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A. Sensitivities

In this section we explore the sensitivities of systemic risk measures (SRMs) summarized in
Table 1 in a systematic way. We duplicate the table here with references to the analyses provided
in this section. As in the main text, a superscript n marks cases where the opposite sensitivity
would appear only under very unusual conditions.

Parameter Effect type ∆CoVaR Exp. ∆CoVaR MES BETA

σi Direct ±; A.1 +; A.5 +; A.5 +; A.4
Relative ±; A.11 +; A.12 +n; A.12 +; A.12

βi Direct +; A.2 +; A.7 +n; A.8 ±; A.6
Relative ±; A.14 ±; A.13 ±; A.13 ±; A.13

wi Direct ±; A.3 +; A.10 +; A.10 ±; A.9
Relative +n; A.16 +n; A.15 +n; A.15 +n; A.15

We start the analysis with a number of definitions and auxiliary formulas. First we set
w∗j ≡ (1− wi)−1wj , j 6= i, to define bank weights within the sub-system excluding bank i.
Corresponding averages of the exposure to systematic risk are β∗ ≡

∑
k 6=iw

∗
kβk and

β̄ ≡
∑N

k=1
wkβk = wiβi + (1− wi)β∗ .

Setting ε∗ ≡
∑

j 6=iw
∗
j εj and

ε̄ ≡
∑N

k=1
wkεk = wiεi + (1− wi) ε∗

for aggregate idiosyncratic risks, the index return then reads

RS = β̄F + ε̄ = wiRi + (1− wi) (β∗F + ε∗) ,

while its variance, using σ∗ ≡ σ (ε∗), can be written in different ways:

σ2 (RS) = β̄2σ2F + σ̄2 = (wiβi + (1− wi)β∗)2 σ2F + w2
i σ

2
i + (1− wi)2 σ2∗.(A-1)

The covariances cov (Rj , RS) play a central role; we denote them by cj,S and obtain the following
representation:

cj,S ≡ cov (Rj , RS) = βj β̄σ
2
F + wjσ

2
j .(A-2)

As we assumed all βj to be positive, all cj,S are positive, too. For bank i we will also use the
form

ci,S = wiσ
2(Ri) + (1− wi)βiβ∗σ2F .
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A.1. Direct Effect of Idiosyncratic Risk on ∆CoVaR

The new notation turns equation (3) into

∆CoVaRS,i
α =

ci,S
σ (Ri)

Φ−1(1− α)(A-3)

=

[
wiσ(Ri) + (1− wi)βiβ∗

σ2F
σ(Ri)

]
Φ−1(1− α) .

Applying ∂σ (Ri) /∂σi = σi/σ (Ri), we obtain

∂∆CoVaR

∂σi
=

[
wi

σi
σ (Ri)

− (1− wi)βiβ∗
σ2F

σ2(Ri)

σi
σ (Ri)

]
Φ−1 (1− α)

∝ wi
1− wi

− βiβ∗
σ2F

σ2(Ri)
=

wi
1− wi

− β∗
βi

(
1 +

σ2i
β2i σ

2
F

)−1
,

which is the formula that gives equation (10) in the special case βk = 1 for all k.

A.2. Direct Effect of Systematic Risk on ∆CoVaR

The partial derivative to systematic risk is always positive:

∂

∂βi

[
∆CoVaRS,i

α

]
∝ ∂

∂βi

[
ci,S
σ (Ri)

]
∝ σ2 (Ri)

∂ci,S
∂βi

− ci,Sσ (Ri)
∂σ (Ri)

∂βi

= σ2 (Ri)
∂ci,S
∂βi

− ci,S
1

2

∂σ2 (Ri)

∂βi
=
(
β2i σ

2
F + σ2i

)
σ2F
(
wiβi + β̄

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βiσ

2
F

∝
(
β2i σ

2
F + σ2i

) (
wiβi + β̄

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βi = wiβ

3
i σ

2
F + β̄σ2i > 0 .

A.3. Direct Effect of Size on ∆CoVaR

We assume that the size of bank i changes while the other banks’ size is kept constant. This
means that all w∗j remain constant (and so β∗), which is why equation (A-3) leads to the simple
formula:

∂∆CoVaRS,i
α

∂wi
=

[
σ (Ri)− βiβ∗

σ2F
σ (Ri)

]
Φ−1 (1− α)(A-4)

∝ −βiβ∗σ2F + σ2 (Ri) = βi∆β σ
2
F + σ2i ,

where ∆β ≡ βi − β∗. We observe that a bank’s weight in the system has an ambiguous effect.
Generally, we would expect the ∆CoVaR to increase with size. That is true in many cases, e.g.,
if βi ≥ β∗. Formula (A-4) shows that the partial derivative is then positive.

If, on the contrary, a bank has a rather low exposure to the systematic risk factor and
also comparably low idiosyncratic risk, the derivative can have the opposite sign, for instance, if
σi = 8%, σF = 20% (both p.a.), βi = 0.5, and β∗ = 1.

In Section III.B of the article it has already become clear that the effect of size on a SRM
must be discussed together with its effect on the system risk σ (RS). Indeed, a negative size
sensitivity is not necessarily a problem because the system return would become less volatile if
such a bank gaines weight, as we now show. Assume the partial derivative in equation (A-4) is
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negative. It implies σ2i + ∆β βiσ
2
F < 0 and the weaker condition ∆β < 0. With ∂β̄/∂wi = β̄∆β ,

we obtain from equation (13) (which is a direct implication of equation (A-1)):

∂σ2 (RS)

∂wi
∝ β̄∆β σ

2
F + wiσ

2
i − (1− wi)σ2∗(A-5)

< (wiβi + (1− wi)β∗) ∆β σ
2
F + wiσ

2
i

< wi
(
βi∆β σ

2
F + σ2i

)︸ ︷︷ ︸
<0

+ (1− wi)β∗ ∆β︸︷︷︸
<0

σ2F < 0 .(A-6)

In short form, we conclude

∂∆CoVaRS,i
α

∂wi
< 0 ⇒ ∂σ2 (RS)

∂wi
< 0.

The ∆CoVaR thus sets a correct incentive insofar as a bank is rewarded for growth through a
∆CoVaR-based systemic risk charge only if this lowers the volatility of the system return.

However, the implication cannot be reversed. There are realistic conditions under which
∂∆CoVaRS,i

α /∂wi is positive while ∂σ2 (RS) /∂wi is not, for instance if a small bank’s ∆β is
moderately negative but idiosyncratic risks are considerable. This holds all the more if the other
banks’ idiosyncratic risks are not well diversified.

A.4. Direct Effect of Idiosyncratic Risk on BETA

Using the equations (A-1) and (A-2), standard calculus shows

∂ BETAi

∂σi
∝ ∂ BETAi

∂σ2i
=

∂

∂σ2i

[
ci,S

σ2 (RS)

]
∝ σ2 (RS)

∂ci,S
∂σ2i

− ci,S
∂σ2 (RS)

∂σ2i

∝ σ2 (RS)− ci,Swi =
N∑
k=1

wkck,S − ci,Swi =
∑
k 6=i

wkck,S > 0.

A.5. Direct Effect of Idiosyncratic Risk on Exposure ∆CoVaR and MES

Inspecting equation (A-1), the standard deviation σ (RS) is obviously a growing function of σ2i ,
and so is BETAi, as shown in Section A.4. The exposure ∆CoVaR equals Φ−1 (1− α)×BETAi×
σ (RS), which is a product of two monotonic functions of σ2i and a constant. Hence, the exposure
∆CoVaR is increasing in σi.

As the MES differs from the exposure ∆CoVaR only by a constant factor and an offset
that does not depend on σi, it shows the same monotonicity w.r.t. idiosyncratic risk.

A.6. Direct Effect of Systematic Risk on BETA

The partial derivative of BETA is proportional to the following expression:

∂ BETAi

∂βi
=

∂

∂βi

[
ci,S

σ2 (RS)

]
∝ σ2 (RS)

∂ci,S
∂βi

− ci,S
∂σ2 (RS)

∂βi

=
(
β̄2σ2F + σ̄2

) [
β̄ + wiβi

]
σ2F −

(
βiβ̄σ

2
F + wiσ

2
i

)
2β̄wiσ

2
F .
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We divide by σ2F and estimate the outcome from below by removing the second addend of
σ̄2 = w2

i σ
2
i + (1− wi)2 σ2∗ so that we obtain:

∂ BETAi

∂βi
∝ . . . ≥

(
β̄2σ2F + w2

i σ
2
i

) [
β̄ + wiβi

]
− 2β̄wiβiβ̄σ

2
F − 2β̄wiwiσ

2
i

= β̄3σ2F + wiβiβ̄
2σ2F + w2

i β̄σ
2
i + w3

i βiσ
2
i − 2wiβiβ̄

2σ2F − 2w2
i β̄σ

2
i

= β̄3σ2F + w3
i βiσ

2
i − wiβiβ̄2σ2F − w2

i β̄σ
2
i

= β̄2σ2F β̄ + w3
i βiσ

2
i − wiβiβ̄2σ2F − wiβiw2

i σ
2
i − (1− wi)β∗w2

i σ
2
i

= (1− wi)β∗
(
β̄2σ2F − w2

i σ
2
i

)
∝ β̄2σ2F − w2

i σ
2
i .

Hence, we can state:

wi <
β̄σF
σi

⇒ ∂ BETAi

∂βi
> 0 .

The condition is fulfilled unless a bank is very dominant in the system and/or has substantially
more idiosyncratic risk than the other banks in the aggregate (so that σ2∗ is small). Nevertheless,
the case wiσi > β̄σF is possible; it is the same under which equation (12) becomes negative, with
the implication that the relative effect on exposure ∆CoVaR, MES and BETA is negative.

We therefore state that βi can have a negative direct effect on BETA, at least qualitatively.
Numerical tests suggest that the effect is weak, as can be illustrated by the scenario of Figure 3,
where σi = 0.4, σF = 0.1 (both p.a.); N = 50, wi = 0.45; wj = 0.65/49 and βj = 1 for
j 6= i. Although these conditions are set to strengthen the effect, an increase of βi from 0.5 to 2
diminishes BETA by 4.1% only, from 1.963 to 1.882.

A.7. Direct Effect of Systematic Risk on Exposure ∆CoVaR

The exposure ∆CoVaR is monotonic in βi, which can be shown directly:

∂∆CoVaRi,S
α

∂βi
∝ ∂

∂βi

[
ci,S

σ (RS)

]
∝ σ (RS)

∂ci,S
∂βi

− ci,S
∂σ (RS)

∂βi

∝ σ2 (RS)
∂ci,S
∂βi

− 1

2
ci,S

∂σ2 (RS)

∂βi

=
(
β̄2σ2F + σ̄2

) [
β̄ + wiβi

]
σ2F −

(
βiβ̄σ

2
F + wiσ

2
i

)
β̄wiσ

2
F

∝
(
β̄2σ2F + σ̄2

) [
β̄ + wiβi

]
−
(
βiβ̄σ

2
F + wiσ

2
i

)
β̄wi

= β̄3σ2F + σ̄2β̄ + σ̄2wiβi − w2
i σ

2
i β̄

= β̄3σ2F +
(
w2
i σ

2
i + (1− wi)2 σ2∗

)
β̄ + σ̄2wiβi − w2

i σ
2
i β̄

= β̄3σ2F + (1− wi)2 σ2∗β̄ + σ̄2wiβi

> 0 .

A.8. Direct Effect of Systematic Risk on MES

From equation (9) we recall MESi = −βiµ + Cαci,j/σ (RS), where Cα ≡ α−1φ
(
Φ−1 (α)

)
is

a positive constant. The MES is special because of its drift related term, which decreases in
βi, whereas in A.7 the ratio ci,j/σ (RS) has already turned out to increase in βi. We find the
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following estimate from below for the partial derivative:

∂MESi
∂βi

= −µ+

{
Cα

σF β̄

σ (RS)

[
1 + wi (1− wi)

(1− wi)σ2∗βi − β∗wiσ2i
β̄σ2 (RS)

]}
× σF

≥ −µ+

{
Cα

(
1 +

σ̄2

β̄2σ2F

)−1/2 [
1− w2

i (1− wi)
β∗σ

2
i

β̄σ2 (RS)

]}
× σF .(A-7)

The term in curly braces cannot reasonably become smaller than 1/5, for which we otherwise
would have to make extreme assumptions17. The question is now how µ and σF relate to each
other, which depends on the risk horizon. While µ is proportional to the risk horizon, σ (RS)

is so to its square root. As the risk horizon is 1 day throughout this paper, the first term is by
magnitudes smaller than the second. The 1-day MES will therefore be an increasing function of
systematic risk under all plausible conditions. Even on an annual basis, −µ would usually be
dominated by the positive part on the r.h.s. part of inequality (A-7).

A.9. Direct Effect of Size on BETA

As the partial derivative of BETAi is complicated, we make the simplifying assumption that
only bank i has a non-negligible weight in the system, whereas all other banks are infinitesimally
small. In the limit, idiosyncratic risks of these banks are diversified away (σ∗ = 0), so that we
obtain:

∂ BETAi

∂wi
=

∂

∂wi

[
ci,S

σ2 (RS)

]
∝ σ2 (RS)

∂ci,S
∂wi

− ci,S
∂σ2 (RS)

∂wi
= σ2 (RS)

∂ci,S
∂wi

− ci,S
∂σ2 (RS)

∂wi

=
(
β̄2σ2F + w2

i σ
2
i

) (
βi ∆β σ

2
F + σ2i

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
2
(
β̄∆βσ

2
F + wiσ

2
i

)
,

where ∆β ≡ βi − β∗. As the conditions under which this expression is positive are still difficult
to identify, we focus on the case where wi is also small enough to set it zero. We obtain:

∂ BETAi

∂wi

∣∣∣∣
wi=0

∝ σ2i − βi∆βσ
2
F .(A-8)

This derivative is negative if the bank’s exposure to systematic risk is above the average and the
idiosyncratic risk is comparably small. Note that the growth of such a bank would increase the
variance of the system return, which can be seen in equation (A-5), where we have found:

∂σ2 (RS)

∂wi
∝ β̄∆β σ

2
F + wiσ

2
i − (1− wi)σ2∗ .

Under the limiting assumption σ∗ = 0, the variance of RS grows in wi if βi > β∗.

A.10. Direct Effect of Size on Exposure ∆CoVaR and MES

We first consider the main part of the exposure ∆CoVaR, ci,S/σ (RS). Using the property

∂σ (RS) /∂wi = (2σ (RS))−1 ∂σ2 (RS) /∂wi,

17An example where the term just falls short of 1/5 would be wi = 0.5, σ∗ = 0, σi = 0.5 p.a., σF = 0.1 p.a.,
βi = 0.25, β∗ = 1.75, α = 0.05. Any ceteris-paribus variation towards less extreme values lets the term rise above
1/5.
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we find:
∂

∂wi

[
ci,S

σ (RS)

]
∝ σ2 (RS)

∂ci,S
∂wi

− 1

2
ci,S

∂σ2 (RS)

∂wi

=
(
βi ∆β σ

2
F + σ2i

) (
β̄2σ2F + w2

i σ
2
i + (1− wi)2 σ2∗

)
−
(
βiβ̄σ

2
F + wiσ

2
i

) (
β̄∆βσ

2
F + wiσ

2
i − (1− wi)σ2∗

)
= σ2Fσ

2
i

{
βi∆β w

2
i − βiβ̄wi − β̄∆β wi + β̄2

}
+ σ2i σ

2
∗ (1− wi)

+σ2Fσ
2
∗βi (1− wi)

[
∆β (1− wi) + β̄

]
= . . . = σ2Fσ

2
i (1− wi)β2∗ + σ2i σ

2
∗ (1− wi) + σ2Fσ

2
∗βi (1− wi) (1− wi)βi > 0 .

This means that the exposure ∆CoVaR is always an increasing function of wi. The same holds
for the MES since the additive term −µβi in equation (7) is independent of wi.

As already discussed in Section III.B of the article, a positive dependency on size is not
necessarily appropriate because size has an ambiguous effect on the system risk σ (RS).

A.11. Relative Effect of Idiosyncratic Risk on ∆CoVaR

The parameter σi has neither an impact on another bank’s return volatility σ (Rj) nor on its
covariance cj,S with the system return. According to ∆CoVaRS,j

α = cj,S/σ (Rj) Φ−1(1− α), the
∆CoVaR of bank j is constant such that the relative and the direct effect of σi fall together,
apart from a constant factor.

A.12. Relative Effect of Idiosyncratic Risk on Exposure ∆CoVaR, MES, and
BETA

We consider the ratio of two banks’ SRMs, such as BETAi/BETAj . For exposure ∆CoVaR
and BETA, the ratios are equal to ci,S/cj,S . As already stated, cj,S is invariant to σi so that
only the effect on the covariance ci,S remains to be analyzed. It is obviously positive because
∂ci,S/∂σi = 2wiσi > 0.

The MES has drift-related addends above and below the fraction line. We neglect them
in this section as they are small, based on the arguments provided in Section A.8. We therefore
consider the MES to be covered by the analysis of ci,S/cj,S .

A.13. Relative Effect of Systematic Risk on Exposure ∆CoVaR, MES, and
BETA

For the partial derivative of the ratio of covariances to βi, we obtain:

∂

∂βi

[
ci,S
cj,S

]
∝ cj,S

∂ci,S
∂βi

− ci,S
∂cj,S
∂βi

(A-9)

=
(
βj β̄σ

2
F + wjσ

2
j

)
σ2F
(
wiβi + β̄

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
σ2Fβjwi

∝ 1 + wj
σ2j

βj β̄2σ2F

(
wiβi + β̄

)
− w2

i

σ2i
β̄2σ2F

.

In absence of a dominating bank, the only negative part of the expression is considerably smaller
than 1 under most conditions because of the factor w2

i . The relative effect of βi is then positive.
However, it may become negative if bank i is really large. Assume for simplicity that bank j is
very small so that the middle term vanishes. Then, the ratio ci,S/cj,S will negatively depend on
βi if wiσi > β̄σF .
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A.14. Relative Effect of Systematic Risk on ∆CoVaR

We start with a calculation of the partial derivative:

∂

∂βi

[
∆CoVaRS,i

α

∆CoVaRS,j
α

]
= σ (Rj)

∂

∂βi

[
ci,S

cj,Sσ (Ri)

]
∝ σ (Ri)

∂

∂βi

[
ci,S
cj,S

]
−
ci,S
cj,S

∂σ (Ri)

∂βi

= σ (Ri)
σ2F
cj,S

{
βj β̄

2σ2F + wjσ
2
j β̄ +

(
wjσ

2
jβi − wiβjσ2i

)
wi
}
−
ci,S
cj,S

σ2F
σ (Ri)

βi

∝ σ2 (Ri)
{
βj β̄

2σ2F + wjσ
2
j β̄ +

(
wjσ

2
jβi − wiβjσ2i

)
wi
}
− ci,Scj,Sβi .

It is difficult to determine under which conditions this expression becomes negative. We therefore
use an approximation where we assume that bank i may dominate the system whereas the weight
of the benchmark bank j can be neglected.18 Eliminating all terms containing wj gives:

∂

∂βi

[
∆CoVaRS,i

α

∆CoVaRS,j
α

]
∝ . . . ≈ σ2 (Ri)

{
βj β̄

2σ2F − w2
i βjσ

2
i

}
− ci,Scj,Sβi

=
(
β2i σ

2
F + σ2i

) {
βj β̄

2σ2F − w2
i βjσ

2
i

}
− βi

(
βiβ̄σ

2
F + wiσ

2
i

) (
βj β̄σ

2
F + wjσ

2
j

)
≈

(
β2i σ

2
F + σ2i

) {
βj β̄

2σ2F − w2
i βjσ

2
i

}
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βiβj β̄σ

2
F .

Further consolidation plus introduction of κ ≡ wi/ (1− wi) and ρ ≡ βi/β∗ lead to:

∂

∂βi

[
∆CoVaRS,i

α

∆CoVaRS,j
α

]
≈ . . . ∝ σ2F

(
β2i β̄

2σ2F − β2i w2
i σ

2
i + β̄2σ2i − w2

i σ
4
i − β2i β̄2βjσ2F − βiwiσ2i β̄

)
∝ β̄2σ2F − w2

i

(
σ2i + β2i σ

2
F

)
− βiwiβ̄σ2F = σ2F β̄

[
β̄ − βiwi

]
− w2

i

(
σ2i + β2i σ

2
F

)
= (1− wi)σ2F β̄β∗ − w2

i

(
σ2i + β2i σ

2
F

)
= (1− wi) [wiβi + (1− wi)β∗]β∗ − w2

i

(
σ2i
σ2F

+ β2i

)
∝ [κβi + β∗]β∗ − κ2

(
σ2i
σ2F

+ β2i

)
= β2∗ − κ

(
κ
σ2i
σ2F

+ βi (κβi − β∗)
)

∝ 1− κ
(
κ
σ2i
σ2Fβ

2
∗

+ ρ (κρ− 1)

)
.

This expression can be positive or negative; it is discussed in the main text above equation (11).

A.15. Relative Effect of Size on MES, Exposure ∆CoVaR, and BETA

The partial derivative of the ratio of covariances can be simplified to:

∂

∂wi

[
ci,S
cj,S

]
∝ cj,S

∂ci,S
∂wi

− ci,S
∂cj,S
∂wi

(A-10)

=
(
βj β̄σ

2
F + wjσ

2
j

) (
σ2i + βi ∆β σ

2
F

)
−
(
βiβ̄σ

2
F + wiσ

2
i

)
βj∆βσ

2
F

=
(
βjβ∗σ

2
F + wjσ

2
j

)
σ2i + wjσ

2
jβi ∆β σ

2
F

= βjβ∗σ
2
Fσ

2
i + wjσ

2
j

(
σ2i + βi ∆β σ

2
F

)
.

18The relative effect in the reversed case (where bank i is small) is likely to be very similar to the direct effect
since the small bank has only weak impact on the index, and so is its effect on the large bank’s ∆CoVaR. Hence,
the small bank’s relative effect is basically the effect on its own ∆CoVaR, divided by a constant.
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The derivative can actually become negative but only if the system volatility is a falling function
of wi. In fact, inspecting the last line, the derivative can only be negative if σ2i +βi∆β σ

2
F < 0; this

condition is sufficient for ∂σ2 (RS) /∂wi < 0, as shown by inequality (A-6). The case is similar
to the direct effect of size on the ∆CoVaR (Section A.3). However, the conditions under which
the partial derivative in equation (A-10) can become negative are considerably more exotic, as
may be illustrated by the following estimate (details omitted):

∂

∂wi

[
ci,S
cj,S

]
∝ . . . ≥ 1− 1

4
wj
σ2jβ∗

σ2i βj
.

Nevertheless, this positive sensitivity can combine with a negative sensitivity of σ (RS), as ex-
plained below equation (13) in Section III.B of the article.

A.16. Relative Effect of Size on ∆CoVaR

The effect can be traced back to equation (A-10) since σ (Ri) and σ (Rj) are invariant to wi:

∂

∂wi

[
∆CoVaRS,i

α

∆CoVaRS,j
α

]
=

σ (Rj)

σ (Ri)

∂

∂wi

[
ci,S
cj,S

]
∝ ∂

∂wi

[
ci,S
cj,S

]
.

The relative effect is then the same as for the other measures.

B. The Structural Model for Asset and Equity Returns

B.1. Modeling Assumptions and Simulation

In this section we present the structural model used in the robustness test of Section III.C for the
linear case. We extend (and simplify) the model of Collin-Dufresne and Goldstein (2001) which
has been selected, first, since it is one of the few models that generate stationary returns19 both
for assets and equity and, second, as it generates a dynamic equity volatility that leads to heavier
tails and tail dependence. This stochastic volatility makes the model similar to the empirical
approach to the analysis of systemic risk measures taken by Brownlees and Engle (2012) and
Acharya, Engle, and Richardson (2012), but there are also essential differences.20

We define asset returns as in the linear normal model of Section III in the article, with
the modification that returns over finite time intervals are now lognormal. The SDE system for
the latent systematic factor Ft and asset values Vi,t reads:

dFt
Ft

= µdt+ σF dBt,
dVi,t
Vi,t

= βi
dFt
Ft

+ σi dBi,t ,

with independent Brownian motions Bt and Bi,t. The asset returns are stationary by con-
struction. It is convenient to replace the independent Brownian motions by the N -dimensional
Gaussian process

Zt ≡ (βiσFBF,t + σiBi,t)
N
i=1 ,

19The models of Leland (1994) and Leland and Toft (1996) might appear as natural alternatives since they
include stationary debt pricing. However, neither the equity returns nor those of the market value of assets are
stationary in these models.

20While their model is richer in that it includes dynamic correlations between systematic and idiosyncratic
shocks to equity returns, asset returns are not explicitly modeled. By contrast, we put weight on the consistency
of asset and equity returns, which are both stationary, and an explicit modeling of default events.
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which has zero drift and the covariance function

Ωij (t, s) ≡ cov (Zi,t, Zj,s) =
(
βiβjσ

2
F + σ2i I{i=j}

)
min (t, s) .(B-1)

Most calculations are done in logarithmic terms, which we denote by small characters.
The log assets process vi,t ≡ log (Vi,t) of bank i is an arithmetic Brownian motion following

dvi,t = ηi dt+ dZi,t with ηi ≡ βiµ− 0.5
(
β2i σ

2
F + σ2i

)
.(B-2)

Each bank steers its debt by corporate action in order to achieve a certain target lever-
age.21 The model approximates this behavior by a controlled dynamic default threshold Ki,t,
which we interpret as the balance-sheet value of debt. It is time-differentiable and assumed to
follow, in its logarithmic form, the ODE

dki,t =
[
λi
(
vi,t − ki,t + l̄i

)
+ βiµ

]
dt ,

where target leverage l̄i and adjustment speed λi are strategic parameters.22 Logarithmic “lever-
age” is defined as the distance li,t = ki,t − vi,t between the log default threshold and log assets.
As long as the bank is alive, li,t is an Ornstein-Uhlenbeck (OU) process:

dli,t = λi
(
l̄i − li,t

)
dt− dZi,t .

Normally, default would occur at the first time when Ki,t = Vi,t holds or, equivalently,
li,t = 0. As we are interested in observable time series for banks, and for technical reasons,
we assume that the supervisor would take a bank into conservatorship and remove it from stock
markets when its equity, relative to assets, falls short of a small but positive amount. Formally, we
define the “default” time as τi ≡ inf {t : li,t = lmax} and set lmax = log (97%) in the simulations.

Equity is defined as the difference between the market values of assets and debt. For
simplicity, we assume the accounting and market value of debt to be identical, so that equity is
just Ei,t = Vi,t−Ki,t.23 Normally, a shock to Vi,t would partly carry over to the market value of
Ki,t, and especially so over short-term horizons where the adaptation of the smooth process Ki,t

is of second order, compared to the diffusion shocks to Vi,t. In our simplified model, however,
the short-term variation of assets completely carries over to the value of equity, which makes
it more volatile especially in moments of high leverage, compared to a model with precise debt
pricing. As we mainly test whether our results are robust to the presence of heavier tails in
return distributions, we find it acceptable that these tails are a bit heavier than those arising
from a fully-fledged debt pricing model.

Using

dEi,t = dVi,t − dKi,t =
[
βiµEi,t + λiKi,t

(
li,t − l̄i

)]
dt+ Vi,tdZi,t ,

21Such corporate action can have various forms but is most conveniently thought of as purely liabilities-related
transactions, such as debt/equity swaps or debt-financed stock repurchases.

22By adding βiµ to the drift of κi,t, we differ from Collin-Dufresne and Goldstein (2001) in that our parameter
l̄i actually equals the expectation of li,t under the stationary measure; in the original work there is a gap between
them. The difference in the parameters is only a matter of notation.

23This assumption is not found in the work of Collin-Dufresne and Goldstein (2001). Focusing on bond pricing,
they do not need to model the value of debt and equity explicitly. The only link between their structural model
and bond pricing is the distribution of the default time, which is already defined by the Ornstein-Uhlenbeck
process.

A-9



Itô’s lemma gives the following SDE for log equity:

d logEi,t =

[
βiµ+ λi

li,t − l̄i
e−li,t − 1

− 1

2

β2i σ
2
F + σ2i(

1− eli,t
)2
]

dt+
1

1− eli,t
dZi,t .(B-3)

The formula shows two things. First, as long as the log leverage li,t is stationary, equity returns
are stationary, too. Second, the dynamic diffusion generates heteroskedasticity in the equity
returns.24

We now write target leverages and adjustment speeds in vector form l̄ and λ and specify
the stationary distribution of lt = (li,t)

N
i=1. If we could ignore that processes are stopped at τi,

the stationary distribution would be N
(
l̄,Σ
)
, where Σij =

(
βiβjσ

2
F + σ2i I{i=j}

)/
(λi + λj). Of

course, stopping cannot be ignored since, otherwise, some of the processes would have to start
in the default state. We therefore select a distribution of lt that is stationary conditional on
survival, meaning that it fulfills

P (ls ∈ B|τi > s, i = 1, ..., N) = P (lt ∈ B|τi > t, i = 1, ..., N)

for arbitrary times t, s and measurable sets B ⊂ RN . This distribution is not analytically
available; we approximate it by simulation as described below.

For simulation purposes, we replace the SDE (B-3) by an equation where drift and volatil-
ity are kept constant in a small time interval, in our case one day. The simulation of one-day
asset and equity returns consists of the following steps. As explained below, multiple independent
simulations must be performed in parallel.

1. Seed sample: drawM independent instances from a truncation of the multivariate N
(
l̄,Σ
)

distribution to the set (−∞, lmax)N , where lmax is the uniform stopping threshold for li,t.

2. Draw M independent instances of the one-day diffusion term from a normal distribution:
ε ∼ N (0,Ω (T, T )), where T ≡ 1/260 is one trading day and Ω is defined in equation (B-1).
Log leverage of the next day is obtained from25 l1 = l0+diag(λ)

(
l̄ − l0

)
−ε which, however,

can also end up with some values larger than lmax. As we censor stopping events, in such
a case the l0 is replaced by a randomly selected instance of l0 from the sample, and a new
ε is drawn. If necessary, the replacement is repeated until l1 is smaller than lmax in all
components.26

3. Having obtained l1 from step 2, set l0 ≡ l1 and go back to step 2. Repeat this loop until
the distribution converges to survival-conditional stationarity.27 After convergence, go to
the next step.

4. Draw ε ∼ N (0,Ω (T, T )). Apply equation (B-2) to calculate daily asset returns as

Ri,V ≡ exp {ηiT + εi} − 1 .

24The solution of the SDE could explode if we allowed li,t to reach zero. To prevent technical problems, we
stop the process at τi, which bounds the diffusion differential from above. In our simulations, the instantaneous
equity volatility can, at max, be about 3.3 times larger than the average.

25This AR(1) process is an approximation of the Ornstein-Uhlenbeck process. We could also set mean reversion
and variance of the AR process such that it has exactly the same distribution as the Ornstein-Uhlenbeck process
observed at discrete times; however, these parameters are almost exactly the same as λ and ε.

26If we knew the stationary distribution in advance, resetting l0 would not be necessary. It is necessary to
achieve convergence to the survival-conditional stationary distribution.

27We test for survival-conditional stationarity by the convergence of the sample characteristics mean, variance,
skewness and kurtosis.
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5. Randomly pick one of the M instances of l0. Calculate one-day equity returns, according
to equation (B-3), but keeping coefficients constant for one day, as

Ri,eq ≡

[
βiµ+ λi

li,0 − l̄i
e−li,0 − 1

− 1

2

β2i σ
2
F + σ2i(

1− eli,0
)2
]
T +

1

1− eli,0
εi .

6. Add RV and Req to the sample and go back to step 4.28

As in the base case, the index return is defined as a weighted average. For the simulations we
set the following base-case parameters. N = 50 homogeneous banks of equal size; σF = 0.05,
µ = 0.03, σi = 0.04 (all annualized); βi = 1, l̄i = −0.1; λi = 2.38. Note that the values
relate to bank asset returns, which are typically much less volatile than those of corporates.
The risk parameters are broadly consistent with bank asset volatilities from Moody’s KMV
(own calculations) and estimates of volatilities and leverage dynamics taken from Memmel and
Raupach (2010).29

B.2. Simulation Results

In the simulations, we generate M = 50, 000 samples for the initial leverage vector l0, based
on a sequence of 100 days to achieve survival-conditional stationarity. Estimates of SRMs are
based on 10 million return vectors, using the estimation methods described at the beginning of
Appendix D.

Table B-1 summarizes the results from three tests that closely correspond to the scenarios
in Figures 2–4. The remainder of this subsection provides details of the findings discussed in
Section III.C.

In the first test we replicate the study of Figure 2 by varying the idiosyncratic risk of
asset returns and checking the direct and relative effect on the systemic risk measures. Both
for asset and equity returns we observe that an increase in idiosyncratic risk lowers ∆CoVaR,
as in the normal model. Importantly, bank i’s equity returns get heavier distribution tails when
idiosyncratic risk rises. For instance, when σi varies from 0.01 to 0.1, the kurtosis of the equity
return goes up from 3.10 to 6.66 (assuming βi = 0.5) or from 5.47 to 8.38 (assuming βi = 2).
Returns of the equity-based index have a fairly stable kurtosis around 3.4. This means that the
decrease in ∆CoVaR goes along with both increased individual variance and heavier tails.

In the first test, we find negative sensitivities where they did not exist in the normal
model: for high βi, there is both a direct and relative negative effect on MES. Interestingly, no
such effect is observed for asset returns, which suggests that tail thickness, as the outstanding
difference in the return distributions, plays a role here.30

28We could also calculate l1 and use it as the initial leverage vector for the next round. However, drawing l0
in step 4 independently from the pre-produced sample speeds convergence up as it avoids the otherwise strong
autocorrelation of volatilities.

29From univariate time-series estimates of capital ratios they obtain a median monthly mean reversions of
λmonthly = 0.18, which transforms into an Ornstein-Uhlenbeck mean reversion of λ = −12× log (1− λmonthly) =
2.38, for which the time unit is one year.

30To exclude that the difference in the effect on the systemic risk measures is simply due to differences in
the general volatility level, we do the following exercise: equity returns are rescaled after simulation such that
they have the same daily standard deviation as their corresponding asset returns. After rescaling, the exposure
∆CoVaR still exhibits the same negative sensitivity to size (which does not exist for asset returns). As the
correlation matrices of equity and asset returns are also very similar, tail thickness is the only plausible remaining
explanation for the fact that the negative effect is observed with equity returns only.
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Second, similar to Figure 3, we test the sensitivity to βi, using different weights of bank i
in the system. To examine whether we obtain similar effects as in the normal setup, other risk
factors are given values derived from equation (11) to provoke negative sensitivities.31 Both for
asset and equity returns, an increasing βi has a negative relative effect on all four systemic risk
measures if the weight of a bank is very high (0.45). This finding conforms to the results of
the normal model. Again, the increase in βi is accompanied by a (moderate) increase in tail
thickness.32

In a third test, similar to Figure 4, we vary the weight wi of bank i in the system. Using
different values for βi, the results of the normal model are confirmed insofar as an increase of the
weight can lower the BETA if the factor sensitivity βi is high, which holds for asset and equity
returns. Further negative sensitivities appear that did not exist in the normal model: for high
βi, there is a negative relative size effect on ∆CoVaR and both a direct and relative negative
effect on exposure ∆CoVaR. As in the first test, no such effect is observed for asset returns,
which seems to confirm that tail thickness matters.

What we observe when wi grows while βi = 2 is that a highly leptokurtic return (with a
constant kurtosis of 8.5) increasingly shapes the index return, the kurtosis of which grows from
3.4 to 5.9. Hence, the riskiness of the index does not only rise for its increased volatility but also
for a heavier loss tail. Both effects go along with a negative relative effect on either ∆CoVaR
version.

31The equations (11) and (A-9), which indicate when negative sensitivities should appear in the normal model,
do not actually apply here but may give an indication. In the test, σi is doubled from 0.04 to 0.08 (p.a.), while
σF is halved from 0.05 to 0.025.

32When βi varies from 0.5 to 2 (assuming the highest weight for bank i), the kurtosis of the equity return grows
from 5.54 to 6.15. The equity index return exhibits kurtosis values between 4.82 and 5.08.
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Table B-1: Effects of Risk Parameters on Systemic Risk Measures in a Non-normal Setting
We use simulations to analyze sensitivities of systemic risk measures to risk parameters in a multivariate extension
of Collin-Dufresne and Goldstein (2001). Lognormal asset returns are drawn from correlated geometric Brownian
motions. Equity returns are derived from a stochastic differential equation with continuously adapted debt. Both
returns are stationary, conditional on banks’ survival. A direct effect is understood as the change in a bank’s own
systemic risk measure owing to a change in one of the bank’s parameters. The relative effect describes changes in
the ratio between the systemic risk measures of two banks, e.g., MESi/MESj , while the risk parameter of bank i
changes. A plus (minus) sign indicates that the systemic risk measure / the ratio of two measures grows (falls)
with the parameter. If both signs appear, the sign can be positive or negative, depending on other parameters. If
framed by exclamation marks, the outcome is different from its counterpart in Panel A of Table 1 (normal linear
setup). The base-case parameters (p.a. for drift, volatility and mean reversion) are set to E (F ) = 0.03, σF = 0.05,
σj = 0.04, βj = 1 for asset returns; target log debt ratio l̄j = −0.1, mean reversion λj = 2.38, wj = 1/50 for all j,
N = 50; quantile level α = 0.01 for the CoVaR measures and 0.05 for the MES. For the effect of idiosyncratic risk,
σi varies from 0.01 to 0.1. Monotonicity in σi is checked for βi between 0.5 and 2. For the effect of systematic
risk, βi varies from 0.5 to 2. Monotonicity in βi is checked for a weight wi between 0.02 (equal share) and 0.45.
In this exercise we set σi = 0.08 and σF = 0.025 to provoke the effect found in the normal model. For the size
effect, wi varies from 0.02 (equal share) to 0.45 while βi is fixed at values between 0.5 and 3.

Parameter Effect Return type ∆CoVaR Exp. ∆CoVaR MES BETA

Idiosyncratic Risk σi Direct Assets – + + +
Equity – + !!±!! +

Relative Assets – + + +
Equity – + !!±!! +

Systematic Risk βi Direct Assets + + + +
Equity + + + +

Relative Assets ± ± ± ±
Equity ± ± ± ±

Size wi Direct Assets + + + ±
Equity + !!±!! + ±

Relative Assets + + + +
Equity !!±!! !!±!! + +

C. Sensitivities to Risk Parameters if Bank i Is Removed from
the System Index

In this appendix we analyze sensitivities as introduced in Section III.B of the article and carried
out in Appendix A, with the modification that bank i is excluded from the system index used
in the calculation of bank i’s SRM.

In the next subsections we collect results for a counterpart to Table 1 in the main text.
The results are summarized in Table C-1. Panel A presents the general results, which are possible
signs of partial derivatives, while Panel B shows signs for a system that consists of two banks
only.
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Table C-1: Effect of Risk Parameters on Modified Systemic Risk Measures, Excluding the Bank
of Interest from the Index

We analyze sensitivities of SRMs to certain risk parameters in a linear setting. Returns are described through
Ri = βiF + εi and R∗S,i =

∑
j 6=i w

∗
jRj with independent F ∼ N

(
µ, σ2

F

)
and εi ∼ N

(
0, σ2

i

)
. Note that Ri is

excluded from the index return R∗S,i, which relies on weights w∗j = wj/ (1− wi). A direct effect of a parameter
is understood as the partial derivative of an SRM. A relative effect refers to the ratio between the SRMs of two
banks. It is the ratio’s partial derivative to a parameter of the bank in the numerator, e.g., ∂ (MESi/MESj) /∂σi.
Panel A presents possible signs of the derivatives. A superscript n marks cases where the sign applies under
normal conditions. Only very implausible parameter combinations would generate the opposite sign. Panel B
reports the partial derivatives’ signs for a system consisting of two banks only.

Parameter Effect type ∆CoVaR Exp. ∆CoVaR MES BETA

Panel A. Range of the Sign of Partial Derivative
Idiosyncratic Risk σi Direct – 0 0 0

Relative – + +n +
Systematic Risk βi Direct + + +n +

Relative ± + +n +
Size wi Direct 0 0 0 0

Relative ± ± ± +
Panel B. Two Banks

Idiosyncratic Risk σi Direct – 0 0 0
Relative – + +n +

Systematic Risk βi Direct + + +n +
Relative – + +n +

Size wi Direct 0 0 0 0
Relative 0 0 0 0

C.1. Notation and Basic Properties

The modified index that leaves bank i out is given by

R∗S,i ≡
∑
k 6=i

w∗kRk,

with w∗k ≡ wk/ (1− wi), k 6= i, as introduced in Appendix A. The representations (8) and (9) of
SRMs in the linear model remain correct, but they now refer to the modified index:

∆CoVaRS|i
α =

cov
(
R∗S,i, Ri

)
σ (Ri)

Φ−1(1− α) , ∆CoVaRi|S
α =

cov
(
R∗S,i, Ri

)
σ
(
R∗S,i

) Φ−1(1− α),

MESi = −βiµ+
cov

(
R∗S,i, Ri

)
σ
(
R∗S,i

) φ
(
Φ−1 (α)

)
α

, BETAi =
cov

(
R∗S,i, Ri

)
σ2
(
R∗S,i

) .

We need to be more specific in the notation of average factor loadings:

β∗,i ≡
∑
k 6=i

w∗kβk.
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Note that w∗k = wk/ (1− wi) = Ak/
(∑

l 6=iAl

)
(where Ak is bank size in dollars) remains

constant when wi changes. As a consequence, β∗,i is invariant to the risk parameters of bank i.
The same holds true for the aggregate idiosyncratic risk of the index

σ2∗,i ≡
∑
k 6=i

(w∗k)
2 σ2k,

which means that the variance of the index return

σ2
(
R∗S,i

)
= β2∗,iσ

2
F + σ2∗,i(C-1)

is also completely invariant to the risk parameters of bank i. By contrast, the distribution of
the index used in the SRM of another bank j does depend on bank i’s parameters, as becomes
obvious in the form

β∗,j =
wi

1− wj
βi +Hi,j , where Hi,j ≡

1

1− wj

∑
k/∈{i,j}

wkβk .(C-2)

Similar representations hold for σ2∗,j . Finally, the return covariance between bank i and its index
is given by

cov
(
R∗S,i, Ri

)
= βiβ∗,iσ

2
F .(C-3)

C.2. Direct Effects

Taking equation (C-3) into account, the invariance of β∗,i to wi and σi immediately implies:

∂

∂σi

[
cov

(
R∗S,i, Ri

)]
=

∂

∂wi

[
cov

(
R∗S,i, Ri

)]
= 0.

As σ
(
R∗S,i

)
is invariant to these parameters as well (see equation (C-1) and below), wi and σi

have no direct effect on the SRMs, with the only exception of ∆CoVaR. This measure has σ (Ri)

in the denominator, resulting in the same negative direct impact of σi as in Section III of the
article.

The loading βi to systematic risk has a positive direct effect on all SRMs, which is trivial
for BETA and the exposure ∆CoVaR, where only the covariance is sensitive to βi. In the case
of ∆CoVaR, we obtain:

∂∆CoVaR
S|i
α

∂βi
∝ ∂

∂βi

cov
(
R∗S,i, Ri

)
σ (Ri)

 ∝ ∂

∂βi

[(
const + β−2i

)−1/2]
> 0.

The sensitivity of the MES to βi is simpler than in the base case:

∂MESi
∂βi

= −µ+

φ
(
Φ−1 (α)

)
α

(
1 +

σ2∗,i
β2∗,iσ

2
F

)−1/2× σF .
A comparison with the estimate (A-7) in Appendix A.8 shows that the same arguments apply: the
one-day MES is positively dependent on βi under virtually all conditions, whereas the dependency
can become negative at a one-year horizon for extreme parameter combinations.
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C.3. Relative Effects on ∆CoVaR

As for the original SRMs, σi has no side effect on the ∆CoVaR of another bank so that the
relative effect has the same negative sign as the direct effect.

To identify the relative size effect on ∆CoVaR, we observe that the standard deviations
of individual returns in the denominators are invariant to wi, just as the index return R∗S,i. This
gives, recalling the notation w∗k = wk/ (1− wi) and the fact that w∗k is constant while wi changes,

∆CoVaR
S|i
α

∆CoVaR
S|j
α

=
cov

(
R∗S,i, Ri

)
σ (Rj)

cov
(
R∗S,j , Rj

)
σ (Ri)

∝
(
cov

(
R∗S,j , Rj

))−1
= β−1j β−1∗,j σ

−2
F

∝ β−1∗,j .

At this point it is simpler to represent this expression by dollar bank sizes rather than weights:

β∗,j =

∑
k 6=j Akβk∑
k 6=j Ak

=
Aiβi +

∑
k/∈{i,j}Akβk

Ai +
∑

k/∈{i,j}Ak
.

Its sensitivity to dollar size is:

∂

∂Ai
[β∗,j ] =

∂

∂Ai

[
Aiβi +

∑
k/∈{i,j}Akβk

Ai +
∑

k/∈{i,j}Ak

]

∝

∑
k 6=j

Ak

 ∂

∂Ai

Aiβi +
∑

k/∈{i,j}

Akβk

−
∑
k 6=j

Akβk

 ∂

∂Ai

Ai +
∑

k/∈{i,j}

Ak


=

∑
k 6=j

Ak

βi −
∑
k 6=j

Akβk =
∑

k/∈{i,j}

Akβi −
∑

k/∈{i,j}

Akβk

∝ βi −
∑

k/∈{i,j}

w∗∗k βk , where w∗∗k ≡
Ak∑

l /∈{i,j}Al
.

Note that this expression makes sense only if there are more than two banks.33 As the ∆CoVaR
ratio is inversely proportional to β∗,i in its sensitivity to size, the ratio shrinks when bank i grows
under the condition that the bank has an above-average exposure βi to systematic risk. While
this has no impact on the index return R∗S,i, growth does then make the system as a whole more
volatile.

To assess the relative effect of βi on ∆CoVaR, eliminating all parts that are insensitive
to βi gives:

∆CoVaR
S|i
α

∆CoVaR
S|j
α

=
cov

(
R∗S,i, Ri

)
σ (Rj)

cov
(
R∗S,j , Rj

)
σ (Ri)

∝
cov

(
R∗S,i, Ri

)
cov

(
R∗S,j , Rj

)
σ (Ri)

=
βiβ∗,iσ

2
F

βjβ∗,jσ2F

√
β2i σ

2
F + σ2i

∝ βi

β∗,j

√
β2i σ

2
F + σ2i

.

33The special two-bank case is trivial because the system “index” consists of one bank only. There is no
sensitivity to size in that case; see also Panel B of Table C-1.
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Expanding β∗,j according to equation (C-2), the derivative of the latter expression is:

∂

∂βi

 βi(
wi

1−wj βi +Hi,j

)√
β2i σ

2
F + σ2i


∝

(
wi

1− wj
βi +Hi,j

)√
β2i σ

2
F + σ2i − βi

∂

∂βi

[(
wi

1− wj
βi +Hi,j

)√
β2i σ

2
F + σ2i

]

=

(
wi

1− wj
βi +Hi,j

)√
β2i σ

2
F + σ2i − βi

 wi
1− wj

√
β2i σ

2
F + σ2i + βiσ

2
F

(
wi

1−wj βi +Hi,j

)
√
β2i σ

2
F + σ2i


∝

(
wi

1− wj
βi +Hi,j

)
σ2 (Ri)− βi

(
wi

1− wj
σ2 (Ri) + βiσ

2
F

(
wi

1− wj
βi +Hi,j

))
= Hi,j

(
σ2 (Ri)− β2i σ2F

)
− β2i σ2F

wi
1− wj

= Hi,jσ
2
i − β2i σ2F

wi
1− wj

∝

 ∑
k/∈{i,j}

wk
1− wj

βk

σ2i − β2i σ2F
wi

1− wj
.

The derivative can become negative if exceptional size combines with a loading to systematic risk
above the average and a low level of idiosyncratic risk. As a consequence, βi has an ambiguous
relative effect on ∆CoVaR.

C.4. Relative Effects on BETA

The effects on SRMs of other banks j 6= i are more complicated than the direct ones because Ri
is included in the banking index which the SRM of bank j refers to. We cannot restrict ourselves
to the quotient of covariances because the measures’ denominators, which now refer to different
indices, do not cancel out anymore:

BETAi

BETAj
=

cov
(
R∗S,i, Ri

)
σ2
(
R∗S,j

)
cov

(
R∗S,j , Rj

)
σ2
(
R∗S,i

) =
βiβ∗,i
βjβ∗,j

×
β2∗,jσ

2
F + σ2∗,j

σ2
(
R∗S,i

) .

Eliminating all parts that are insensitive to the risk parameters of bank i, we obtain:

BETAi

BETAj
∝

βi

(
β2∗,jσ

2
F + σ2∗,j

)
β∗,j

= βi

(
β∗,jσ

2
F +

σ2∗,j
β∗,j

)
.

This ratio has a (weak) positive dependency on σi through σ2∗,j . The same holds for the relative

effect on the exposure ∆CoVaR (and approximately the MES), where the root of
(
β2∗,jσ

2
F + σ2∗,j

)
stands in the numerator.

The average β∗,j is influenced by βi and wi in the following way:

β∗,j =
wi

1− wj
βi +

1

1− wj

∑
k/∈{j,i}

wkβk =
wi

1− wj
βi +Hi,j ,
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which yields:

BETAi

BETAj
∝ βi

([
wi

1− wj
βi +Hi,j

]
σ2F +

σ2∗,j
wi

1−wj βi +Hi,j

)

= βi

[
wi

1− wj
βi +Hi,j

]
σ2F +

σ2∗,j
wi

1−wj +Hi,jβ
−1
i

.

As Hi,j is invariant to βi and wi, the ratio positively depends on βi.
The size effect is more complicated because wi also affects the degree to which idiosyn-

cratic risks are diversified.
To get a feeling for the range of possible outcomes, we leave it at two limiting cases. In

the first case, there are two banks only. We set i = 1 and note that the “index” to which the SRM
of one bank refers consists of the other bank only. Correspondingly, H1,2 = 0 and σ2∗,2 = σ21.
The ratio boils down to:

BETA1

BETA2
∝

[
w1

w1
β1 +H1,2

]
σ2F +

σ2∗,j
w1
w1
β1 +H1,2

= β1σ
2
F +

σ21
β1
,

which is insensitive to w1.
The other limiting case is given by a system consisting of one large bank i and an infinitely

granular remainder. The maximum diversification among these banks reduces σ2∗,j to w
2
i σ

2
i and

yields Hi,j = (1− wi)β∗,i in the limit such that we obtain:

BETAi

BETAj
∝ β̄σ2F +

σ2i
β̄
w2
i .

This gives for the derivative:

∂

∂wi

[
BETAi

BETAj

]
∝ ∆β

(
β̄σ2F − w2

i

σ2i
β̄

)
+ 2σ2iwi,

which again stresses the role of ∆β and shows that the derivative can easily become negative.
We now relate this observation to the ambiguous effect of size on total system risk. From the
representation (A-5) of ∂σ2 (RS)

/
∂wi we obtain:

∂

∂wi

[
BETAi

BETAj

]
∝ C × ∂σ2 (RS)

∂wi
+ σ2iwi

β∗,i

β̄
,

in which C is a constant. The positive second addend shows that the ratio of BETAs can
shrink in wi only if this decreases the system’s volatility. However, this does not necessarily
mean appropriateness: if the relative size effect is positive and the effect on σ2 (RS) negative, a
growing bank i would be “punished” (relative to its competitors) for making the system safer.

C.5. Relative Effects on Exposure ∆CoVaR and MES

For brevity we set the drift term in the MES to zero, which makes the ratios for the exposure
∆CoVaR and the MES coincide. The only difference to the BETA ratios is that square roots are
taken of variances:

∆CoVaR
i|S
α

∆CoVaR
j|S
α

=
cov

(
R∗S,i, Ri

)
σ
(
R∗S,j

)
cov

(
R∗S,j , Rj

)
σ
(
R∗S,i

) =
βiβ∗,i
βjβ∗,j

×

√
β2∗,jσ

2
F + σ2∗,j

σ
(
R∗S,i

)
∝

βi
√
β2∗,jσ

2
F + σ2∗,j

β∗,j
.
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The last expression has been purified from all factors that are insensitive to σi, βi, and wi. Let
us first analyze the sensitivity to βi. The ratio:

∆CoVaR
i|S
α

∆CoVaR
j|S
α

∝

√
β2i σ

2
F +

β2i
β2∗,j

σ2∗,j =

√√√√β2i σ
2
F +

(
βi

wi
1−wj βi +Hi,j

)2

σ2∗,j

=

√
β2i σ

2
F +

(
wi

1− wj
+
Hi,j

βi

)−2
σ2∗,j

is obviously monotonic in βi.
Reducing the SRM ratio to the variables affected by wi gives:

∆CoVaR
i|S
α

∆CoVaR
j|S
α

∝
βi
√
β2∗,jσ

2
F + σ2∗,j

β∗,j
∝

√
σ2F +

(
σ∗,j
β∗,j

)2

,

so that it suffices to analyze the ratio σ∗,j/β∗,j . We define wk|j ≡ wk/ (1− wj) and expand the
ratio to:

σ∗,j
β∗,j

=

√
w2
i|jσ

2
i +

∑
k/∈{j,i}w

2
k|jσ

2
k

wi|jβi +Hi,j
.

As wi|j is monotonic in wi, we can also take the derivative to the former, which gives:

∂

∂wi

[
σ∗,j
β∗,j

]
∝ ∂

∂wi|j

[
σ∗,j
β∗,j

]
∝ β∗,j

∂

∂wi|j
[σ∗,j ]− σ∗,j

∂

∂wi|j
[β∗,j ]

= β∗,j
∂

∂wi|j

√w2
i|jσ

2
i +

∑
k/∈{j,i}

w2
k|jσ

2
k

− σ∗,j ∂

∂wi|j

[
wi|jβi +Hi,j

]
= β∗,j

wi|jσ
2
i

σ∗,j
− σ∗,jβi ∝ β∗,j

σ2i
σ2∗,j

wi|j − βi .

This can become negative if βi is above the average (without bank j), given by β∗,j , if bank i is
not too large and the other banks’ idiosyncratic risks are not too diversified. The relative effect
on exposure ∆CoVaR and MES can thus be positive or negative. As before, there are realistic
parameter constellations under which these effects combine with opposite effects on σ (RS).

D. Sensitivities in the Contagion Case

This appendix complements Section IV, explaining in detail how the contagion intensity γ1
affects SRMs. The numerical calculations are based on 100 million independent simulations and
estimation procedures for the SRMs as described in Footnote 13 of the article.

D.1. ∆CoVaR

To understand how ∆CoVaR is affected by the contagion intensity γ1, we express the system
return as a function of the return of an individual bank. For ease of exposition, we will incorporate
the choice of uniform unit βj , 1 ≤ j ≤ N , and equally-weighted banks that we made for the
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simulation. When applied to bank 1, the left-hand part of equation (14) then implies F = R1−ε1,
which can be plugged into the representation of RS to eliminate the factor return F :

RS = R1 −
N − 1

N

[
1− I{ε1<κ}γ1

]
ε1 +

1

N

N∑
j=2

εj .(D-1)

When we use equation (D-1) to study the system return conditional on a quantile of R1,
it is not enough to replace R1 by its quantile. The conditional distribution of ε1 also differs from
the unconditional one. However, it is not affected by the contagion intensity γ1, which facilitates
the analysis.

Changing γ1 can influence the ∆CoVaR through effects on both the 50% quantile and the
1% quantile of RS . For the 50% quantile, effects will be relatively small because the probability
that contagion occurs if R1 is at its median is very small. This probability, which again is
independent of γ1, can be determined by exploiting the fact that the conditional distribution of
ε1 is normal (see Section D.5). For the parameter combination used here, contagion occurs with
a probability of 1.00% if R1 is at its median, and with a probability of 50.02% if R1 is at its
1% quantile (see Equation (D-8)). For the purpose of understanding the patterns of Graph A in
Figure 5, it is therefore sufficient to focus on the 1% CoVaR.

Graph A shows that changes in the contagion intensity do not affect the ∆CoVaR until
γ1 reaches a value of around 0.75. This may seem surprising, given that contagion happens with
a probability of over 50% once R1 is at its 1% quantile. However, it does not necessarily follow
that contagion events are crucial for the CoVaR, which is the 1% quantile of RS conditional
on R1 taking some value. Equation (D-1) shows that one way of arriving at a low conditional
realization of RS is to have a very positive realization of ε1. If ε1 is positive, however, there is
no contagion.

The extent to which low realizations of RS are associated with contagion has already
been illustrated in Figure 6 and explained in Section IV.A of the article.

For an infected bank – here we take it to be bank 2 – we can derive:

RS = R2 −
N − 1

N
ε2 +

1

N

(
1− I{ε1<κ}γ1

)
ε1 +

1

N

N∑
j=3

εj .(D-2)

The direct effects of γ1 and ε1 that we discussed above now play a smaller role because
they enter the equation with a factor of 1/N rather than (N − 1) /N . However, there is an
additional effect because the quantiles of R2 also depend on γ1. Increasing γ1 lowers both the
median and the 1% quantile of R2, with the effect on the latter being more pronounced. This is
the key factor behind the pattern shown in Graph A of Figure 5: contagion increases the risk of
the infected bank as well as the entire system.

Comparing the infectious and the infected bank, Graph A of Figure 5 shows that conta-
gion drives a wedge between the ∆CoVaR of the two banks, which increases with the strength
of the spillovers. In the presence of contagion, ∆CoVaR assigns a larger systemic risk to the
infected bank.

While this pattern is consistent with the discussion from above, we would like to provide
another way of understanding it. In Figure D-1, we visualize the conditional distribution of the
system return by plotting it against the return of the infectious bank and the return of an infected
bank, respectively. We choose the contagion intensity γ1 to be 0.75 and show three scatterplots.
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Graph A contains the full sample, Graph B only contagion cases (εi < κ), and Graph C only
cases without contagion. Conditional on the bank returns being at their 1% quantiles, the system
return has a lower mean in the case of the infectious bank.

While this effect tends to make the ∆CoVaR of the infected bank more extreme, there
is a stronger effect working in the opposite direction. For the infectious bank, the conditional
variance of the system return is relatively low. In the contagion case, the system return is highly
correlated with the infectious bank because that bank’s idiosyncratic risk has spread through
the system. If there is no contagion, the conditional volatility is relatively low because it is then
relatively likely that the system return has been brought about by a low factor return.34

The low conditional variance of the system return means that – according to ∆CoVaR –
the system appears to have a relatively low risk, conditional on the infectious bank being at its
1% quantile.

D.2. Exposure ∆CoVaR

Comparing the four measures in Figure 5, the exposure ∆CoVaR of the infectious bank in
Graph B exhibits the most complex pattern. At first, it becomes larger. Then it shrinks, but
this new tendency is again reversed. Rearranging equation (D-1), we can examine how the return
of the infectious bank depends on the system return:

R1 = RS +
N − 1

N

(
1− I{ε1<κ}γ1

)
ε1 −

1

N

N∑
j=2

εj .

Using this equation is now considerably more involved than above. A change in γ1 affects the
quantiles of RS as well as the conditional distribution of ε1. An inspection of the simulated
CoVaR figures reveals which forces drive the observed patterns: the initial upward move goes
back to a decrease in the CoVaR50%; this decrease is then overcompensated by changes in the
CoVaR1%, which exhibits a trough-shaped behavior, with the bottom of the trough being close
to γ1 = 0.5. We explain those in turn.

An increase in γ1 makes it less likely that RS is at its median once contagion has occurred
because contagion shifts RS away from its median and this shift is stronger, the larger γ1.35 In
consequence, a higher γ1 means that there will be fewer realizations with ε1 below the contagion
threshold if RS is at its median. There is another effect having the same impact on CoVaR50%:
an increasing γ1 pulls

(
1− I{ε1<κ}γ1

)
ε1 towards zero if there is contagion. Together, this makes

the CoVaR50% decrease, as it is defined as the negative of the 1% quantile of R1 conditional on
RS being at its median. An opposite effect – an increase of γ1 lowers the median of RS – is
relatively small.

What happens if we condition on the 1% quantile of RS in order to determine the
CoVaR1%? An increase in γ1 now makes it more likely that it was contagion that led to the

34If there is no contagion, the system return can be low because of a low factor realization or a low average real-
ization of the infected banks’ idiosyncratic risk. With 49 banks, however, the variance of the average idiosyncratic
shock is very low, making it less likely to be the reason for a low system return.

35More precisely, contagion shifts the system return down so that some realizations of RS will also be shifted
(from above) towards the median. However, even with γ1 = 0 the majority of “contagion” events has realizations
of RS below the median. If γ1 rises, more returns with contagion are therefore pushed away from the median than
are pushed towards it. This lowers the presence of contagion events among those having a return at the median,
in total. There is also a slight compensating effect since the median of RS is decreased, too; but the effect has
lower order because the median is mainly driven by F and aggregate idiosyncratic risk, which both do not depend
on γ1.
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Figure D-1: Simulated System Returns Versus Returns of Infectious and Infected Banks

We simulate returns for the same system as in Figure 5 in the article. The contagion intensity of bank 1
is set to γ1 = 0.75. We plot simulated system returns RS against individual returns R1 (infectious bank,
on the left) and Rj (an infected bank, on the right). Graph A plots the full sample. Graph B contains
only cases of contagion, where ε1 < κ. Graph C contains cases of no contagion. The vertical line marks
the event that the individual bank return is at its 1% quantile, the event which CoVaR1% conditions on.
The diamond marks the corresponding conditional mean of the system return.

Graph A. Full Sample

Graph B. Contagion

Graph C. No Contagion
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extreme realization of RS . More contagion implies more extremely negative realizations of ε1,
but what matters for the CoVaR1% is

(
1− I{ε1<κ}γ1

)
ε1, which is pulled towards zero as γ1

increases.
To get an intuition why the second effect is stronger, consider the extreme case in which

γ1 equals 1. Then, the smallest value that
(
1− I{ε1<κ}γ1

)
ε1 can take is κ, even though there

will be many realizations with an ε1 smaller than κ. The overall trough-shaped pattern in the
exposure ∆CoVaR arises because this effect is at some point outsized by another effect of γ1
which works in the opposite direction: increasing γ1 lowers the 1% quantile of RS which we
condition on.

For the infected banks the pattern is less complex: the ∆CoVaR grows in γ1. We can
rearrange equation (D-2):

R2 = RS +
N − 1

N
ε2 +

1

N

(
I{ε1<κ}γ1 − 1

)
ε1 −

1

N

N∑
j=3

εj .

The effects of changes in the conditional distribution of
(
1− I{ε1<κ}γ1

)
ε1 are now less important

than in the case of the infectious bank studied above because the factor 1/N is much smaller
than (N − 1) /N . Changes in the conditional quantiles of R2 are therefore driven by changes in
the quantiles of RS . Since the 1% quantile of RS is more sensitive to changes in γ1 than the 50%
quantile, the exposure ∆CoVaR of bank 2 becomes larger.

D.3. MES

For the infectious bank, we again inspect:

R1 = RS +
N − 1

N

(
1− I{ε1<κ}γ1

)
ε1 −

1

N

N∑
j=2

εj .

MES and exposure ∆CoVaR are similar in that we condition on a tail event of the system
return. Increasing γ1 makes it more likely that contagion has occurred in the conditioning event
that RS is below its 5% quantile. A higher probability of contagion means that the conditional
means of both RS and ε1 are more negative. But the direct effect of γ1 works in the opposite
direction. Through

(
1− I{ε1<κ}γ1

)
ε1, an increase in γ1 makes the MES less extreme. The

concave shape of the MES arises because the first effect dominates for small γ1, while the second
effect gains weight when γ1 gets larger.

For an infected bank, the reasoning is very close to the one for the exposure ∆CoVaR:

R2 = RS +
N − 1

N
ε2 +

1

N

(
I{ε1<κ}γ1 − 1

)
ε1 −

1

N

N∑
j=3

εj .

What matters most are changes in the quantile of RS , which is driven down by increases in γ1 .
The second term does not contribute much because it contains the factor 1/N .

For γ1 very close to 1, the MES indicates that the infected bank is riskier than the
infectious bank. This observation is easiest understood if infection occurred and γ1 = 1. In this
case, the equations for R1 and R2 differ only in ε2, which adds to R2 by +ε2 (N − 1) /N while it
adds to R1 by −ε2/N . Conditional on {RS < QαS}, the expected value of ε2 is negative because
it also contributes to the system return.
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D.4. BETA

We now explain the pattern observed in Graph D of Figure 5 that the BETA of the infectious
bank is hump-shaped in the contagion intensity γ1, while the BETA curve of the infected bank
is nearly flat.

To this end, we trace the unconditional second moments in the formula for BETA back
to conditional moments. Setting χ ≡ I{ε1<κ} for the contagion dummy, the numerator of BETA
can be decomposed into:

cov (R1, RS) = E (cov (R1, RS |χ)) + cov (E (R1|χ) ,E (RS |χ)) ,

where the χ-conditional moments are random variables with two possible realizations, one for
χ = 1 and one for χ = 0. It is crucial to observe that the values for the non-contagion case χ = 0

do not depend on γ1 because we are then in the standard one-factor case, albeit under a special
distribution for ε1; that distribution is not affected by γ1 either. Putting everything invariant to
γ1 into constants gives:

cov (R1, RS) = c1cov (R1, RS |ε1 < κ) + c2(D-3)

+c3 (E (R1|ε1 < κ)− c4) (E (RS |ε1 < κ)− c5) .

We now study the parts that are sensitive to γ1. In equation (D-1) we can replace R1 by
F + ε1 to obtain:

RS = F +

[
N − 1

N
I{ε1<κ}γ1 +

1

N

]
ε1 +

1

N

N∑
j=2

εj .

Introducing σ21,cont as the contagion-conditional variance of ε1, we find:

cov (R1, RS |ε1 < κ) = cov

F + ε1, F +

[
N − 1

N
γ1 +

1

N

]
ε1 +

1

N

N∑
j=2

εj

∣∣∣∣∣∣ ε1 < κ


= σ2F +

[
N − 1

N
γ1 +

1

N

]
σ21,cont,

which is linear in γ1. The mean of R1 conditional on contagion is

E (R1|ε1 < κ) = E (F ) + E (ε1|ε1 < κ)

and does not depend on γ1, while there is a linear dependency in the conditional mean of RS :

E (RS |ε1 < κ) = E (F ) +

(
N − 1

N
γ1 +

1

N

)
E (ε1|ε1 < κ) .(D-4)

Introducing new constants, equation (D-3) is reduced to:

cov (R1, RS) = c1cov (R1, RS |ε1 < κ) + c6 + c7E (RS |ε1 < κ) ,

which shows that the unconditional covariance is linear in γ1.
Turning to the denominator of BETA, a similar decomposition gives:

σ2 (RS) = c1σ
2 (RS |ε1 < κ) + c2 + c3 (E (RS |ε1 < κ)− c4)2 ,
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of which we already know that the conditional mean on the right is linear in γ1, resulting in
quadratic dependency of the entire second term. Also the first term is quadratic in γ1:

σ2 (RS |ε1 < κ) = σ2F +

[
N − 1

N
γ1 +

1

N

]2
σ21,cont +

1

N2
σ2j ,

and thus the whole σ2 (RS).
Altogether, the observation that the covariance of RS and R1 is linear in γ1 while the

variance is quadratic in γ1 explains the hump-shaped relationship between the contagion intensity
γ1 and cov (R1, RS) /σ2 (RS), which is the BETA of the infectious bank.

For the infected banks, we need to analyze the components of:

cov (R2, RS) = d1cov (R2, RS |ε1 < κ) + d2(D-5)

+d3 (E (R2|ε1 < κ)− d4) (E (RS |ε1 < κ)− d5) .

We observe that the conditional covariance is now quadratic in γ1:

cov (R2, RS |ε1 < κ) = cov

F + ε2 + γε1, F +

[
N − 1

N
γ1 +

1

N

]
ε1 +

1

N

N∑
j=2

εj

∣∣∣∣∣∣ ε1 < κ


= σ2F +

[
N − 1

N
γ21 +

1

N
γ1

]
σ21,cont +

1

N
σ22 .

In contrast to the infectious bank, the conditional mean E (R2|ε1 < κ) linearly depends
on γ1. In equation (D-5) it is multiplied with a further linear expression, as equation (D-4) has
shown, such that the whole product is quadratic in γ1. In the definition of BETA, both the
numerator and the denominator are thus quadratic in γ1, which gives an intuition for the almost
flat relationship between γ1 and the BETA of an infected bank.

D.5. Conditional Distribution of the Noise Term ε1

Given the return R1 = β1F + ε1 of the infectious bank, we calculate the distribution of ε1 under
the condition that R1 equals its quantile value at level α. This is done by an orthogonal linear
representation, in the same way as in Section III of the article.

Starting from the assumptions F ∼ N
(
µ, σ2F

)
, ε1 ∼ N

(
0, σ21

)
and independence of F

and ε1, we calibrate an equation ε1 = a + bR1 + η such that R1 and η are independent and
E (ε1) = E (η) = 0. This requires a = −bβ1µ and

ε1 = b (R1 − β1µ) + η,(D-6)

with b = cov (R1, ε1) /σ
2 (R1) = σ21/σ

2 (R1). The noise orthogonal to R1 has variance

σ2η = σ21 − b2σ2 (R1) = σ21β
2
1σ

2
F /σ

2 (R1) ,

which completes the conditional moments. Putting Qα (R1) = β1µ+ σ (R1) Φ−1 (α) into (D-6),
we obtain:

ε1 |{R1 = Qα (R1)} ∼ N
(
b (Qα (R1)− β1µ) , σ2η

)
(D-7)

= N

(
σ21

σ (R1)
Φ−1 (α) ,

σ21β
2
1σ

2
F

σ2 (R1)

)
.
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We are also interested in the conditional probability of the contagion event, which is
{ε1 < κ}. Let us assume that the unconditional probability of contagion is χ. The R1-conditional
probability is calculated by standardization of ε1 based on the moments given in formula (D-7):

P (ε1 < κ|R1 = Qα (R1)) = P
(
ε1 < σ1Φ

−1 (χ) |R1 = Qα (R1)
)

(D-8)

= Φ

(
σ1Φ

−1 (χ)− E (ε1|R1 = Qα (R1))

σ (ε1|R1 = Qα (R1))

)
= Φ

(
σ (R1) Φ−1 (χ)− σ1Φ−1 (α)

β1σF

)
.
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