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I. Generalized Transaction Costs, Risk Measures, and
Factor Dynamics
In this section, we provide examples of dynamic portfolio choice problems involving

non-quadratic transaction costs, generalized risk penalties, and complicated return
dynamics that fall into our general framework.

Example 5 (Non-quadratic transaction costs). In practice, many trading costs, such as the
bid–ask spread, broker commissions, and exchange fees, are intrinsically proportional to the
trade size. Letting χi be the proportional transaction cost rate (e.g., an aggregate sum of
bid–ask costs and commission fees) for trading security i, the investor will incur a total
cost of

TC(u) ,
T∑
t=1

N∑
i=1

χi|ui,t|.

The proportional transaction costs are a classical cost structure that is well studied in the
literature (e.g., Constantinides (1986)).

Furthermore, other trading costs occur due to disadvantageous transaction prices
caused by the price impact of the trade. The management of trading costs due to price
impacts has recently attracted considerable interest (e.g., Almgren and Chriss (2000),
Obizhaeva and Wang (2013)). Many models of transaction costs due to price impacts imply
a nonlinear relation between trade size and the resulting transaction cost, for example

TC(u) ,
T∑
t=1

N∑
i=1

χi|ui,t|β,

where β ≥ 1 and χi is a security-specific proportionality constant.10

Generally, when the trade size is small relative to the total traded volume,
proportional costs will dominate. On the other hand, when the trade size is large, costs due
to price impact will dominate. Hence, both of these types of trades are important. However,
the LQC framework of Example 2 only allows for quadratic transaction costs (i.e., β = 2).

10Gatheral (2010) notes that β = 3
2 is a typical assumption in practice.
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Example 6 (Terminal wealth risk). The objective function of Example 2 includes a term to
penalize excessive risk. In particular, the per-period quadratic penalty, x>t Σxt, is used, to
satisfy the requirements of the LQC model. However, penalizing risk additively in a
per-period fashion is not standard. Such a risk penalty does not correspond to traditional
forms of investor risk preferences, such as maximizing the expected utility of terminal
wealth, and the economic meaning of such a penalty is unclear. An investor is typically
more interested in the risk associated with terminal wealth rather than a sum of per-period
penalties.

To account for terminal wealth risk, let ρ : R→ R be a real-valued convex function
meant to penalize the excessive risk of terminal wealth (e.g., ρ(w) = 1

2w
2 for a quadratic

penalty) and consider the optimization problem

(A-1) maximize
π∈UF

Eπ
[
W (x, r)− TC(u)− γρ

(
W (x, r)

)]
,

where γ > 0 is a risk proportionality constant.

It is not difficult to see that the objective in (A-1) satisfies Assumption 3 and hence
fits into our model. However, even when the risk penalty function ρ(·) is quadratic, (A-1)
does not allow for a tractable LQC solution, since the quadratic objective does not
decompose across time.

Example 7 (Maximum drawdown risk). In addition to the terminal measures of risk
described in Example 6, an investor could also be interested in controlling intertemporal
measures of risk defined over the entire time trajectory. For example, a fund manager could
be sensitive to a string of successive losses that may lead to the withdrawal of assets under
management. One way to limit such losses is to control the maximum drawdown, defined
as the worst loss of the portfolio between any two points of time during the investment
horizon.11. Formally,

MD(x, r) , max
1≤t1≤t2≤T

− t2∑
t=t1

x>t rt+1, 0
 .

It is easy to see that the maximum drawdown is a convex function of x. Hence, the
portfolio optimization problem

(A-2) maximize
π∈UF

Eπ
[
W (x, r)− TC(u)− γMD(x, r)

]
,

where γ ≥ 0 is a constant controlling trade-off between wealth and the maximum
drawdown penalty, satisfies Assumption 3. Moreover, standard convex optimization theory
shows that the problem (A-2) is equivalent to solving the constrained problem

(A-3)
maximize

π∈UF
Eπ
[
W (x, r)− TC(u)

]
,

subject to Eπ [MD(x, r)] ≤ C,

11For example, see Grossman and Zhou (1993) for an earlier example.
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where C (which depends on the choice of γ) is a limit on the allowed expected maximum
drawdown.

Note that other mechanisms for risk aversion, such as penalties based on convex or
coherent risk measures, can easily be incorporated into our framework in a manner
analogous to Examples 4 and 6.

Example 8 (Complex dynamics). We can also generalize the dynamics of Example 2.
Consider factor and return dynamics given by

ft+1 = (I − Φ) ft + ε
(1)
t+1, rt+1 = µt + (B + ξt+1)ft + ε

(2)
t+1

for each time t ≥ 0. In this case, each ξt+1 ∈ RN×K is an extra noise term that captures
model uncertainty regarding factor loadings. We assume that

E [ (B + ξt+1) ft | Ft] = Bft, var [(B + ξt+1) ft | Ft] = f
>
t Υf t,

where Ft is the sigma-algebra incorporating all random variables realized by time t and
f t ∈ RK×N is a matrix given by f t ,

[
ft ft . . . ft

]
.

With this model, the conditional variance of returns becomes dependent on the
factor structure and is time varying, that is, var[rt+1|Ft] = f

>
t Υf t + Σ. This result is

consistent with the empirical work of Fama and French (1996), for example. In this setting,
a per-period conditional variance risk penalty analogous to that in (7) becomes
RAt(x, f) = x>t

(
f
>
t Υf t + Σ

)
xt. The resulting optimal control problem no longer falls

within the LQC framework.

II. Efficient Exact Formulations
In this section, we will provide efficient exact formulations of dynamic portfolio

choice problems using the class of linear policies for our feasible set of policies. In
particular, we will consider a number of the examples of dynamic portfolio choice problems
discussed in Section II.B. These examples include features such as constraints on portfolio
holdings, transaction costs, and risk measures. In each case, we will demonstrate how the
optimization problem (6) can be transformed into a deterministic convex program by
explicit analytical evaluation of the objective function E[p(·, f)] and the constraint set C.

Exact formulations require the evaluation of expectations taken over the sample
path of factor realizations f . In order to do this, we will make the following assumption for
the rest of this section:

Assumption 4 (Gaussian factors). Assume that the sample path f of factor realizations is
jointly Gaussian. In particular, denote by Ft , (f1, . . . , ft)> ∈ RKt the vector of all factors
observed by time t. We assume that Ft ∼ N(θt,Ωt), where θt ∈ RKt is the mean vector and
Ωt ∈ RKt×Kt is the covariance matrix.

Note that this assumption is not necessary for the practical application of our
method. Indeed, as discussed in Section II.A, the SAA or stochastic approximation
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methods can be used to determine the optimal policy in the absence of such an
assumption. However, under Assumption 4, the optimal linear policy can be solved via a
deterministic convex optimization program that does not involve any sampling. This is
often more computationally efficient as well as more accurate (since there are no errors
introduced by sampling).

With this assumption, the trades of any linear policy will also be jointly normally
distributed, as each such policy is affine transformations of the factors. Formally, let

(A-4) Mt ,
[
E1,t E2,t . . . Et,t

]
∈ RN×Kt

be the matrix of time t policy coefficients, so that the trade vector is given by
ut = ct +MtFt. With this representation, it is easy to see that ut ∼ N(ūt, Vt), where the
mean vector and covariance matrix are given by

ūt , E[ut] = ct +Mtθt, Vt , var(ut) = MtΩtM
>
t .(A-5)

Similarly, the portfolio xt at time t is normally distributed. we have that

(A-6) xt = x0 +
t∑
i=1

ui = x0 +
t∑
i=1

(
ci +

i∑
s=1

Es,ifs

)
= dt +

t∑
s=1

Js,tfs,

where dt , x0 +∑t
i=1 ci and Js,t ,

∑t
`=sEs,`. With this representation, it is easy see that

xt ∼ N(κt, Yt), where

κt , E[xt] = dt + Ptθt, Yt , var(xt) = PtΩtP
>
t ,(A-7)

Pt ,
[
J1,t J2,t . . . Jt,t

]
.(A-8)

A. Linear Constraints
We will provide formulations for linear equality or inequality constraints on trades

or positions, in the context of linear rebalancing policies. These types of constraints appear
frequently in portfolio choice due to regulatory reasons such as short-sale restrictions,
liquidation purposes, or diversification needs (e.g., keeping a specific industry exposure
under a certain limit).

1. Equality Constraints

Equality constraints appear often in portfolio choice, particularly in portfolio
execution problems when the investor needs to liquidate a certain portfolio (i.e., xT = 0) or
constructs a certain target portfolio by the end of the time horizon (i.e., xT = x̄).

Suppose that for some time t, we have a linear equality constraint on the trade
vector ut, of the form Aut = b. Here, A ∈ RM×N and b ∈ RN . This constraint can be
written as

(A-9) Act + AMtFt = b.
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Under Assumption 4, the left side of (A-9) is normally distributed. Therefore, for (A-9) to
hold almost surely, we must have that the left side has mean b and zero covariance. Thus,
we require that

Act = b, AMt = 0.(A-10)

Thus, the linear equality constraint (A-9) on the trade vector ut is equivalent to the linear
equality constraint (A-10) on the policy coefficients (ct,Mt). Linear equality constraints on
the portfolio position xt can be handled similarly.

2. Inequality Constraints

Inequality constraints on trades or positions are common as well. One example is a
short-sale constraint, which would require that xt ≥ 0 for all times t. When the factor
realizations do not have bounded support, inequality constraints cannot be enforced almost
surely. This is true in the Gaussian case: there is a chance, however small, that factors may
take extreme values, and if the policy is a linear function of the factors, this may cause an
inequality constraint to be violated. In other words, under Assumption 4 with linear
constraints, any non-deterministic linear rebalancing policy will typically be infeasible.
Note that while this is immediate in the exact formulation, this difficulty remains if we
employ other solution methods such as SAA. In the SAA approach, for example, any
non-deterministic linear rebalance policy will become infeasible given enough samples.

In order to account for such constraints in a linear rebalancing policy, instead of
enforcing inequality constraints almost surely, we will enforce them at a given level of
confidence. For example, given a vector a ∈ RN and a scalar b, instead of enforcing the
linear constraint a>ut ≤ b, almost surely, we can consider a relaxation where we seek to
guarantee that it is violated with small probability. In other words, we can impose the
chance constraint P(a>ut > b) ≤ η, for a small value of the parameter η. The following
lemma illustrates that this can be accomplished explicitly:

Lemma 1. Given η ∈ [0, 1/2], a non-zero vector a ∈ RN , and a scalar b, the chance
constraint P(a>ut > b) ≤ η is equivalent to the constraint

a> (ct +Mtθt)− b+ Φ−1(1− η)
∣∣∣∣∣∣Ω1/2

t M>
t a
∣∣∣∣∣∣

2
≤ 0

on the policy coefficients (ct,Mt), where Φ−1(·) is the inverse cumulative normal
distribution.

Proof. This proof follows standard arguments in convex optimization (see, e.g., Boyd and
Vandenberghe (2004)). Let ūt and Vt be the mean and the variance of ut as given in (A-5).
Then,

P(a>ut > b) = P(βt + σtZ > 0),

where
βt , a>ūt − b, σt , ‖V 1/2

t a‖2 6= 0,
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and Z is a standard normal random variable. Thus,

P(a>ut > b) = 1− Φ(−βt/σt).

Note that the this probability is less than or equal to η if and only if

βt + Φ−1(1− η)σt ≤ 0.

Substituting (A-5) into definitions for βt and σt, we obtain the desired result.

A similar approach can be applied to incorporate linear inequality constraints on
the portfolio position xt with high confidence.

In many situations (e.g., short-sale constraints), it may not be sufficient to enforce
an inequality constraint only probabilistically. In such cases, when a linear rebalancing
policy is applied, the resulting trades can be projected onto the constraint set so as to
ensure that the constraints are always satisfied. When the linear policy is designed,
however, it is helpful to incorporate the desired constraints probabilistically so as to
account for their presence. We will demonstrate this idea in the application in Section III.

B. Transaction Costs
In this section, we will provide efficient exact formulations for the transaction cost

functions discussed in Section II.B, in the context of linear rebalancing policies. In general,
one might consider a total transaction cost of

TC(u) ,
T∑
t=1

TCt(ut)

for executing the sample path of trades u, where TCt(ut) is the cost of executing the trade
vector ut at time t. As seen in Section II.B, we typically wish to subtract an expected
transaction cost term from investor’s objective. Hence efficient exact formulations for
transaction costs involve explicit analytical computation of E[TC(u)] = ∑T

t=1 E[TCt(ut)],
when each trade vector ut is specified by a linear policy.

Under a linear policy, ut ∼ N(ūt, Vt) is distributed as a normal random variable
with mean and covariance, (ūt, Vt), specified with the policy coefficients, (E, c), through
(A-5). Then, the evaluation of expected transaction costs reduces to the evaluation of the
expected value of the per-period transaction cost function TCt(·) for a Gaussian random
variable. This can be handled on a case-by-case basis as follows:

• Quadratic transaction costs. In the case of quadratic transaction costs, as seen in
Example 2, the per period transaction cost function is given by TCt(ut) , 1

2u
>
t Λut,

where Λ ∈ RN×N is a positive definite matrix. In this case,
E[TCt(ut)] = 1

2 (ūtΛūt + tr(ΛVt)) .

• Proportional transaction costs. In the case of proportional transaction costs, as
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discussed in Example 5, the per period transaction cost function is given by

TCt(ut) ,
N∑
i=1

χi|ut,i|,

where χi > 0 is a proportionality constant specific to security i. Using the properties
of the folded normal distribution, we obtain

E[TCt(ut)] =
N∑
i=1

χi

√2Vt,i
π

exp
{
−
ū2
t,i

2Vt,i

}
+ ūt,i

1− 2Φ
− ūt,i√

Vt,i


 ,

where Φ(·) is the cumulative distribution function of a standard normal random
variable.

• Nonlinear transaction costs. In the case of nonlinear transaction costs, as discussed in
Example 5, the per period transaction cost function is given by

TCt(ut) ,
N∑
i=1

χi|ut,i|β,

where χi > 0 is a proportionality constant specific to security i, and β ≥ 1 is an
exponent capturing the degree of nonlinearity. As in the proportional case, evaluating
the Gaussian expectation explicitly results in

E[TCt(ut)] =
N∑
i=1

χiΓ
(

1 + β

2

)
(2Vt,i)

β
2

√
π

1F1

(
−β2 ; 1

2;−
ū2
t,i

2Vt,i

)
,

where Γ(·) is the gamma function and 1F1(·) is the confluent hypergeometric function
of the first kind.

C. Terminal Wealth and Risk Aversion
In many of the portfolio choice examples in Section II.B, an investor wishes to

maximize expected wealth net of transaction costs, subject to a penalty for risk, that is,

(A-11) maximize
π∈UF

Eπ
[
W (x, r)− TC(u)− RA(x, f , r)

)]
.

Here, W (·) is the terminal wealth associated with a sample path, TC(·) are the transaction
costs, and RA(·) is a penalty for risk aversions. Exact calculation of expected transaction
costs for linear policies were discussed in Internet Appendix II.B. Here, we will discuss
exact calculation of the expected terminal wealth and the risk aversion penalty.

To begin, note that the terminal wealth depends on realized returns in addition to
factor realizations. Hence, we will make the following assumption:

Assumption 5 (Gaussian returns). As in Example 2, assume that for each time t ≥ 0,
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returns evolve according to

(A-12) rt+1 = µt +Bft + ε
(2)
t+1,

where µt is a deterministic vector, B is a matrix of factor loadings, and ε(2)
t are zero-mean

i.i.d. Gaussian disturbances with covariance Σ.

Note that the critical assumption we are making here is that the factor realizations
f and the sample path of security returns r are jointly Gaussian. The particular form
(A-12) is chosen out of convenience but is not necessary.

We can calculate the expected terminal wealth as

E[W (x, r)] = W0 +
T∑
t=1

E[x>t rt+1] = W0 +
T∑
t=1

(
µ>t κt + E[x>t Bft]

)
,

= W0 +
T∑
t=1

(
µ>t κt + d>t Bδt

+
t∑

s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sJ>s,tωs

)))
,

where ωs is the sth K ×K diagonal block matrix of Ωt.
For the risk aversion penalty, we consider two cases:

• Per period risk penalty. Consider risk aversion penalties that decompose over time as

RA(x, f , r) =
N∑
t=1

RAt(xt),

where RAt(·) is a function which penalizes for risk aversion based on the positions
held at time t. One such case is the quadratic penalty RAt(xt) , γ

2x
>
t Σxt of

Example 2, where γ > 0 is a risk penalty proportionality constant. Here, the investor
seeks to penalize in proportion to the conditional per period variance of the portfolio
value. So long as the expectation of RAt(·) can be calculated for Gaussian arguments,
then the overall expected risk aversion penalty can be calculated exactly. This can be
accomplished for a variety of functions. For example, quadratic penalties can be
handled in a manner analogous to the quadratic transaction costs discussed in
Section II.B.

• Terminal wealth risk penalty. Alternatively, as discussed in Example 6, a more
natural risk aversion criteria might be to penalize risk as a function of the terminal
wealth. Specifically, an investor with mean–variance preferences would consider a risk
aversion penalty RA(x, f , r) , −γ

2 var(W (x, r)), where γ > 0 is a risk penalty
proportionality constant.
Following the notation of Section II, we will compute var[W (x, r)] analytically and
demonstrate that the resulting expression is a quadratic convex function of the policy
coefficients. Without loss of generality, assume that W0 = 0 and µt = 0. Let
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d ∈ RNT×1, e ∈ RNT×1, L ∈ RNT×KT , and D ∈ RNT×KT with

d ,



d1
d2
...

dT−1
dT

 , e ,



ε
(2)
1

ε
(2)
2
...

ε
(2)
T−1
ε

(2)
T


, L ,



B 0 . . . 0 0
0 B . . . 0
... . . . . . . 0

. . . B 0
0 . . . 0 B

 ,

D ,



J1,1 0 . . . 0 0
J1,2 J2,2 . . . 0
... . . . . . . 0

. . . . . . 0
J1,T . . . JT−1,T JT,T

 .

Then, observe that
[
x>1 . . . x>T

]>
= d+DFT , and W (x, r) = (d+DFT )> (LFT + e).

Using the independence between e and FT and E[e] = 0, we obtain

var (W (x, r)) = E
[
(d+DFT )> (LFT + e)(LFT + e)> (d+DFT )

]
− E

[
(d+DFT )> (LFT + e)

]2
= E

[
(d+DFT )> ee> (d+DFT )

]
+ E

[
(d+DFT )> (LFT )(LFT )> (d+DFT )

]
− E

[
(d+DFT )> (LFT )

]2

(A-13)

We need the following fact from multivariate statistics in order to compute the
expectations.

Fact 1. If z is a random vector with mean m and variance S, and Q, A, H are
constant matrices, and a is a constant vector, then

E
[
z>Qz

]
= tr(QS) +m>Qm,

E
[
(Az + a)>Hz(Hz)>(Az + a)

]
= tr

(
AS(H>A+ A>H)SH>

)
+
(
(Am+ a)>H + (Hm)>A

)
S
(
(Am+ a)>H + (Hm)>A

)>
+
(
tr
(
ASH>

)
+ (Am+ a)>Hm

)2
.

We will consider each of the three terms in (A-13) separately. The first expectation,
E
[
(d+DFT )> ee> (d+DFT )

]
, can be evaluated using the independence of ε(2)

s and
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ε
(2)
t when s 6= t and Fact 1.

E
[
(d+DFT )> ee> (d+DFT )

]
=

T∑
t=1

E
[
x>t E

[
ε

(2)
t+1

(
ε

(2)
t+1

)>
|Ft
]
xt

]

=
T∑
t=1

E
[
x>t Σxt

]

=
T∑
t=1

(dt + Ptθt)>Σ (dt + Ptθt) + tr
(
ΣPtΩtP

>
t

)
.

Note that this term is equivalent to the sum of per-period risk penalties considered in
the previous section.
The remaining expectations in (A-13) can be directly computed using Fact 1 with
replacing z with FT where FT ∼ N(ΘT ,ΩT ).

E
[
(d+DFT )> (LFT )(LFT )> (d+DFT )

]
= tr

(
DΩT (L>D +D>L)ΩTL

>
)

+
(
(DΘT + d)>L+ (LΘT )>D

)
ΩT

(
(DΘT + d)>L+ (LΘT )>D

)>
+
(
tr
(
DΩTL

>
)

+ (DΘT + d)> LΘT

)2
.

Finally,

E
[
(d+DFT )> (LFT )

]2
=

(
tr
(
DΩTL

>
)

+ (DΘT + d)> LΘT

)2
.

Summing all three terms in (A-13), we obtain the exact expression for the variance of
terminal wealth:

var (W (x, r)) =
T∑
t=1

(dt + Ptθt)>Σ (dt + Ptθt) + tr
(
ΣPtΩtP

>
t

)
+ tr

(
DΩT (L>D +D>L)ΩTL

>
)

+
(
(DΘT + d)>L+ (LΘT )>D

)
ΩT

(
(DΘT + d)>L+ (LΘT )>D

)>
.

(A-14)

Note that this expression is convex in our decision variables, as expected.

III. Derivation of the LQC Policies
We can derive a closed-form solution for our trading policy when the problem

satisfies the LQC framework. We guess a functional form for the value function and show
that this functional form is preserved at each time step.

Using dynamic programming principle and ut = (xt − xt−1), the value function
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Vt(xt−1, ft) satisfies

Vt−1(xt−1, ft) = maximize
xt

(
x>t (Bft)−

1
2(xt − xt−1)>Λ(xt − xt−1) + E[Vt(xt, ft+1)]

)
.

We guess the following quadratic form for our value function:

Vt(xt, ft+1) = −1
2x
>
t Axx,txt + x>t Axf,tft+1 + 1

2f
>
t+1Aff,tft+1 + 1

2mt.

Then,

E[Vt(xt, ft+1)] = −1
2x
>
t Axx,txt + x>t Axf,t (I − Φ) ft

+ 1
2f
>
t (I − Φ)>Aff,t (I − Φ) ft + 1

2 (tr(ΨAff,t) +mt) .

At the last period, we need xT = 0, and our value function equals

VT−1(xT−1, ft) = −1
2x
>
T−1ΛxT−1

which satisfies our functional form with

Axx,T−1 = Λ Axf,T−1 = 0 Aff,T−1 = 0 mT−1 = 0.

For all t < T − 1, we maximize the quadratic objective −1
2x
>
t Qtxt + x>t qt + bt where

Qt = Λ + Axx,t

qt = Λxt−1 + (B + Axf,t (I − Φ)) ft

bt = −1
2x
>
t−1Λxt−1 + 1

2f
>
t (I − Φ)>Aff,t (I − Φ) ft + tr(ΨAff,t) +mt

Then, the optimal xt is given by Q−1
t qt and xt and ut are given by

xt = (Λ + Axx,t)−1 (Λxt−1 + (B + Axf,t (I − Φ)) ft)
ut = (Λ + Axx,t)−1 (Λxt−1 + (B + Axf,t (I − Φ)) ft)− xt−1

The maximum then occurs at 1
2q
>
t Q
−1
t qt + bt and we obtain the following recursions:

Axx,t−1 = −Λ (Λ + Axx,t)−1 Λ + Λ
Axf,t−1 = Λ (Λ + Axx,t)−1 (B + Axf,t (I − Φ))
Aff,t−1 = (B + Axf,t (I − Φ))> (Λ + Axx,t)−1 (B + Axf,t (I − Φ)) + (I − Φ)>Aff,t (I − Φ)
mt−1 = tr(ΨAff,t) +mt

Using these recursions, we can compute the optimal expected payoff of the dynamic
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program. Using f0 = N(0,Ω0),

E[V0(x0, f1)] = E [E[V0(x0, f1)|f0]]

= E
[
−1

2x
>
0 Axx,0x0 + x>0 Axf,0 (I − Φ) f0 + 1

2f
>
0 (I − Φ)>Aff,0 (I − Φ) f0

+ 1
2 (tr(Ω0Aff,0) +m0)

]

= −1
2x
>
0 Axx,0x0 + 1

2

(
tr
(
Ω0(I − Φ)>Aff,0(I − Φ)

)
+

T−2∑
t=0

tr(ΨAff,0)
)
.

IV. Exact Formulation of Best Linear Execution Policy
We will first compute the expectation in the objective of (18) and write the

equivalent deterministic form. We will then replace probabilistic constraints with
deterministic constraints using Lemma 1, and finally obtain the deterministic version of the
stochastic program in (18).

We start working with the expectation in the objective function. For each t, we have
to compute the expectation of the following two terms, E

[
x>t (Bft)

]
, and E

[
u>t Λut

]
. First,

we derive the statistics for ft, ut and xt. We first note that

ft = (I − Φ)T e0 +
t∑

s=1
(I − Φ)t−sε(1)

s .

Letting Ft , (f1, . . . , ft)>, Then, in vector form, we have the following representation

Ft =



(I − Φ)f0
(I − Φ)2f0

...
(I − Φ)t−1f0
(I − Φ)tf0

+



I 0 . . . 0 0
(I − Φ) I 0 . . . 0

... (I − Φ) . . . . . . 0
(I − Φ)t−1 . . .

. . . I 0
(I − Φ)t . . . (I − Φ) I


︸ ︷︷ ︸

,At



ε
(1)
1

ε
(1)
2
...

ε
(1)
t−1

ε
(1)
t


.

Using this representation, we compute the mean

(A-15) θt , E[Ft] =



δ1
δ2
...

δt−1
δt

 ,



(I − Φ)f0
(I − Φ)2f0

...
(I − Φ)t−1f0
(I − Φ)tf0

 ,
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and the covariance matrix

(A-16) Ωt , var[Ft] = At



Ψ 0 . . . 0 0
0 Ψ . . . 0
... . . . . . . 0

. . . Ψ 0
0 . . . 0 Ψ

A
>
t .

Note that Ωt is a block diagonal matrix with t blocks of size K ×K. Recall that in Section
II, we defined

(A-17) Mt ,
[
E1,t E2,t . . . Et,t

]
Then, ut = ct +MtFt and we have the following moments for ut:

µt , E[ut] = ct +Mtθt(A-18)
Vt , var(ut) = MtΩtM

>
t .

Therefore, ut is normally distributed with mean µt and covariance matrix Vt. Similarly, we
can obtain the statistics for xt. Using (A-7),

κt , E[xt] = dt + Ptθt

Yt , var(xt) = PtΩtP
>
t .

Using Fact 1, we can compute each term in the expectation.

E
[
x>t (Bft)

]
= E

[
d>t Bft +

t∑
s=1

f>s J
>
s,tBft

]

= d>t Bδt +
t∑

s=1
E
[
f>s J

>
s,tBE [ft|fs]

]

= d>t Bδt +
t∑

s=1
E
[
f>s J

>
s,tB(I − Φ)t−sfs

]

= d>t Bδt +
t∑

s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sJ>s,tωs

))
where ωs is the sth diagonal block matrix of Ωt having a size of K ×K. Finally, for the
transaction cost terms,

E
[
u>t Λut

]
= E

[
(ct +MtFt)> Λ (ct +MtFt)

]
= (ct +Mtθt)> Λ (ct +Mtθt) + tr

(
ΛMtΩtM

>
t

)
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Summing up all the terms, our final objective function in deterministic form equals

maximize
ct,Es,t

T∑
t=1

d>t Bδt +
t∑

s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sE>s,tωs

))

+1
2
(
(ct +Mtθt)> Λ (ct +Mtθt) + tr

(
ΛMtΩtM

>
t

)),
which is a quadratic function of the policy parameters.

We now rewrite the equality constraint, xT = 0 in terms of policy parameters. In
order to enforce this equality, we need

dT = 0 and Js,T = 0 s = 1, . . . , T.

Lastly, we replace probabilistic constraints with deterministic constraints using
Lemma 1. Note that P (xt ≤ 0) ≤ η can be written as P (−xt ≥ 0) ≤ η. Then, using
Lemma 1,

(−dt − Ptθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(PtΩtP

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0.

Similarly, we obtain that P (ut ≥ 0) ≤ η can be replaced by

(ct +Mtθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0.

Combining all the results, we obtain the deterministic version of the stochastic
program in (18), a second-order cone program:

(A-19)
maximize

ct,Es,t

∑T
t=1

{
d>t Bδt +∑t

s=1

(
δ>s (B(I − Φ)t−sJ>s,t)δs + tr

(
B(I − Φ)t−sE>s,tωs

))
,

+ 1
2

(
(ct +Mtθt)> Λ (ct +Mtθt) + tr

(
M>

t ΛMtΩt

))}
,

subject to dt = x0 +∑t
i=1 ci t = 1, . . . , T,

Js,t = ∑t
i=sEs,i 1 ≤ s ≤ t ≤ T,

(−dt − Ptθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(PtΩtP

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0 t = 1, . . . , T,

(ct +Mtθt) + Φ−1(1− η)
∣∣∣∣∣∣∣∣(MtΩtM

>
t

)1/2
∣∣∣∣∣∣∣∣

2
≤ 0 t = 1, . . . , T,

dT = 0 and Js,T = 0.

Note that the number of decision variables is greater than that of the original
execution problem in (13). Total number of decision variables in a problem with N
securities, K factors and T periods equals 2NT +NKT (T + 1) which is on the order of
O(NKT 2).
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