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I. Model Summary

We fix a filtered probability space {Ω,F ,P,(Ft)t≥0} and assume no-arbitrage in the economy. Un-

der certain technical conditions, there exists a risk-neutral probability measure Q, absolutely contin-

uous with respect to P, such that the gains process associated with any admissible trading strategy

deflated by the risk-free rate is a martingale.

A. Separating Leverage Effect from Volatility Feedback and Self-Exciting Jumps

Let Ft denote the time-t forward level of the equity index over some fixed time horizon. We separate

the dynamics of the risky asset portfolio from the variation of the market’s financial leverage via the

following multiplicative decomposition,

(A-1) Ft = XtAt ,

where At denotes the time-t forward value of the risky asset and Xt = Ft/At denotes the equity-to-

risky asset ratio.

We model the equity-to-risky asset ratio Xt as a constant elasticity of variance (CEV) process
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under the risk-neutral measure Q,

(A-2) dXt/Xt = δX−pdWt , p > 0,

where Wt denotes a standard Brownian motion, and we model the value dynamics for the risky asset

under the risk-neutral measure Q as,

dAt/At− =

√
vZ

t dZt +
∫ 0

−∞

(ex−1)
(
µ(dx,dt)−π(x)dxvJ

t dt
)
,(A-3)

dvZ
t = κZ

(
θZ− vZ

t
)

dt +σZ

√
vZ

t dZv
t , E [dZv

t dZt ] = ρdt < 0,(A-4)

dvJ
t = κJ

(
θJ− vJ

t
)

dt−σJ

∫ 0

−∞

x
(
µ(dx,dt)−π(x)dxvJ

t dt
)
,(A-5)

where Zt and Zv
t denote two standard Brownian motions, µ(dx,dt) denotes a counting measure for

jumps, π(x)vJ
t denotes the time-t arrival rate of jumps of size x in log asset value lnAt , with

(A-6) π(x) = e−|x|/vJ |x|−1,

and At− denotes the asset value at time t just prior to a jump. We assume independence between

the Brownian innovation (dWt) in financial leverage and the Brownian innovations in the asset value

(dZt) and the asset return volatility (dZv
t ). The innovation independence assumption allows us to

model At and Xt as separate martingales.

B. A Reduced-Form Benchmark

In theory, a reduced-form model can accommodate any number of factors. In practice, without the

discipline of an economic structure, such models often experience identification issues. As a result,

most empirical studies in the literature limit the specifications to one stochastic volatility factor,
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with only a few studies exploring the estimation of two volatility factors.1 By imposing economic

structures, our model not only can answer structural economic questions that cannot be addressed

by a reduced-form specification, but it is also very parsimonious and highly identifiable, even with

three volatility factors.

By design, the three-factor variance structure shall perform better than any one- or two-factor

specifications in matching the observed option behavior. To examine the contribution of the financial

leverage factor and the statistical significance of the superior performance, we create a two-factor

reduced-form benchmark by setting Xt = 1 and hence St = At to our full model. We can regard

the benchmark as a restricted version of our model without the financial leverage effect. We use

the term “reduced-form” to highlight the fact that the benchmark, as in most extant models in the

option pricing literature, does not separately model asset value dynamics and financial leverage, and

hence does not differentiate the leverage effect from the volatility feedback effect. By comparing the

empirical performance of our full model with the reduced-form benchmark, we gauge the benefits

of allowing distinct channels of interactions between equity returns and volatilities.

II. Option Valuation Via Iterated Expectations

Under our specified model dynamics, we can price European options efficiently via iterated expec-

tations. Formally, let c(Ft ,K,T ) denote the time-t forward value of a European call option on the

equity index with strike price K and expiry date T , conditional on the time-t values of the index for-

ward Ft and the three state variables (Xt ,vZ
t ,v

J
t ). Since the equity index Ft is driven by two orthogonal

sources of variations At and Xt under the risk-neutral measure, we can perform the valuation through

1Empirical studies on two-factor variance structures for equity index options include, among others, Bates (2000),
Huang and Wu (2004), Christoffersen, Jacobs, Ornthanalai, and Wang (2008), Christoffersen, Heston, and Jacobs
(2009), Egloff, Leippold, and Wu (2010), and Santa-Clara and Yan (2010). A paper by Andersen, Fusari, and Todorov
(2015) explores the identification of a three-factor variance structure from S&P 500 index options.
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the law of iterated expectations,

c(Ft ,K,T )≡ E
[
(FT −K)+

∣∣(Ft ,Xt ,vZ
t ,v

J
t
)]

= E
[
(XT AT −K)+

∣∣(At ,Xt ,vZ
t ,v

J
t
)]

= E
[
E
[
(X AT −K)+

∣∣(XT = X ,At ,vZ
t ,v

J
t )
]∣∣Xt

]
= E [X ·C (At ,K/X ,T )|Xt ] ,(A-7)

where E[·] denotes the expectation operator under the risk-neutral measure and the function C (At ,K ,T )

is defined as

(A-8) C (At ,K ,T )≡ E
[
(AT −K )+

]
,

which can be regarded as the forward value of a call option on the risky asset with strike K and

expiry T . Equation (A-7) turns the calculation of the call value on the equity index into the compu-

tation of the call value on the risky asset and a numerical integration over all possible equity-to-risky

asset ratios. Under the reduced-form benchmark, the call value on the risky asset will simply become

the call value on the equity index, without the need for the extra layer of numerical integration.

A. Fourier Transforms and FFT Valuation of Options on Asset

To compute the forward call value on asset C (At ,K ,T ), we first derive the generalized Fourier

transform of the log asset return lnAT/At ,

(A-9) φ(u)≡ Et

[
eiu lnAT /At

]
, u ∈D ⊆ C,
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where D denotes a subsect of the complex plane under which the expectation in equation (A-9)

is well defined. Once we obtain this transform φ(u), we can compute the option value C via fast

Fourier transform (FFT) following the procedure proposed by Carr and Madan (1999).

Our specification for the dynamics on the log asset value can be represented as a time-

changed Lévy process with affine activity rates (Carr and Wu (2004)). The generalized Fourier

transform is exponential-affine in the state variables,

(A-10) φ(u) = exp
(
−aZ(τ)−bZ(τ)vZ

t −aJ(τ)−bJ(τ)vJ
t
)
, τ = T − t,

where the affine coefficients solve the following ordinary differential equations,

(A-11)
b′Z(τ) = ψZ(u)−κM

Z bZ(τ)− 1
2σ2

ZbZ(τ)
2, a′Z(τ) = bZ(τ)κZθZ,

b′J(τ) = ψJ(u)− (κJ +σJvJ)bJ(τ)+ ln
(
1+σJbJ(τ)vMJ

)
, a′J(τ) = bJ(τ)κJθJ,

starting at aZ(0) = bZ(0) = aJ(0) = bJ(0) = 0, and with

ψZ(u) = 1
2(iu+u2),

ψJ(u) = ln(1+ iuvJ)− iu ln(1+ vJ),

κM
Z = κZ− iuρσZ,

vMJ = vJ/(1+ iuvJ).

The ordinary differential equations governing the coefficients (aZ(τ),bZ(τ)) can be solved

analytically,

(A-12)
bZ(t) =

2ψZ(u)(1−e−ξτ)
2ξ−(ξ−κM

Z )(1−e−ξτ)
, ξ =

√(
κM

Z
)2

+2σ2
ZψZ(u),

aZ(t) = κZθZ
σ2

Z

[
2ln
(

1− ξ−κM
Z

2ξ

(
1− e−ξτ

))
+(ξ−κM

Z )τ
]
.
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The ordinary differential equations governing the coefficients (aJ(τ),bJ(τ)) can be solved numeri-

cally using the standard Runge-Kutta 4th-order method.

With the generalized Fourier transform φ(u) on the risky asset return, we first re-scale the

forward call value on the risky asset c(k) = C (At ,K ,T )/At to represent the forward call value in

percentages of the forward asset value as a function of moneyness defined as the log strike over

forward k ≡ lnK /At . Then, we derive the Fourier transform on the re-scaled forward call c(k) in

terms of the Fourier transform on the risky asset return,

(A-13) χ(u)≡
∫

∞

−∞

eiukc(k)dk =
φ(u− i)

(iu)(iu+1)
,

which is well-defined when u contains an imaginary component u = ur− iα, with ur being real and

α being a real positive number. With the transform in (A-13), the call value can be computed via the

following inversion,

(A-14) c(k) =
e−αk

π

∫
∞

0
e−iurk

χ(ur− iα)dur.

We perform the inversion numerically by discretizing the integral using the trapezoid rule:

(A-15) c(k)≈ e−αk

π

N

∑
m=0

δme−iumk
χ(um− iα)∆u,

where δm = 1
2 when m = 0 and 1 otherwise. We cast the operation in (A-15) in the form of discrete

fast Fourier transform (FFT), which is an efficient algorithm for computing discrete Fourier coeffi-

cients. The discrete Fourier transform is a mapping of f = ( f0, · · · , fN−1)
> on the vector of Fourier
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coefficients d = (d0, · · · ,dN−1)
>, such that

(A-16) d j =
1
N

N−1

∑
m=0

fme− jm 2π

N i, j = 0,1, · · · ,N−1.

FFT allows the efficient calculation of d if N is an even number, say N = 2n,n ∈ N. The algorithm

reduces the number of multiplications in the required N summations from an order of 22n to that of

n2n−1, a very considerable reduction.

To map the operation in equation (A-15) to the FFT form in (A-16), we set the summation

grid by η = ∆u and um = ηm, and we set the relative strike grid by k j =−b+λ j with λ = 2π/(ηN)

and b = λN/2. Then, the call value becomes

(A-17) c(k j)≈
1
N

N−1

∑
m=0

fme jm 2π

N i, fm = δm
N
π

e−αk j+iumb
χ(um− iα)η,

with j = 0,1, · · · ,N − 1. The inversion has the FFT form and can hence be computed efficiently

across the whole spectrum of strikes k j.

B. Numerical Integration with Gauss–Hermite Quadrature

Once we have computed the forward call value on asset across the whole spectrum of strikes using

the FFT method, we approximate the integration in equation (A-7) by a weighted sum of a finite

number (M) of forward asset call values at different equity-to-asset ratio values,

(A-18) c(Ft ,K,T ) =
∫

∞

0
f (X |Xt)X C (At ,K/X ,T )dX ≈

M

∑
j=1

W jX jC (At ,K/X j,T ),

where f (X |Xt) denotes the transition density of X from Xt at time t to X at time T . The points X j

and their corresponding weights in the approximation are chosen according to the Gauss–Hermite
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quadrature rule.

The constant elasticity of variance process in equation (A-2) is related to a standard Bessel

process of order ν = 1/(2p) through the change of variable, zt = X p
t /(δp). From the well-known

expression for the transition density of the Bessel process (see Borodin and Salminen (1996) and

Revuz and Yor (1999) for details on Bessel processes), we can derive the probability transition

density as,

(A-19) f (X |Xt) =
X 2p− 3

2 X
1
2

t

δ2 p(T − t)
exp

(
− X2p

t +X 2p

2δ2 p2(T − t)

)
Iv

(
X p

t X p

δ2 p2(T − t)

)
,

where Iν(x) is the modified Bessel function of the first kind of order ν. Since the value of the

modified Bessel function increases quickly once its argument x becomes large, a modified version

of the function Jν(x) = Iν(x)e−x can be calculated with more numerical stability, especially when x

is large. Accordingly, the density function can be rewritten as,

(A-20) f (XT |Xt) =
X 2p− 3

2 X
1
2

t

δ2 p(T − t)
exp
(
− (X p

t −X p)2

2δ2 p2(T − t)

)
Jv

(
X p

t X p

δ2 p2(T − t)

)
.

The Gauss-Hermite quadrature rule is designed to approximate the integral
∫

∞

−∞
h(x)e−x2

dx,

where h(x) is an arbitrary smooth function. After some re-scaling, the integral can be regarded as an

expectation of h(x) where x is a normally distributed random variable with zero mean and variance

of one half. See Davis and Rabinowitz (1984) for details.

To apply the quadrature rule, we need to map the quadrature nodes and weights {xi,w j}M
j=1

to our choice of X j and the weights W j. Given the constant elasticity of variance dynamics, one

reasonable choice is,

(A-21) X (x) = Xte
√

2VX x− 1
2VX , VX = X−2p

t (T − t).
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The choice is motivated by a log-normal approximation of the density of X by assuming that the in-

stantaneous return variance δ2X−2p
t is fixed. Then, given the Gauss-Hermite quadrature {w j,x j}M

j=1,

we choose the X j points as

(A-22) X j = Xte
√

2VX x j− 1
2VX ,

and the summation weights as

(A-23) W j =
f (X j|Xt)X ′(x j)

e−x2
j

w j =
f (X j|Xt)X j

√
2VX

e−x2
j

w j.

III. Model Estimation and State Identification Methodology

The model uses three state variables (X̃t ,vZ
t ,v

J
t ) to capture the variation of the implied volatility sur-

face over time. To identify the values of the structural parameters that govern the financial leverage

and risky asset dynamics, and to extract the levels of the three state variables at different time peri-

ods, we cast the model into a state-space form by treating the three state variables as hidden states,

and the option observations as measurements with errors. We employ a nonlinear filtering technique

to extract the levels of the states at each date from the implied volatility observations. The model

parameters are estimated by maximizing the likelihood defined on the model forecasting errors on

the options. The online appendix provides the technical details on the estimation procedure.

Let Vt ≡
[
X̃t ,vZ

t ,v
J
t

]>
denote the state vector at time t. We specify the state propagation

equation based on an Euler approximation of their statistical dynamics,

(A-24) Vt = f (Vt−1;Θ)+
√

Qt−1 εt ,
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where εt denotes the standardized forecasting error vector, f (Vt−1;Θ) denotes the conditional fore-

casts as a function of state vector Vt−1 and the parameter set Θ, given by,

(A-25) f (Vt−1;Θ) =


X̃t + X̃1−p

t (ãX −κ>L Vt−1)∆t

κZθZ∆t +(1−κP
Z∆t)vZ

t−1

κJθJ∆t +(1−κP
J ∆t)vJ

t−1

 ,

with ∆t = 7/365 denoting the weekly frequency of the data, κL = [κ̃XX , κ̃XZ, κ̃XJ]
>, and Qt−1 denotes

the forecasting error covariance matrix, which is a diagonal matrix with the three diagonal elements

given by

(A-26) Qt−1 =


X̃2−2p

t−1 ∆t

σ2
ZvZ

t−1∆t

σ2
J(v

P
J−)

2vJ
t−1∆t

 .

The measurement equations are specified on the option observations, with additive, normally-

distributed measurement errors:

(A-27) yt = h(Vt ;Θ)+
√

Ret ,

where yt denotes the time-t forward value of the out-of-the-money options computed from the im-

plied volatility, scaled by the Black-Scholes vega of the option,2 h(Vt ;Θ) denotes the corresponding

model value as a function of the state vector Vt and the parameter set Θ. We assume that the pricing

errors on the scaled option prices are i.i.d. normal with zero mean and constant variance.

Estimating the model on the OTC index options data involves 40 measurement equations

2See, for example, Bakshi, Carr, and Wu (2008) for a detailed discussion on the rationale for the option pricing
transformation and scaling for model estimation.
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built on the 40 implied volatility series across five relative strikes at each maturity and eight time

to maturities. When we estimate the model on listed options for the five selected companies, the

dimension of the measurement equation varies over time as the number of option observations, as

well as their relative strikes and time to maturities, varies over time.

When the state propagation and the measurement equation are Gaussian linear, the Kalman

(1960) filter provides efficient forecasts and updates on the mean and covariance of the state vector

and observations. Our state-propagation equations and measurement equations do not satisfy the

Gaussian and linear conditions. We use an extended version of the Kalman filter, the unscented

Kalman filter, to handle the deviations.

Let V t ,yt ,Σxy,t denote the time-(t− 1) ex ante forecasts of time-t values of the state vector,

the measurement series, and the covariance between series x and y; let V̂t , ŷt , Σ̂xy,t denote the corre-

sponding ex post update on the state vector, the measurement, and the covariances. The unscented

Kalman filter uses a set of deterministically chosen (sigma) points to approximate the state distribu-

tion. At each time t, if we use k to denote the number of states (three in our model) and use η > 0 to

denote a control parameter, we first generate a set of 2k+1 sigma vectors χt−1 from the time (t−1)

updated mean V̂t−1 and covariance Σ̂VV,t−1 of the state vector according to the following equations,

(A-28)
χt−1,0 = V̂t−1,

χt−1,i = V̂t−1±
√
(k+η)(Σ̂VV,t−1) j, j = 1, . . . ,k; i = 1, . . . ,2k,

with the corresponding weights wi given by,

(A-29) w0 = η/(k+η), wi = 1/[2(k+η)], i = 1, . . . ,2k.

These sigma vectors form a discrete distribution with wi being the corresponding probabilities.
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We propagate these sigma points through the propagation equation (A-24) to compute the

forecasted mean and covariance of the state vector at time t,

(A-30)
χt,i = f (χt−1,i;Θ), V t = ∑

2k
i=0 wi χt,i,

ΣVV,t = ∑
2k
i=0 wi (χt,i−V t)(χt,i−V t)

>+Qt−1.

We then re-generate the sigma points χ̃t based on the forecasted mean V t and covariance ΣVV,t , and

compute the forecasted mean and covariances of the measurements,

(A-31)

ξt,i = h(χ̃t,i;Θ), yt = ∑
2k
i=0 wiξt,i,

Σyy,t = ∑
2k
i=0 wi

(
ξt,i− yt

)(
ξt,i− yt

)>
+R,

ΣV y,t = ∑
2k
i=0 wi

(
χ̃t,i−V t

)(
ξt,i− yt

)>
.

With these moment conditions, we perform the filtering step the same as in the the Kalman filter,

(A-32) V̂t =V t +Kt (yt− yt) , Σ̂VV,t = ΣVV,t−KtΣyy,tK >t ,

where the Kalman gain is

(A-33) Kt = ΣV y,t
(
Σyy,t

)−1
.

We refer the reader to Wan and van der Merwe (2001) for general treatments of the unscented

Kalman filter.

Given the forecasted option prices yt and their conditional covariance matrix Σyy,t obtained

from the unscented Kalman filtering, we compute the quasi-log likelihood value for each week’s
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observation on the option prices assuming normally distributed forecasting errors,

(A-34) lt(Θ) =−1
2

log
∣∣Σyy,t

∣∣− 1
2

(
(yt− yt)

> (
Σyy,t

)−1
(yt− yt)

)
.

We estimate the model parameters by numerically maximizing the sum of the conditional log likeli-

hood value on each date,

(A-35) Θ≡ argmax
Θ

L(Θ,{yt}N
t=1), with L(Θ,{yt}N

t=1) =
N

∑
t=1

lt(Θ),

where N denotes the number of weeks in the sample.

The model has nine parameters (p,κZ,θZ,σZ,ρ,κJ,θJ,σJ,vJ) and three state variables (Xt ,vZ
t ,v

J
t )

to price the equity and equity index options. The model parameters are estimated to match the av-

erage shape of the option implied volatility surfaces via the measurement equation (A-27), with

the three states capturing the time variation of the volatility surface. In addition, the model has

six parameters (ã, κ̃XX , κ̃XZ, κ̃XJ,κ
P
v ,κ

P
J ) to control the statistical dynamics, which dictate the state

propagation equation in (A-24) and are hence identified by the time-series behavior of the option

implied volatility series. The differences between (κP
v ,κ

P
J ) and (κv,κJ) determine the market prices

of the diffusion and jump variance risk (γv,γJ), respectively.

IV. Option Pricing Performance

Table A1 reports the summary statistics of the pricing errors from the two estimated models, the

full model and the reduced-form two-factor benchmark without the financial leverage effect. Panel

A reports the sample averages of the pricing errors, defined as the difference between the implied

volatility quotes and the corresponding model values. The mean pricing errors from our model are

13



mostly small except at the one-month maturity and do not show any obvious patterns. The mean

pricing errors from the reduced-form benchmark are larger overall and show some remaining pattern

along the strike dimension. In particular, without the financial leverage factor, the benchmark model

has difficulties fitting the long-term negative implied volatility skew. To compensate, model estima-

tion increases the contribution from the negative jump component, and ends up generating too much

negative skew at short maturities. By allowing a distinct channel for the financial leverage variation,

the full model can readily generate strong negative implied volatility skews at long maturities and

therefore mitigates the tension for matching short-term and long-term implied volatility skews.

[Table A1 about here.]

Panel B reports the mean absolute pricing error in implied volatility points. The estimates

from the full model are mostly smaller than those from the reduced-form benchmark. The average

mean absolute pricing error from the 40 implied volatility series is 0.69 for our model and 0.95 for

the reduced-form benchmark. For both models, the mispricing is the most severe for the one-month

120%-strike series. If we divide the log relative strike by IV
√

τ, we can see that at one month matu-

rity, 120% strike is over four standard deviations aways from the spot level. The implied volatility

quotes thus contain large measurement errors. Furthermore, short-term high-strike implied volatil-

ity series tend to show the least co-movements with other implied volatility series. Out-of-money

put options and long-dated contracts capture more of institutional needs for hedging against market

crashes, whereas far out-of-money call options at short maturities attract more retail activities, act

more like lottery tickets, and show more idiosyncratic movements. The identified states capture

more of the systematic variations than such idiosyncratic movements.

Panel C reports the weekly autocorrelation of each pricing error series. The pricing errors

from both models are quite persistent, with the weekly autocorrelation estimates averaging at 0.91

for the full model and even larger at 0.93 for the two-factor benchmark. Persistence in pricing errors
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makes economic sense. If the pricing errors are caused by temporary supply-demand shocks, their

dissipation takes time. If we assume a first-order autoregressive structure, the average autocorre-

lation of 0.91 for the full model implies a half life (i.e., the time it takes for the autocorrelation to

be reduced by half) of about eight weeks. The larger average correlation for the benchmark model

at 0.93 implies a longer half life of 10.5 weeks. In general, systematic market movements tend to

be more persistent than supply-demand shocks. Thus, lower persistence for the pricing errors is

an indication of better performance for the model in separating systematic market movements from

idiosyncratic supply-demand shocks.3

The last row of Table A1 reports the maximized log likelihood values from the two models.

The reduced-form benchmark can be regarded as a constrained version of our model, with five

fewer parameters and one fewer state variable. One can construct a likelihood ratio static between

the two models as twice the difference between the log likelihood values, which has a Chi-squared

distribution with 935 degrees of freedom. The p-value from this likelihood ratio test is virtually

zero. The reduced-form benchmark is strongly rejected.

Because supply-demand shocks in option contracts mainly dissipate via hedging with nearby

contracts (Wu and Zhu (2016)), we also expect the pricing errors of nearby contracts to show positive

correlation, but expect such correlation to decline as the contract terms grow further apart. To

verify this hypothesis, we compute the cross-correlation of the pricing error series and measure the

distance of the different series in terms of their distance in relative strikes and time to maturities.

Figure A1 plots the correlation estimates of the pricing errors from the full model against the two

distance measures,4 with Graph A plotting the correlation estimates of same-maturity pairs against

the relative strike distance, and Graphs B plotting the correlation estimates of same-strike pairs

against the maturity distance. Within the same maturity, the correlation estimates decline clearly

3See Bali, Heidari, and Wu (2009) for a detailed illustration of this point in the context of term structure models.
4The patterns on the pricing errors from the benchmark model are similar.

15



with the strike distance. For paris with adjacent strikes, i.e., with relative strike distance of 10%,

the correlation estimates are all positive. By contrast, for pairs that are the farthest apart in strike

with a distance of 40%, the correlation estimates are all negative. The patterns along the maturity

dimension in Graph B are similar but noisier, mainly because hedging with contracts at the same

expiry are much more commonly used than across different expiries.

[FIGURE 1 about here.]

Despite the observations on the pricing error persistence and cross correlation, equation (A-

27) assumes an iid measurement error structure for model estimation. Bakshi and Wu (2010) and

Bates (2000), among others, propose to use more general measurement error structures to accom-

modate these serial and contemporaneous correlations. Our experience suggests that imposing a

diagonal measurement error variance structure for model estimation often brings more numerical

stability to the estimation procedure and the extracted states. The intuition is similar in spirit to the

idea of ridge regression. The state updating weights involve the inversion of the covariance matrix

of the observation as shown in equation (A-33). When the observations are highly correlated with

each other, the covariance matrix can become multi-collinear, and the inversion can generate numer-

ically unstable results just as what happens to regressions on highly correlated variables. The ridge

regression modifies the covariance matrix of the regressors by adding a small diagonal component to

improve the stability of the numerical inversion and to shrinkage the regression coefficients toward

zero. By imposing a diagonal structure on the measurement error covariance matrix, the covariance

matrix as estimated from equation (A-31) are less likely to become multi-collinear, thus leading to

more stable inversions and hence more stable Kalman weighting. Furthermore, the iid assumption

amounts to impose an equal importance prior weighting to the 40 implied volatility series.
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FIGURE A1
Dependence of Pricing Error Cross-Correlations on Strike and Maturity Distance.

Circles in the graphs represent pair-wise cross-correlation estimates of different pricing error series
obtained from the full model, plotted against the relative strike distance for same-maturity pairs in
Graph A and against maturity distance for same-strike pairs in Graph B.

Graph A. Full Model Same Maturity Pairs

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
ro

ss
−C

or
re

la
tio

n

Relative Strike Distance, %

Graph B. Full Model Same Strike Pairs
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