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A.I Analytical Results

In this section we give the analytical proofs of the propositions in the main text.

Proof of Lemma 1. First note that the steady state mass evolutions are unaffected by the

introduction of λD into the model. They are:

µ̇ln(t) = 2λµhn(t)µlo(t)− λuµln(t) + λdµhn(t)

µ̇lo(t) = −2λµhn(t)µlo(t)− λuµlo(t) + λdµho(t)

µ̇hn(t) = −2λµhn(t)µlo(t)− λdµhn(t) + λuµln(t)

µ̇ho(t) = 2λµhn(t)µlo(t)− λdµho(t) + λuµlo(t).

Therefore, the first proposition in DGP (2005) applies directly.

Let τl denote the arrival (stopping time) of an intrinsic type shift, τi denote the arrival of

a meeting with another agent and τD the arrival of the asset’s default. Then the agents’ value
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functions at time t are given by

Vlo = Et

[ ∫ τl∧τi∧τD

t
e−r(u−t)(1− δ)du+ e−r(τl−t)Vho1{τl=τl∧τi∧τD}(A-1)

+e−r(τi−t)(Vln + P )1{τi=τl∧τi∧τD} + e−r(τD−t)R(t)1{τD=τl∧τi∧τD}

]
Vln = Et

[
e−r(τl−t)Vhn1{τl=τl∧τD}

]
Vho = Et

[ ∫ τl∧τD

t
e−r(u−t)du+ e−r(τl−t)Vlo1{τl=τl∧τD} + e−r(τD−t)R(t)1{τD=τl∧τD}

]
Vhn = Et

[
e−r(τl−t)Vln1{τl=τl∧τi∧τD} + e−r(τi−t)(Vho − P )1{τi=τl∧τi∧τD}

]

where dependence on t has been subsumed. Using Leibniz’s Rule, the first-order conditions follow.

The first-order conditions are linear in the value functions and price, hence we have



0

λDR+ 1

0

λDR+ (1− δ)

0


=



r + λu + λd −λu 0 0 0

0 0 −λd λd + λD + r 0

−λd r + λd + 2λµlo 0 −2λµlo 2λµlo

−2λµhn 0 r + λu + 2λµhn + λD −λu −2λµhn

−q̃ −q q̃ q −1





Vln

Vhn

Vlo

Vho

P



where q̃ ≡ 1− q. The solution yields (2). �

For completeness, we prove a larger proposition. Because yL is an increasing function of L,

Pf is a decreasing function of λD, and Pf is unchanged by s, our statements about L directly

imply Proposition 1 in the main text.

Proposition A1 Assume s < λu
λu+λd

and R = ζ
r for ζ ∈ (0, 1). Let λ̄D be some constant that

depends on model parameters other than λD. The frictionless price Pf is
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1. unchanged as s, λd or λ varies 2. decreasing in λD

such that Pf −−−−→
λD→0

1/r and Pf −−−−→
λD→∞

R

The liquidity premium L is

3. increasing in s

4. increasing in λd

5. decreasing in λ for all λ ≥ λ̄

such that L −−−→
λ→∞

0

6. decreasing in λD for all λD ≥ λ̄D

such that L −−−−→
λD→∞

0

The price P is

7. decreasing in s

8. decreasing in λd

9. increasing in λ

10. such that P −−−−→
λD→0

Pdf

and P −−−−→
λD→∞

R

The effects of λD on L and Pf hold even when λ is a bounded function of λD. If furthermore

λd
1−q + λµlo > (1ζ − 1)r, L is everywhere decreasing in λD.

Proof of Proposition A1.Begin by noting that the derivative of Pf with respect to s, λ, and δ is 0.

Now see that ∂Pf/∂λD = (Rr − 1)(λD + r)−2. Rr − 1 is negative while λD + r is positive, hence

the derivative is negative.

Turning to L, first note that the asset is divided between low-type and high-type owners

so that we have the identity µho = s− µlo. Second, we have the identity 1− µln − µho − µlo = µhn.

Third, in steady state the number of low-type agents is given by λd(λd + λu)−1. Combining these

three statements with the steady state condition 2λµhnµlo + λuµlo = λdµho we have the quadratic

equation determining µlo given by 2λµ2lo + (2λυ + λd + λu)µlo − λds = 0 for υ = y − s and
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y = λu(λd + λu)−1 as in DGP. Equivalently, we can instead solve for µhn = υ + µlo from

0 = 2λµ2hn + (λd + λu − 2λυ)µhn − (λd + λu)υ − λds,(A-2)

which will turn out to be convenient because limλ→∞ µhn = υ 6= 0 whereas limλ→∞ µlo = 0. We

will be using the derivatives of (A-2) with respect to both s and λ:

∂µlo
∂s

=
λd + 2λµlo

4λµlo + 2λυ + λd + λu
(A-3)

∂µhn
∂s

=
∂µlo
∂s
− 1 =

−λu − 2λµhn
4λµhn − 2λυ + λd + λu

(A-4)

∂µhn
∂λ

= − 2µhn(µhn − υ)

4λµhn − 2λυ + λd + λu
≡ −γ.(A-5)

Below we show that γ > 0 ∀ λ. Moreover, let us introduce the notation

L ≡ δ

Γ0

Γ1

Γ2
, Γ10 ≡

Γ1

Γ0
, Γ12 ≡

Γ1

Γ2
.

We find that

∂L

∂s
=

δ

Γ0

(
∂Γ1

∂s
Γ−12 − Γ12

∂Γ2

∂s

)
.

Now see that ∂Γ1/∂s = 2λq̃(∂µlo/∂s) and ∂Γ2/∂s = 2λq̃(∂µlo/∂s) + 2λq(∂µhn/∂s). Plugging

these into ∂L/∂s and rearranging terms yields

2δλ

Γ0Γ2(4λµlo + 2λυ + λd + λu)
[(1− Γ12)q̃λd + Γ12q(λu + 2λυ) + 2λµlo (q̃(1− Γ12) + Γ12q)] .
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To sign this expression, note that

Γ12 =
2λq̃(µhn − υ) + rq̃ + λd + λD q̃

2λq̃(µhn − υ) + 2λq̃(υ − q̃υ) + r + λd + λD + λu
.

Because µhn = υ + µlo and µlo ≥ 0 then it follows that µhn − υ ≥ 0. As a sidenote, this shows that

γ ≥ 0. Because q ∈ [0, 1] then q̃ ∈ [0, 1] and therefore υ − q̃υ ≥ 0. Hence Γ12 > 0. To get a

contradiction, assume that Γ12 ≥ 1. But then

0 ≥ 2λq̃(υ − q̃υ) + qr + qλD + λu ⇒⇐ .

Hence Γ12 ∈ (0, 1). Therefore 1− Γ12 is positive and the expression for ∂L/∂s is positive.

The behavior of L for large λ can be directly inferred from DGP’s (2007) first proposition

and by noting that Pf is unchanged by λ.

Now see that

∂L

∂λD
=

δ

Γ0Γ2

[
− ∂Γ0

∂λD
Γ10 +

∂Γ1

∂λD
− ∂Γ2

∂λD
Γ10Γ

−1
2

]

and

∂Γ0

∂λD
= R,

∂Γ1

∂λD
= q̃ + 2λq̃

∂µlo
∂λD

+ 2µloq̃
∂λ

∂λD
,

∂Γ2

∂λD
= 1 + 2λq̃

∂µlo
∂λD

+ 2µloq̃
∂λ

∂λD
+ 2λq

∂µhn
∂λD

+ 2µhnq
∂λ

∂λD
.
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Before proceeding, note that (A-2) implies that

µhn =
−(λd + λu − 2λυ) +

√
(λd + λu − 2λυ)2 + 4(2λ)([λd + λu]υ + λds)

2(2λ)

=
λ−1(−λd − λu) + 2υ +

√
4υ2 +R1(λ−1) +R2(λ−2)

4

−−−→
λ→∞

4υ

4
= υ.

where the second line follows from multiplying by 1 = λ−1/λ−1 where R1 is O(λ−1) and R2 is

O(λ−2). Limits are therefore finite and the result follows. We can therefore write

∂L

∂λD
=

δ

Γ0Γ2
[q̃−Γ10R−Γ12 + 2 (µhn−υ) q̃η (1−Γ12)−2ληq̃γ (1−Γ12)−2Γ12qη (µhn−λγ)](A-6)

which is difficult to sign in general when η is nonzero since the fifth and sixth terms are of the

opposite sign as the fourth term regardless of the value of η. In the main part of Proposition A1

we have η = 0 and therefore the sign is dictated by q̃ − Γ10R− Γ12. We know that Γ12 is positive.

However, note

Γ10R =
q̃λD + rq̃ + λd + 2λµloq̃

λD + 1/R
= q̃

λD + r + λd/q̃ + 2λµlo
λD + 1/R

(A-7)

and this is not generally-speaking above or below q̃. Hence our inability to sign ∂L/∂λD absent

further parametric restrictions. However, it is possible to look directly at L and note that it is of

the form O(λ)/O(λ2) = O(λ−1) and therefore L −−−→
λ→∞

0.

When λ(λD) is bounded, then L is still of the form O(λ)/O(λ2) = O(λ−1) which is what

we needed above in our calculation of λD’s effects on L and Pf . Those results therefore hold even

when λ is a bounded function of λD.
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To see the sufficiency of the condition λd
1−q + λµlo > (1ζ − 1)r, consider the derivative

∂L/∂λD in (A-6) and the expression (A-7). Γ10R is greater than q̃ when

(λD + r + λdq̃ + 2λµlo)(λD + 1/R)−1 is greater than unity. This implies

r +
λd
q̃

+ 2λµlo > 1/R

λd
q̃

+ 2λµlo > (
1

ζ
− 1)r(A-8)

Therefore, when (A-8) holds and η = 0, (A-6) has a sign dictated by

−q̃(Γ10R− 1)− Γ12,

that Γ10R− 1 and Γ12 are positive, and therefore ∂L/∂λD < 0.

The results for the price P follow directly from the above results for Pf and L. �

Now let us try to better understand the condition λd
1−q + λµlo > (1ζ − 1)r. For our data,

risk-free rates have been quite low and inflation tame. Hence r will be no more than an annual

rate of 0.05. Rules of thumb for bonds’ recovery value hover around 40% of par, which implies

that ζ is around 0.4. These values would imply the right hand side of the condition is 0.125.

The term λµlo(λ) is O(λ1/2) by the following argument. DGP’s (2005) proof of their first

proposition (characterizing µlo as the positive root of a quadratic equation) along with the

identity µhn = υ + µlo gives us

µhn =
−(λd + λu − 2λυ) +

√
(λd + λu + 2λυ)2 + 8λλds

4λ

=
−λd − λu

4λ
+
υ

2
+
λd + λu

4λ
+
υ

2
+
R1(
√
λ)

4λ
,
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where R1(
√
λ) is O(

√
λ). Combining this with the terms gives us

µhn = υ +R2(λ
−1/2),

where, considering R1, we can see that
√
λR2(λ

−1/2) 6= 0. Therefore, µhn = υ +O(λ−1/2) and

then µlo = O(λ−1/2). Thus λµlo is O(λ1/2) and nonzero. Hence the condition is satisfied for even

extremely low values of λ like, e.g. 1, where the expected time between matches is about

250/(2× 1) = 125 days. In every simulation shown in the paper (in all figures) we find λµlo to be

greater than unity.

A.II Discussion of Model Simulations

In this section we discuss our modeling and simulation choices.

In the main text we stated that the ECB must pay a price higher than the private market

equilibrium. The equilibrium price is typically below Vho while ho must be offered at least Vho to

be indifferent to selling. But in order to purchase the amounts of bonds we see in the data, the

official purchases must be from both lo and ho bondholders. We could instead (as we did in

previous paper drafts of the paper) model the ECB purchases as happening only at the

equilibrium price and therefore only from lo. This type of purchase has a stronger effect on the

liquidity premium because it essentially clears out the low-type bondholders each time. But, at

our calibrations, the lo pool is smaller than the amount of bonds we saw purchased in the data,

and so in the model this type of s-shock purchase cannot mimic the size of the SMP purchases we

saw in practice.

As mentioned in the main text, we use an admittedly simplistic way of modeling ECB

purchases. It is useful for two chief reasons. One: Since the ECB is buy-and-hold, if the ECB is

A8



“in the market” for bonds (even stochastically) then the model does not have a non-degenerate

steady state. Two: Since SMP purchase sizes are large enough to necessitate buying from low- and

high-types, the ECB’s higher purchase price must enter into the equilibrium price’s determination

unless future ECB purchases are unexpected. Since Table 2 did not find large changes in the point

estimates when we used only after-first SMP purchases, we do not see the data arguing strongly

against our stark model assumption that all SMP purchases are surprises.

An anonymous referee pressed us on this issue, and so we considered the following

enriched model: the ECB enters the search market, announces how many bonds will be purchased

in total, and searches with its own matching intensity λE(t) which deterministically decays such

that purchases taper as in the data. Technically, this makes ECB purchasing an imhomogeneous

Poisson process. Fortunately this process has analytical properties like the Poisson processes

already in the paper, just with the weighted average
∫∞
t λE(s)ds of future search intensities

playing the same role that the fixed λ plays for market participants. Simulations of the enriched

model gave us the same qualitative features as our simpler model here. There are two main

reasons why. First, the search-and-matching frictions and constant deadweight loss for sellers

prevent the equilibrium price from instantly dropping to the new steady state that will be

obtained after the ECB completes its operation. The ECB must pay at least Vho to buy sufficient

bonds, and that is always above the equilibrium price (which is certainly rising as s decreases,

and which is certainly higher than it would be were ECB purchases not deterministically known),

so anyone who matches with the ECB sells. But sales also exist in the private market as lo meet

hn agents, and it is still optimal for the lo to sell then (at a higher-than-otherwise equilibrium

price) rather than hold out and hope to match with the ECB, paying the deadweight loss in the

meantime. Second, the ECB matches with sufficiently many bonds every week to create

overshooting in the liquidity premium.
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A.III Estimating Cumulative Default Probabilities from CDS

Spreads

In this section we describe our estimation approach for extracting probabilities of default

from sovereign CDS spreads. Unlike Pan and Singleton (2008), who simultaneously combine

information from both the cross-section and the time-series dimension, we extract our estimates

of cumulative default by fitting the cross section of sovereign CDS prices for each day separately.

In our fitting procedure we follow Jarrow and Turnbull (1995) and account for the presence of a

default event arrival process by means of a Poisson counting process. A default event is

characterized as the first event of this counting process that occurs at some time t∗ with a

probability defined as

(A-9) P [t∗ < t+ dt|t∗ ≥ t] = λD,t(dt)dt

This implies that the probability of the default event, occurring within the time interval [t, t+ dt)

and conditional on no default having occurred till time t, is proportional to the hazard rate

function λD,t(dt) and the length of that time interval, dt. In particular, the (discrete) probability

of not experiencing a default from time t to a future time point t∗, P [t∗ > t], equals

exp
(∑t∗

τ=t λD,t(τ)∆τ
)

, while the probability of defaulting between time t∗1 and t∗2 equals

P [t∗2 > t]− P [t∗1 > t].

We assume that the hazard rate is a continuous and horizon-dependent function.27

Nothing changes if we instead assume a piece-wise flat step function for the hazard rate for CDS

27Although we make the hazard rate horizon-dependent, we do assume that it is independent of

interest rates and recovery rates.
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spreads, as is common also. While an easier approach would be to assume that the hazard rate is

constant over any horizon (i.e., λD,t(τ) ≡ λD,t), we deem such an assumption unnecessarily

restrictive, and counterintuitive. One can think of obvious examples why agents would think it is

more likely that a country is to default between, say, 2 and 3 years from now compared to

between today and a year from now, for example if the country has large bond redemption

obligations due in 2 years time and it seems unlikely that the government will be able to meet

those at that time, as was the case during the euro-area debt crisis.

Before we go into the details of the estimation, we first address the issue of the recovery

rate. Since the default risk premium in CDS depends on both the probability of default and the

recovery rate conditional upon default, we can only identify default probabilities up to a scaling

constant. Throughout the paper we assume the recovery rate to be equal to 40%. However, the

bottom four panels of Figure A1 show the time-series of the 5-year cumulative default probability

that we would estimate for each of the countries in our sample under alternative recovery rate

assumptions of 20% and 60% (the black and dark gray (blue) lines, respectively). High recovery

rates are associated with high default probabilities and vice versa. Choosing a different recovery

rate seems to mainly level shift default probabilities and does not impact our regression results in

the main text.

Extracting Default Probabilities We estimate the term structure of default probabilities

from CDS spreads by assuming a flexible functional form for the continuous and time-varying

hazard rate function. In particular, we specify the time-varying hazard rate, λD,t, using the same

Nelson-Siegel parametric form as used by Nelson and Siegel (1987) to estimate zero-coupon yield

curves, but we take the exponent to ensure that it is positive everywhere on its domain;
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λD,t(τ) = exp
(
λ∗D,t(τ)

)
with28

(A-10) λ∗D,t(τ) = δ1 + δ2

1− exp
(
− τ
cλ,t

)
(

τ
cλ,t

)
+ δ3

1− exp
(
− τ
cλ,t

)
(

τ
cλ,t

) − exp

(
− τ

cλ,t

) .
We then minimize the sum of squared pricing errors for CDS spreads for each day

separately by optimizing over the parameters of the hazard rate. For each CDS maturity that we

include, the pricing error is the difference between the time-t present values of the CDS premium

leg and the protection leg. The premium leg of a CDS contract is the series of payments of the

CDS spread, SPRCDS(τ), made until maturity τ of the contract or until default occurs. The

protection leg is the payment of (1−R) percent of the face value F of the bond upon default,

with R the recovery rate. At time t we therefore set

(A-11) P PREMIUM LEG,t = PPROTECTION LEG,t

with

PPREMIUM LEG,t = F×SPRCDS(τ)×
τ−1∑
k=t

B(t, k)×P [t∗>k],

PPROTECTION LEG,t = (1−R)×F×
τ−1∑
k=t

B(t, k)×(P [t∗>k]−P [t∗>k + 1]),

28Estimating the constant cλ,t alongside the parameters adds additional nonlinearity to the

hazard rate curve and complicates the estimation procedure. Therefore, similar as in Diebold and

Li (2006) for estimating zero-coupon yield curves for the United States, we fix cλ,t to a

pre-determined constant such that the curvature factor in the hazard rate function reaches it

maximum loading at a 18-month horizon. Our results are robust to alternative choices for this

horizon.
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where B(t, k) is the time-t discount factor for a k-period horizon. We use euro-area swap rates to

construct B(t, k) as CDS protection on a European sovereign bond position provided by a typical

dealer would arguably reduce the credit risk on such a bond position to roughly that of lending in

the swap market. Because of the credit risk of the counterparty dealer selling protection, the

default risk on the CDS-protected bond position would presumably not be as as low as that of

sovereign bonds. We estimate the CDS-implied hazard rate function by minimizing the sum of

squared pricing errors in (A-11) across CDS maturities under the assumption of a quarterly CDS

payment frequency.
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