to x∞ in L2(Ω× [0,T ]).

Continuity of the Sample Paths

We verify that the stochastic component y∞ and the deterministic component z∞ are both continuous.

Stochastic component y∞. We seek to show that y∞ satisfies the Kolmogorov continuity condition.
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The increment y∞,t+h− y∞,t has variance

EP
[(

y∞,t+h− y∞,t
)2
]
=

+∞

∑
j=1

σ
2
j

{∫ h

0
[ā j(s)]2ds+

∫ t

0
[ā j(s+h)− ā j(s)]2ds

}
.

By (IA16),
∫ h

0 [ā j(s)]2ds = ∑
∞
i= j ∑

∞

i′= j ᾱi, jᾱi′, j(κi+κi′)
−1κiκi′[1−e−(κi+κi′)h]. Note that 1−e−x ≤ xζ

for all x≥ 0 and 0 < ζ < 1. We assume without loss of generality that 0 < ε < 1/2 and let ζ = 1−ε.

We infer that

∫ h

0
[ā j(s)]2ds≤ h1−ε

∞

∑
i= j

∞

∑
i′= j

κi|ᾱi, j|κi′|ᾱi′, j|
(κi +κi′)ε

≤C2
0κ
−ε

j h1−ε,(IA21)

where the last inequality builds on (IA15) and κi +κi′ ≥ κ j.

Since equation (IA16) implies that ā j(t +h− s)− ā j(t− s) = ∑
∞
i= j ᾱi, jκie−κi(t−s)(e−κih−1),

we know that

∫ +∞

0
[ā j(s+h)− ā j(s)]2ds =

∞

∑
i= j

∞

∑
i′= j

κiᾱi, jκi′ᾱi′, j
(1− e−κih)(1− e−κi′h)

κi +κi′
.

Since 1−e−κih≤ (κih)
1−ε

2 , 1−e−κi′h≤ (κi′h)
1−ε

2 , and (κiκi′)
1/2≤ κi+κi′, we infer: (κi+κi′)

−1(1−

e−κih)(1− e−κi′h)≤ (κi +κi′)
−εh1−ε ≤ κ

−ε

j h1−ε. Hence:

∫ +∞

0
[ā j(s+h)− ā j(s)]2ds≤C2

0κ
−ε

j h1−ε.(IA22)

Combining (IA21) and (IA22), we infer that EP
[(

y∞,t+h− y∞,t
)2
]
≤ 2C2

0h1−ε
∑

∞
j=1 κ

−ε

j σ2
j . Since
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y∞,t+h− y∞,t is Gaussian, its fourth moment satisfies

EP
[(

y∞,t+h− y∞,t
)4
]
= 3

{
EP
[(

y∞,t+h− y∞,t
)2
]}2

,

and therefore

EP
[(

y∞,t+h− y∞,t
)4
]
≤ 12C4

0h2−2ε

(
∞

∑
j=1

κ
−ε

j σ
2
j

)2

.(IA23)

Since ε < 1/2 by assumption, the process y∞ satisfies the Kolmogorov continuity condition.

Deterministic component z∞. We observe that for any t ≥ 0,

|zn,t− z∞,t | ≤
n

∑
j=1
|a j,n(t)− ā j(t)| |x j,0−θr|+

∞

∑
j=n+1

|ā j(t)| |x j,0−θr|.(IA24)

Let Cx = sup1≤ j<∞(b
η j|x j,0−θr|). The inequalities |ā j(t)| ≤C0 and (IA18) imply

|zn,t− z∞,t | ≤CxC1b−n
n

∑
j=1

b(1−η) j +CxC0

∞

∑
j=n+1

b−η j

and therefore

|zn,t− z∞,t | ≤Cx

(
C1nb−ηn +

C0b−ηn

bη−1

)

The sequence zn converges uniformly to z∞ on the time interval [0,T ]. Since each function zn is

continuous, we conclude that the function z∞ is continuous on [0,T ].
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Proof of Proposition 6

We begin by showing three useful lemmas.

Lemma IA4. The price loadings b j,n(τ), j ≤ n, of the cascade DTSM with n factors satisfy

|b j,n(τ)− b̄ j(τ)| ≤C4b−n,(IA25)

for every τ ∈ R+, where C4 = κ
−1
1 F−2

∞ (1− b−1)−1
[
1+∑

∞
`=0 b−`(`−1)/2

]
. For every j ≥ 1, the se-

quence {b j,n( ·)}∞
n= j therefore converges uniformly to b̄ j( ·) on R+.

Proof. Proposition 3 and equation (IA17) imply that

|b j,n(τ)− b̄ j(τ)| ≤
∫

τ

0
|a j,n(τ

′)− ā j(τ
′)|dτ

′ ≤
n

∑
i= j
|αi, j,n− ᾱi, j|+

∞

∑
i=n+1

|ᾱi, j|.

Inequality (IA12) implies that

∞

∑
i=n+1

|ᾱi, j| ≤
1

κ j F2
∞

∞

∑
i=n+1

b−(i− j)(i− j+1)/2 ≤ b−n

(1−b−1)κ1 F2
∞

.(IA26)

We infer from (IA14) and (IA26) that (IA25) holds. Hence {b j,n( ·)}∞
n= j converges uniformly to

b̄ j( ·) on R+. �

Lemma IA5. The limiting function b̄ j(τ) is nonnegative and monotonically increases from 0 to 1/κ j

as τ varies from 0 to +∞. Furthermore,

∞

∑
j=n+1

|b̄ j(τ)| ≤
b−n

(1−b−1)κ1
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for every τ ∈ R+ and n≥ 0.

Proof. By Proposition 1, Proposition 3, and Lemma IA4, the limiting function b̄ j(τ) =
∫

τ

0 ā j(τ)dτ

is nonnegative and increases from 0 to 1/κ j. Hence ∑
∞
j=n+1 |b̄ j(τ)| ≤ ∑

∞
j=n+1 κ

−1
j and we conclude

that the lemma holds. �

We next turn to the limit of the intercept cn(τ) defined in Proposition 3. We infer from (IA9)

that

cn(τ) =

[
θr−

n

∑
j=1

σ2
j

κ2
j

(
γ jκ j +

1
2

)]
τ+

n

∑
i=1

ci,n
1− e−κi τ

κi

−
n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

αi, j,nαk, j,n

[
1− e−(κi+κk)τ

κi +κk

]
,

where

ci,n =−θr κ1 αi,1,n +
i

∑
j=1

σ
2
j

(
γ j +

1
κ j

)
αi, j,n

for every i ∈ {1, . . . ,n}. Let c̄i =−θrκ1ᾱi,1 +∑
i
j=1 σ2

j
(
γ j +1/κ j

)
ᾱi, j.

Lemma IA6. Under Conditions 1 and 3, the following properties hold:

∞

∑
i=1
|c̄i|< ∞ and

∞

∑
j=1

σ
2
j

∞

∑
i= j

∞

∑
k= j

|ᾱi, j| |ᾱk, j|
κi +κk

< ∞.

Furthermore, ∑
n
i=1 |ci,n− c̄i|/κi and ∑

n
j=1 σ2

j ∑
n
i= j ∑

n
k= j |αi, j,n αk, j,n− ᾱi, j ᾱk, j|/(κi+κk) converge to

17



0 as n goes to infinity. Let

c̄(τ) =

[
θr−

∞

∑
j=1

σ2
j

κ2
j

(
γ jκ j +

1
2

)]
τ+

∞

∑
i=1

c̄i
1− e−κiτ

κi
−

∞

∑
j=1

σ2
j

2

∞

∑
i= j

∞

∑
k= j

ᾱi, jᾱk, j
1− e−(κi+κk)τ

κi +κk
.

There exists a sequence {εn}∞
n=1 converging to 0 such that

|cn(τ)− c̄(τ)| ≤ εn

for every n≥ 1 and τ ∈ [0,T ], so that the sequence cn( ·) converges uniformly to c̄( ·) on [0,T ].

Proof. Inequality (IA15) implies that ∑
∞
i= j |ᾱi, j| ≤C0 /κ j, and therefore

∞

∑
i=1
|c̄i| ≤ |θr|κ1

∞

∑
i=1
|ᾱi,1|+

∞

∑
j=1

σ
2
j

(
|γ j|+

1
κ j

)
∞

∑
i= j
|ᾱi, j|

≤C0|θr|+C0

∞

∑
j=1

σ
2
j

(
|γ j|
κ j

+
1
κ2

j

)
.

We infer that ∑
∞
i=1 |c̄i|< ∞ under Conditions 1 and 3. Similarly,

∞

∑
j=1

σ
2
j

∞

∑
i= j

∞

∑
k= j

|ᾱi, j| |ᾱk, j|
κi +κk

≤
∞

∑
j=1

σ
2
j

∞

∑
i= j

∞

∑
k= j

|ᾱi, j| |ᾱk, j|
κ1

≤
C2

0
κ1

∞

∑
j=1

σ2
j

κ2
j

is finite under Condition 1.

Since |ci,n− c̄i| ≤ κ1 |θr| |αi,1,n− ᾱi,1|+∑
i
j=1 σ2

j
(
|γ j|+1/κ j

)
|αi, j,n− ᾱi, j|, we infer from

(IA13) that

|ci,n− c̄i|
κi

≤C5 b−n,
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where C5 = [|θr|+∑
∞
j=1(σ

2
j/κ j)(|γ j|+1/κ j)]/ [(1−b−1)κ1 F2

∞]. Hence ∑
n
i=1 |ci,n− c̄i|/κi converges

to 0 as n goes to infinity.

The inequality |αi, j,n αk, j,n− ᾱi, j ᾱk, j| ≤ |αi, j,n| |αk, j,n− ᾱk, j|+ |ᾱk, j| |αi, j,n− ᾱi, j| implies

that

n

∑
i= j

n

∑
k= j
|αi, j,n αk, j,n− ᾱi, j ᾱk, j| ≤

n

∑
i= j

n

∑
k= j
|αi, j,n| |αk, j,n− ᾱk, j|+

n

∑
i= j

n

∑
k= j
|ᾱk, j| |αi, j,n− ᾱi, j|.

We infer from (IA10), (IA14), and (IA15) that

n

∑
i= j

n

∑
k= j
|αi, j,n αk, j,n− ᾱi, j ᾱk, j| ≤

2C0

κ j

C0 b−n

(1−b−1)κ1
= 2C6

b−n

κ j
,

where C6 =C2
0/[(1−b−1)κ1]. Hence,

n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

|αi, j,n αk, j,n− ᾱi, j ᾱk, j|
κi +κk

≤C6 b−n
n

∑
j=1

σ2
j

κ2
j

converges to 0 as n goes to infinity.

Since

|cn(τ)− c̄(τ)| ≤

[
∞

∑
j=n+1

σ2
j

κ2
j

(
|γ j|κ j +

1
2

)]
τ+

n

∑
i=1

|ci,n− c̄i|
κi

+
∞

∑
i=n+1

|c̄i|
κi

+
n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

|αi, j,nαk, j,n− ᾱi, jᾱk, j|
κi +κk

+
∞

∑
j=1

σ2
j

2

∞

∑
i= j

∞

∑
k= j

|ᾱi, jᾱk, j|
κi +κk

−
n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

|ᾱi, jᾱk, j|
κi +κk

,
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we note that |cn(τ)− c̄(τ)| ≤ εn, where

εn =
∞

∑
j=n+1

σ2
j

κ2
j

(
|γ j|κ j +

1
2

)
T +C5 nb−n +

∞

∑
i=n+1

|c̄i|
κi

+C6b−n
∞

∑
j=1

σ2
j

κ2
j

+
∞

∑
j=1

σ2
j

2

∞

∑
i= j

∞

∑
k= j

|ᾱi, jᾱk, j|
κi +κk

−
n

∑
j=1

σ2
j

2

n

∑
i= j

n

∑
k= j

|ᾱi, jᾱk, j|
κi +κk

.

We conclude that cn( ·) converges uniformly to c̄( ·) on [0,T ]. �

We now show that the yield on a zero-coupon bond with maturity τ > 0,

yn(Xt ,τ) = τ
−1

[
n

∑
j=1

b j,n(τ)x j,t + cn(τ)

]
(IA27)

converges to y∞(Xt ,τ) = [b̄(τ)Xt + c̄(τ)]/τ as n→ ∞. Indeed, we observe that

‖yn( · ,τ)− y∞( · ,τ)‖L2(Ω×[0,T ]) =

(
EP
{∫ T

0
[yn(Xt ,τ)− y∞(Xt ,τ)]

2 dt
})1/2

is bounded above by

1
τ

[
n

∑
j=1

∣∣b j,n(τ)− b̄ j(τ)
∣∣+ ∞

∑
j=n+1

∣∣b̄ j(τ)
∣∣]sup

j≥1

∥∥x j, ·
∥∥

L2(Ω×[0,T ])+
|cn(τ)− c̄(τ)|

√
T

τ
.

We infer from Lemmas IA4 to IA6 that

‖yn( · ,τ)− y∞( · ,τ)‖L2(Ω×[0,T ]) ≤
1
τ

{[
C4nb−n +

b−n

(1−b−1)κ1

]
sup
j≥1

∥∥x j, ·
∥∥

L2(Ω×[0,T ])+ εn
√

T

}
.

As Proposition 5 shows, the sequence {x j, ·}∞
j=1 has a limit in L2(Ω× [0,T ]) and is therefore bounded
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in L2(Ω× [0,T ]), so that sup j≥1
∥∥x j, ·

∥∥
L2(Ω×[0,T ]) < ∞. We conclude that the yield of maturity τ

converges to y∞(Xt ,τ) in L2(Ω× [0,T ]).

Limiting Economy

The Radon Nikodým derivative of Q with respect to P in the cascade DTSM with n factors is

conveniently denoted by:

Mn,t = exp

(
−

n

∑
j=1

γ jσ jWj,t−
t
2

n

∑
j=1

γ
2
jσ

2
j

)
.(IA28)

The limiting behavior of Mn,t as n goes to infinity is driven by the limiting behavior of the se-

ries ∑
n
j=1 γ2

jσ
2
j . If ∑

∞
j=1 γ2

jσ
2
j = ∞, then Mn,t converges to 0 almost surely. On the other hand if

∑
∞
j=1 γ2

jσ
2
j < ∞, the martingale sequence {Mn,t}n converges to a limiting distribution M∞,t . We can

then easily check that there exists a limiting process M∞,t . The measure Q with Radon-Nikodým

derivative M∞,t is therefore well-defined.
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C. Robustness and Extensions

In this section, we verify the robustness of key empirical results and develop several extensions of

the baseline cascade DTSM.

Scaling Specification

The baseline specification considers that adjustment speeds progress geometrically (Assumption 4).

To verify the validity of this scaling rule, we estimate an extension of the ten-factor model in which

each κ j is a free parameter. The total number of parameters of the cascade term structure model

increases by 8, from the original 6 (including the error variance) to 14. In Figure IA.1, we plot the

logarithm of the κ j estimates in circles, and as a solid line the linear relation implied by Assump-

tion 4 with κ1 = 0.0388 and b = 1.869. The estimates for the free parameters κ j vary around the

solid line, which suggests that adjustment speeds are approximately geometric.

The baseline version of the cascade further assumes that volatilities and risk premia are

identical across components (Assumptions 5 and 6). To assess the validity of these assumptions, we

estimate a different extension of the ten-factor cascade, in which volatilities and risk premia satisfy:

σ
2
j = σ

2
1 b( j−1)sσ ,(IA29)

γ jσ j = γ1 σ1 b( j−1)sγ,(IA30)

for all j ∈ {1, . . . ,n}. This relaxed specification adds two new scaling parameters, sσ and sγ, in order

to capture the frequency scaling of volatilities and risk premia.
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Table IA.1 reports parameter estimates. The scaling coefficients sσ and sγ are both negative,

suggesting that volatilities and risk premia are smaller for higher frequency factors. Nevertheless,

the estimates are small in magnitude, implying only modest variation in volatilities and risk premia

between low-frequency and high-frequency factors. Overall, the variances and premia of the factors

do not vary nearly as much across frequencies as the mean reversion speed. Assumptions 5 and 6 can

be viewed as convenient simplifications that offer the benefits of parsimony and robust identification

but can be relaxed in particular applications.

Link with Risk Premium Regressions

The baseline version of the cascade assumes a simple, constant market price of risk. Indeed, the

state-space estimation framework is generally well suited to identify the risk-neutral dynamics from

the cross-sectional behavior of the interest rate term structure, but has more difficulties with the

statistical dynamics and the cross-section of bond returns.

The slightly more general affine risk premium specification (Assumption 3) has important

implications for expected bond returns. Consider a zero-coupon bond of maturity τ held at t. The

following proposition links the risk premium sensitivity matrix Λ to the linear regression coefficients

of excess bond returns on the factors.

Proposition IA.1 (Expected bond returns under the cascade DTSM) Under Assumptions 1 to 3,

the instantaneous risk premium at time t on a bond of maturity τ is given by

RP(Xt ,τ) =−[Λ>Σb(τ)]>Xt + c′(τ)−b(τ)>κθ(IA31)
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for all τ and Xt .

Proof. We infer from Ito’s lemma that EP[d lnP(Xt ;τ)] = [b′(τ)>Xt + c′(τ)]dt + b(τ)>κ(Xt −θ)dt.

The instantaneous risk premium is therefore

RP(Xt ,τ) = [b′(τ)+κ
>b(τ)]>Xt + c′(τ)−b(τ)>κθ− e>n Xt .

We infer from equation (IA3) that b′(τ)+κ>b(τ)− en =−(ΣΛ)>b(τ) and conclude that the instan-

taneous risk premium satisfies (IA31) for all τ and Xt . �

A large body of empirical research relates bond excess returns to a small set of yields or for-

ward rates. For instance, early studies report regressions of excess returns on a measure of the term-

structure slope, often as a test of the expectation hypothesis (Campbell and Shiller (1991), Fama and

Bliss (1987), Ilmanen (1995), Stambaugh (1988)). More recently, Cochrane and Piazzesi (2005)

propose to explain bond excess returns with a portfolio of forward rates and find that such multivari-

ate regressions generate much higher R2 coefficients than earlier studies. To link our approach to

this empirical tradition, we note that forward rates are affine functions of the state vector under our

model. Consider n instantaneous forwards of maturities τ1, ...,τn. Let ft = [ f (Xt ,τ1), . . . , f (Xt ,τn)]
>

denote the corresponding n–dimensional vector of rates. Since

f (Xt ,τ) ≡ −∂ lnP
∂τ

(Xt ,τ) = b′ (τ)>Xt + c′(τ),
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there is a one-to-one affine relationship between the state vector and the vector of forward rates:

ft = B>Xt + fC,

where fC = [c′(τ1), . . . ,c′(τn)]
> is a constant vector, and B = [b′(τ1), ...,b′(τn)] is a constant n× n

matrix. Any finding from regressions on forward rates can therefore be immediately mapped in

terms of the state vector Xt and the sensitivity matrix Λ, and conversely.

The empirical findings of Cochrane and Piazzesi (2005, 2008) can be accommodated in our

model if we assume that the rank of the sensitivity matrix Λ is equal to one: Λ = Σ−1lλ>. Under

this assumption, a single factor, λ>Xt , explains the cross-section of instantaneous risk premia:

RP(Xt ,τ) =−[l>b(τ)](λ>Xt)+ c′(τ)−b(τ)>κθ,

for every τ.

As an illustration, we estimate a version of the ten-factor model with identical, time-varying

market prices of risk:

g j,t = γ+λ
>Xt .(IA32)

We maintain dimension-invariant assumptions on adjustment speeds (Assumption 4) and compo-

nent volatilities (Assumption 5). Figure IA.2 plots the estimated loading coefficients, λ j, on each

frequency component. Similar to Cochrane and Piazzesi’s observations, the loadings show a tent-

shaped pattern, where the coefficients are positive for intermediate frequencies but negative for both
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high and low frequencies. It is thus straightforward to adapt the cascade to permit time-varying risk

premia in a manner that captures known features of the data.

Stochastic Volatility and Interest Rate Option Pricing

Prior literature shows that interest-rate volatility movements are largely “unspanned” by the interest-

rate term structure.1 Therefore, the specification of stochastic volatility should not have a large im-

pact on the term structure. However, when pricing interest-rate options, the specification of stochas-

tic volatility becomes critical. We propose to allow all components of the state vector Xt to be driven

by a common stochastic variance, which is itself generated by a cascade structure. Specifically, we

consider m variance factors v1,t , . . . ,vm,t , satisfying:

d(vi,t) = κ
v
i (vi−1,t− vi,t)dt +ω

√
vm,t

(
ρdWi,t +

√
1−ρ2 dZi,t

)
,

κ
v
i = β

i−1
κ

v
1,

for every i ∈ {1, ...,m}, where ρ ∈ [−1,1], β ∈ (1,+∞), θv ∈ (0,+∞), v0,t = θv for all t, and

Zt = (Z1,t , . . . ,Zm,t) is a Wiener process independent of Wt . All state variables have x j,t stochas-

tic volatility σ2
j,t = vm,t . The stochastic volatility cascade implies that each variance component

mean reverts at a geometrically increasing rate toward the next lower frequency component. In ad-

dition to the geometric progression of mean-reversion speeds, the specification achieves dimension-

invariance by assuming a constant and identical coefficient ω describing the volatility of volatility,

and identical correlations between the interest rate and variance innovations.

1See the evidence in Collin-Dufresne and Goldstein (2002), Fan, Gupta, and Ritchken (2003), Heidari and Wu
(2003), and Li and Zhao (2006).
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TABLE IA.1
Scaling of Volatilities and Risk Premia

This table reports the maximum likelihood estimates and standard errors (in parentheses) of the model param-
eters that govern the scaling of volatilities and risk premia across components in a 10-factor cascade.

Estimates Standard Errors
κ1 0.0390 ( 0.0008 )
σ1 0.0194 ( 0.0002 )
θr 0.0000 ( 0.0000 )
γ -0.3471 ( 0.0045 )
b 1.8546 ( 0.0098 )
sγ -0.1665 ( 0.0079 )
sσ -0.1577 ( 0.0055 )
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FIGURE IA.1
Scaling of Adjustment Speeds

The circles are estimated as free parameters. The solid line is generated from the benchmark model with
geometrically distributed adjustment speeds κ j = κ1b j−1.
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FIGURE IA.2
Factor Loading in the Single Market Price of Risk Factor

Circles denote the estimated loading coefficients on each frequency component for the single market price of
risk factor on a ten-factor model. The model maintains dimension-invariant assumptions on risk σ j = σ1 and
mean-reversion speeds κ j = κ1b j−1.
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