
Web Appendix to:

Long-Term versus Short-Term Contingencies

in Asset Allocation

A Numerical Implementation

Let Zt denote the vector of time t long-term and short-term components for a specific state

variable, where both components are divided by their time-series standard deviation to

make them comparable. To enhance numerical stability of the non-parametric estimation

and subsequent GMM optimization, we also standardize the index βZt by its time-series

standard deviation for every value of β. To save on notation, define zt = zt(β) = βZt.

For each value of index zt, we find optimal asset allocations by maximizing the weighted

average utility in (4) using a kernel weighting scheme that is explained further below. The

asset weights are constrained to lie between 0 and 1. If the optimal asset weights turn

out to lie on the boundary, we solve for the corresponding Kuhn-Tucker multipliers that

will equate the first order condition to zero as described in Equation (12). This is a linear

system of equations for every zt. The optimal asset allocations and possible Kuhn-Tucker

multipliers for every zt are used to compute the moment variables m̃t+1(zt)⊗ g(Zt) and the

GMM criterion as a function of β, which is a function of ϕ through β(ϕ) = (cos(ϕ), sin(ϕ)).

The GMM criterion is then minimized to find the estimate of ϕ.

The derivatives of the objective function needed to compute the standard errors are ob-

tained by numerical differentiation. The GMM criterion function can become very small
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numerically, resulting in instabilities particularly for the initial choices of the weighting ma-

trix. We avoid this problem by re-scaling the objective function using a fixed large constant.

The problem generally disappears after the second round estimation of the weighting matrix.

The different scales of the elements of the moment vectors are then accounted for by the

weighting matrix, which captures the variance of each element of the moment vector.

A Weighting Function and Choice of the Bandwidth

For the weights ωt(z) = ω(zt, z) used in (4) and (5), we take a Gaussian kernel

ω(zt, z) = (2π)−1/2 exp
(
−0.5(zt − z/h)2

)
. (A1)

where h is the so-called bandwidth. The choice of the bandwidth has a direct effect on the

optimal value of ϕ, and thus β. A high value of h leads to smoother weights in the conditional

moment condition and therefore to smaller differences between states. A low value of h on

the other hand leads to more differentiation between states, but also uses less observations

in determining moment conditions. Brandt (1999) proposes the bandwidth to be chosen as

h = λbσzn
(1/(K+4)), (A2)

where σz is the standard deviation of zt, n is the number of observations, K is the dimension

of zt (K = 1), and λb is a tuning parameter that should be chosen to minimize the standard

deviation of β. Examples of the resulting objective functions for different values of the

bandwidth parameter are presented in Figure A1 for the term spread (TR) using the CF(12)

and CF(24) filter.
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Figure A1: GMM objective functions and different bandwidths

This figure presents plots of (the negative value of) the GMM objective function as a function of the angle

ϕ for stock market trend (TR) and different λb that determine the bandwidth parameter as described in

Equation (A2). The results are presented for filters CF(12) (left) and CF(24) (right). For each filter, the

upper, middle and lower graphs correspond to λb = 1, 2, and 3 respectively.

For λb = 3, the objective function is relatively smooth and clearly unimodal. The ob-

jective function becomes more irregular and multimodal for λb = 1. This causes a potential

issue with multiple local optima of the GMM objective function. Therefore we use λb = 2 as

a benchmark in our empirical analysis, which strikes a balance between these two. Choosing

λb between 2 and 3 typically does not change the optimal ϕ substantially, and therefore has

a minor effect on the relative importance of short-term and long-term components for asset

allocation decisions.

B Adaptive Bandwidth

For some value of β and some state variable, the index zt is fat-tailed and skewed, such

that there are tail observations zt that are far from the bulk of the data. This causes end-

point problems in estimating the optimal asset allocation function x(zt) non-parametrically:
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Figure A2: Original and Adaptive Bandwidth
This figure presents plots of original and adaptive bandwidth for different value of optimal index z for

dividend yield (DY) and stock market trend (TR) using CF(12) for the decomposition. Here we use λb = 2

and original Bandwidth for DY and TR is 0.556. For each value of the index z, the adaptive bandwidth are

calculated by method proposed by Abramson (1982).

the weights in Equation (A1) will be concentrated on few observations only and the asset

allocation estimated for these observations will have a high standard error. To solve this

issue, we use an adaptive bandwidth method proposed by Abramson (1982). This method

increases the bandwidth for tail observations where neighboring observations are sparse, and

conversely shrinks the bandwidth if neighboring observations are plenty. This renders the

kernel weights more smooth, particularly in the zt areas where it matters most. Figure A2

shows the value of the adaptive bandwidth for the optimal index found for the dividend

yield (DY) and stock market trend (TR) using λb = 2. The original fixed bandwidth of

Equation (A2) is also presented in each panel by a horizontal line. We see that the adaptive

bandwidth is higher in the tails, where neighboring zt values are sparser. By contrast, in the

middle range, the adaptive bandwidth is slightly lower than the fixed bandwidth.

C Additional Results
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Table A1: Optimal component weights for different risk aversion levels

The table is analogous to Table 2 and presents the GMM estimates of the optimal weights for different levels

of the risk aversion parameter γ. The decomposition uses the (recursively implemented) CF(12) filter. The

state variables are the log dividend yield (DY), stock market trend (TR), term spread (TS), default spread

(DS), short rate (SR), and dividend growth rate (DG).

DY TR TS DS SR DG

γ = 1 ϕ̂ 1.911 1.351 0.510 1.541 1.081 2.972

(0.336) (0.492) (0.330) (0.838) (0.367) (0.561)

βτ -0.334 0.218 0.873 0.030 0.471 -0.986

βc 0.943 0.976 0.488 1.000 0.882 0.169

γ = 5 ϕ̂ 1.951 1.221 0.370 1.621 0.870 2.911

(0.271) (0.334) (0.352) (0.818) (0.339) (0.445)

βτ -0.371 0.343 0.932 -0.050 0.644 -0.974

βc 0.929 0.939 0.362 0.999 0.765 0.228

γ = 10 ϕ̂ 1.971 1.211 0.310 1.681 0.850 2.671

(0.239) (0.331) (0.309) (0.684) (0.407) (0.521)

βτ -0.390 0.352 0.952 -0.110 0.660 -0.891

βc 0.921 0.936 0.305 0.994 0.752 0.453
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Figure A3: Optimal allocations for varying risk aversion

Each graph presents the optimal asset allocation as a function of the index βZt computed using the optimal

β from Table A1, and Zt holding the long-term and short-term component of the log dividend yield. The

CF(12) filter is used for the decomposition. The index βZt is standardized its time-series standard deviation.

The vertical axis gives the percentage invested in stocks, bonds, and cash. The different panels are for a

CRRA utility function with different relative risk aversion parameter γ = 1, 5, 10.

6



Sharpe Ratio, DY, 3m 

5 10 15 20 25 30 35 40 45 50

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Sharpe Ratio, DY, 3m Sharpe Ratio, TR, 3m 

5 10 15 20 25 30 35 40 45 50

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Sharpe Ratio, TR, 3m 

Sharpe Ratio, DY, 12m 

5 10 15 20 25 30 35 40 45 50

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60 Sharpe Ratio, DY, 12m Sharpe Ratio, TR, 12m 

5 10 15 20 25 30 35 40 45 50

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Sharpe Ratio, TR, 12m 

Figure A4: Sharpe ratios of investment strategies for all filters and 3m and 12m holding

periods
The graphs present the Sharpe ratios for different portfolio strategies using the recursively implemented

Christiano-Fitzgerald (CF(p)) filter for p = 3, 4, . . . , 48 and log dividend yield (DY, left-hand side) and stock

market trend (TR, right-hand side) as state variables. In each graph, the horizontal line depicts the Sharpe

ratio of the investment strategy that uses the non-decomposed state variable. The filled and empty diamonds

highlight CF(p) filters for which we can reject the null hypothesis that the non-decomposed state variable

yields the same result as the decomposed state variable at 5% and 10% significance level, respectively. The

sample period is Jan 1963 to December 2012 with non-overlapping data.
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Figure A5: Average utilities of investment strategies for all filters and 3m and 12m holding

periods
The graphs present the average utilities for different portfolio strategies using the recursively implemented

Christiano-Fitzgerald (CF(p)) filter for p = 3, 4, . . . , 48 and log dividend yield (DY, left-hand side) and

stock market trend (TR, right-hand side) as state variables. In each graph, the horizontal line depicts the

average utility of the investment strategy that uses the non-decomposed state variable. The filled and empty

diamonds highlight CF(p) filters for which we can reject the null hypothesis that the non-decomposed state

variable yields the same result as the decomposed state variable at 5% and 10% significance level, respectively.

The sample period is Jan 1963 to December 2012 with non-overlapping data.
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