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A Numeraire

This Appendix shows that the price index of the world consumption basket, which is denoted

by Pt and used as the numeraire, can be written as

Pt = P↵
d,tP

1�↵
f,t , (1)

where ↵ denotes the size of Domestic production as a share of world production, while Pd,t

and Pf,t denote the prices of the Domestic and Foreign good, Xd and Xf , respectively.

The derivation is as follows. Consider a representative aggregate agent who consumes

production in both countries. This agent maximizes the utility of total consumption, given

by a constant-elasticity-of-substitution (CES) function ⌦t, such that

⌦t (Xd, Xf ) =
h

↵
1
#X

#�1
#

d,t + (1� ↵)
1
# X

#�1
#

f,t

i

#
#�1

, (2)

given total expenditure Nt, equal to

Nt ⌘ Pd,tXd,t + Pf,tXf,t, (3)

where # > 0 is the elasticity of substitution between the Domestic and Foreign goods, Xd,t

and Xf,t.

Maximizing Equation 2 subject to the constraint (Equation 3) yields

✓

Pd,t

Pf,t

◆#

=
(1� ↵)Xd,t

↵Xf,t

. (4)

Combining Equations 3 and 4 generates the following demand functions for the Domestic

and the Foreign goods :

Xd,t =
Nt↵P

�#
d,t

↵P 1�#
d,t + (1� ↵)P 1�#

f,t

, Xf,t =
Nt (1� ↵)P�#

f,t

↵P 1�#
d,t + (1� ↵)P 1�#

f,t

. (5)

The highest value of ⌦t (Xd, Xf ) given Nt is found by substituting those demands (Equa-
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tion 5) into the CES function (Equation 2), which yields

2

4↵
1
#

"

Nt↵P
�#
d0t

↵P 1�#
d,t + (1� ↵)P 1�#

f 0t

#

#�1
#

+ (1� ↵)
1
#

"

Nt (1� ↵)P�#
f,t

↵P 1�#
d,t + (1� ↵)P 1�#

f,t

#

#�1
#

3

5

#
#�1

. (6)

Following Obstfeld and Rogoff (1996, p.227), the consumption-based price index Pt is

defined as the minimum expenditure Nt = Pd,tXd,t+Pf,tXf,t such that ⌦t (Xd, Xf ) = 1, given

Pd,t and Pf,t. The price index Pt thus satisfies

2

4↵
1
#

"

Pt↵P
�#
d,t

↵P 1�#
d,t + (1� ↵)P 1�#

f,t

#

#�1
#

+ (1� ↵)
1
#

"

Pt (1� ↵)P�#
f,t

↵P 1�#
d,t + (1� ↵)P 1�#

f,t

#

#�1
#

3

5

#
#�1

= 1, (7)

which leads to the solution

Pt =
⇥

↵P 1�#
d,t + (1� ↵)P 1�#

f,t

⇤

1
1�# . (8)

I now determine the price function Pt for the Cobb-Douglas case (# = 1). For convenience,

take the logarithm of the above solution, which implies that

ln (Pt) =
ln
⇥

↵P 1�#
d,t + (1� ↵)P 1�#

f,t

⇤

1� #
, (9)

and then apply L’Hospital’s rule on Equation 9, which yields

lim
#!1

ln (Pt) = ↵ ln (Pd,t) + (1� ↵) ln (Pf,t) (10)

and eventually

Pt = P↵
d,tP

1�↵
f,t . (11)

B Exchange Rate

In a competitive equilibrium, the price of one unit of the Domestic good to be delivered at

time t in state w is ⇠d,t = Pd,t⇠t and the price of one unit of the Foreign good to be delivered
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at time t in state w is ⇠f,t = Pf,t⇠t, where ⇠t is the equilibrium state-price density (in units of

the world numeraire). Following Pavlova and Rigobon (2007), these prices are given by

⇠d,t = Pd,t⇠t = e��t@u (yd,t)

@yd,t
=

e��t

yd,t
=

e��t

Xd,t

(12)

⇠f,t = Pf,t⇠t = e��t@u (yf,t)

@yf,t
=

e��t

yf,t
=

e��t

Xf,t

, (13)

where � is the rate of time preference, yj denotes consumption of country j’s agent, and the

subscript j = {d, f} indicates the Domestic and the Foreign country, respectively. Finally, the

last equalities obtain from the good market clearing conditions (i.e., consumption yj,t equals

production Xj,t in autarky).

The exchange rate, denoted by St, is defined as the ratio of the country’s marginal utilities

of the Domestic and Foreign goods, ⇠d,t and ⇠f,t.1 Given the preferences of agents, state prices

are unique, as is the ratio of the two. The exchange rate is thus given by

St ⌘
⇠d,t
⇠f,t

=
ud (yd,t)

uf (yf,t)
=

Pd,t

Pf,t

=
Xf,t

Xd,t

, (14)

which is also equal to the price of the Domestic good Pd,t per unit of the price of the Foreign

good Pf,t.

C Output Value

This Appendix determines the value of output in both countries and derives its dynamics.

C.1 Domestic and Foreign output value

From the definition of the exchange rate, St = Pd,t/Pf,t, and the normalized world basket

numeraire P↵
d,tP

1�↵
f,t = 1 (see Appendix A), prices of the Domestic and Foreign goods can be

written Pd,t = S1�↵
t and Pf,t = S�↵

t , respectively. Using the solution of the exchange rate

1For reference, see Dumas (1992), Backus, Foresi, and Telmer (2001), Brandt, Cochrane, and Santa-Clara
(2006), and Bakshi, Carr, and Wu (2008), among others.
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(Equation 14), the value of Domestic and Foreign output is given by

Pd,tXd,t = S1�↵
t Xd,t =

✓

Xf,t

Xd,t

◆1�↵

Xd,t = Xt (15)

Pf,tXf,t = S�↵
t Xf,t =

✓

Xf,t

Xd,t

◆�↵

Xf,t = Xt, (16)

where Xt ⌘ X↵
d,tX

1�↵
f,t is an aggregate measure of Domestic and Foreign output. Given that

Pd,tXd,t = Pf,tXf,t, the value of output perfectly comoves internationally, even though the

output level correlates imperfectly across countries.

C.2 Aggregate output value

The value of Domestic and Foreign output is solely determined by the aggregate output value

Xt. To derive the dynamics of Xt, apply Itô’s formula on X↵
d,tX

1�↵
f,t , which yields

dXt = ↵Xt

�

✓ddt+ �ddW
d
t

�

+ (1� ↵)Xt

⇣

✓f,sdt+ �fdW
f
t

⌘

�↵(1� ↵)

2
Xt

�

�2
d + �2

f � 2⇢�d�f

�

dt (17)

= Xt

8

<

:

h

↵✓d + (1� ↵)✓f,s � ↵(1�↵)
2

�

�2
d + �2

f � 2⇢�d�f

�

i

dt

+↵�ddW
d
t + (1� ↵)�fdW

f
t

9

=

;

. (18)

The dynamics of Xt are thus characterized by the process

dXt

Xt

= ✓X,sdt+ �X,ddW
d
t + �X,fdW

f
t , s = {L,H} , (19)

with

✓X,s = ↵✓d + (1� ↵)✓f,s �
↵(1� ↵)

2

�

�2
d + �2

f � 2⇢�d�f

�

, (20)

�X,f = (1� ↵)�f , and �X,d = ↵�d. (21)
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D State-Price Density

This Appendix derives the state-price density (or the state-price deflator), ⇠t, that prevails in

a competitive equilibrium of the economy.

In the familiar single-good asset-pricing framework, the consumption good’s price is nor-

malized to one and the agents’ marginal utilities are proportional to the state-price den-

sity. Here, one needs to use the generalization of the standard argument to multiple-good

economies. Given that the world numeraire basket is of the form Pt = P↵
d,tP

1�↵
f,t , the state-

price density ⇠t can be written as

⇠t = (⇠tPd,t)
↵ (⇠tPf,t)

1�↵ = e��t

✓

1

Xd,t

◆↵✓ 1

Xf,t

◆1�↵

=
e��t

Xt

, (22)

where the first equality of Equation 22 follows from the price normalization P↵
d,tP

1�↵
f,t = 1,

the second obtains by substituting Equations 12 and 13 in Equation 22, and the last equality

is obtained from Xt ⌘ X↵
d,tX

1�↵
f,t (see Appendix C).

Applying Itô’s formula to f (t,Xt) = ⇠t yields

df (t,X) = ��ftdt�
ft
Xt

⇣

✓X,sXtdt+ �X,dXtdW
d
t + �X,fXtdW

f
t

⌘

+
ft
X2

t

⇥

(�X,dXt)
2 dt+ (�X,fXt)

2 dt+ 2⇢�X,d�X,fdt
⇤

. (23)

The state-price density thus follows the process defined by

d⇠t
⇠t

= �rsdt� �X,ddW
d
t � �X,fdW

f
t , s = {L,H} , (24)

where rs is the risk-free rate prevailing in equilibrium in state s, which equals

rs = � + ✓X,s �
�

�2
X,d + �2

X,f + 2⇢�X,d�X,f

�

. (25)
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E Firm Revenue

This Appendix derives the dynamics of firm revenue under the physical and the risk-neutral

probability measures.

E.1 Physical revenue

Firm i in country j produces a quantity Xij,t that is sold at a price Pj,t. This firm’s revenue,

denoted by Ri,t ⌘ Pj,tXij,t, satisfy the dynamics

dRi,t

Ri,t

= ✓X,sdt+ �X,ddW
d
t + �X,fdW

f
t , s = {L,H} , (26)

where the country’s subscript (j) can be ignored when denoting firm revenue because of the

perfect co-movement of revenue across countries (see Appendix C). The aggregation of firm

revenue within a country equals the country’s output value, such that

Z

Ri,tdG(Ij) ⌘ Xt, (27)

where G(Ij) denotes the distribution of firms in country j.

E.2 Risk-neutral measure

Let us now derive the dynamics of firm revenue under the risk-neutral measure Q. Let

(⌦,F ,P) be the probability space on which the Brownian motions are defined. The corre-

sponding information filtration is F = {Ft : t � 0}. For convenience, start by rewriting the

state-price density as follows

d⇠t
⇠t

= �rsdt� �X,ddW
d
t � �X,fdW

f
t (28)

= �rsdt� (�X,d + ⇢�X,f ) dW
d
t � �X,f

p

1� ⇢2dWt, (29)

using the notation dW f
t = ⇢dW d

t +
p

1� ⇢2dWt, where Wt denotes a standard Brownian

motion independent of W d
t , such that dWtdW

d
t = 0.
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I define the risk-neutral measure Q associated with the pricing kernel under the world

basket numeraire by specifying the density process 't, which satisfies

't = Et



dQ
dP

�

(30)

and evolves as follows

d't

't

= � (�X,d + ⇢�X,f ) dW
d
t � �X,f

p

1� ⇢2dWt. (31)

Applying the Girsanov theorem, one obtains new Brownian motions under Q, W̃ d
t and W̃t,

which solve

dW d
t = dW̃ d

t � (�X,d + ⇢�X,f ) dt (32)

dWt = dW̃t � �X,f

p

1� ⇢2dt. (33)

Finally, by substitution, firm revenue Ri,t under the risk-neutral probability measure Q

follow the dynamics

dRi,t

Ri,t

= ✓X,sdt+ (�X,d + ⇢�X,f )
h

dW̃ d
t � (�X,d + ⇢�X,f ) dt

i

+�X,d

p

1� ⇢2
h

dW̃t � �X,f

p

1� ⇢2dt
i

(34)

= ✓̃X,sdt+ (�X,d + ⇢�X,f ) dW̃
d
t + �X,f

p

1� ⇢2dW̃t, s = {L,H} , (35)

with

✓̃X,s = ✓X,s �
�

�2
X,d + �2

X,f + 2⇢�X,d�X,f

�

. (36)

F Stationary Leverage Property and Change of Variables

This Appendix first describes the firm capital structure and the operating costs that generate

stationary financial and operational leverage ratios. It then presents a change of variables

that helps solve the model conveniently.
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F.1 Capital structure and operating costs

Empirical observation indicates that leverage ratios are stationary (see Hovakimian, Opler,

and Titman, 2001). Thus, firms tend to issue additional debt in response to a growth in

firm value. This empirical evidence is consistent with Collin-Dufresne and Goldstein (2001)

and Goldstein, Ju, and Leland (2001), who demonstrate that models with stationary leverage

ratios help better explain financial leverage and credit spreads. Consequently, stationary

leverage (i.e., which does not vanish over time) is an important property to capture when

valuing firm assets.

To account for this feature, the model assumes that firms maintain a long-term stationary

leverage ratio. That is, their debt coupon relative to firm revenue, CF
j,t/Ri,t, must remain

stationary. A capital structure characterized by a debt coupon that displays the same long-

term growth rate as that of firm revenue satisfies this leverage stationarity. Hence, I consider

a debt coupon CF
j,t in country j determined by

CF
j,t ⌘ gtC

F
j , (37)

where, for ease of notation, CF
j = CF

j,0, and gt denotes the expected growth of firm revenue

up to time t, which is given by

gt ⌘ E0



Ri,t

Ri,0
|s=H

�

= e✓X,H t. (38)

The expected growth of firm revenue gt depends only on the state s = H. The reason

is that gt captures the growth of firm revenue over the long run, which is almost surely

characterized by the state s = H when t ! 1 and �LH > 0 (i.e., the state s = L is

temporary).

The firm operating costs are determined similarly to generate a stationary operational

leverage ratio. Following the reasoning above, the firm i in country j has operating costs Iij,t

that are given by

Iij,t ⌘ gtIij, (39)

where, for ease of notation, Iij = Iij,0.
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When the default policy is endogenous, the default boundary becomes linear in the debt

coupon and the level of operating costs.2 Hence, a firm’s default boundary increases expo-

nentially when its debt coupons and operating costs grow over time. Solving a first hitting

time problem is not trivial in this case.

However, a suitable change of variables and an application of Itô’s Lemma allow deriving

the model in the more standard case of a first-passage time problem with constant boundary.

This approach, which is described in the next section, follows Ju, Parrino, Poteshman, and

Weisbach (2005).

F.2 Variable scaling

Let us define the following set of variables

CF
j ⌘ CF

j,t/gt, Iij ⌘ Iij,t/gt, Zi,t ⌘ Ri,t/gt, (40)

which are obtained by scaling the debt coupon CF
j,t, the operating costs Iij,t, and the firm

revenue Ri,t, respectively, by the growth of firm revenue gt, which is a deterministic function

of time. The scaled debt coupon CF
j and operating costs Iij of firm i in country j are constant

and equal to the levels of CF
j,t and Iij,t observed at time t = 0.

The scaled revenue Zi,t of firm i satisfy, from Itô’s Lemma, the dynamics

dZi,t

Zi,t

= ✓Z,sdt+ �X,ddW
d
t + �X,fdW

f
t , s = {L,H} , (41)

with ✓Z,s = ✓X,s � ✓X,H , while the corresponding risk-neutral growth rate is

✓̃Z,s = ✓Z,s �
�

�2
X,d + �2

X,f + 2⇢�X,d�X,f

�

. (42)

Finally, let us define a scaled measure of the risk-free rate, denoted by r̄s, and equal to

r̄s ⌘ rs � ✓X,H , (43)

2Leland (1994) shows that the optimal default threshold linearly depends on the debt coupon, in absence of
operational leverage. Appendix H shows that the optimal default threshold linearly depends on both the debt
coupon and the level of operating costs when operational leverage is introduced in the model (see Equation 95).
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which will be convenient to price assets in the economy.

Firm assets can then be evaluated using the scaled firm revenue Zi,t, a capital struc-

ture with constant debt coupon CF
j and operating costs Iij, and constant optimal default

boundaries.

G Firm Asset Valuation

This Appendix derives the value of a firm’s equity and debt under the risk of Foreign govern-

ment default. In the absence of arbitrage, the levered firm value equals the sum of debt and

equity values Vij,t(Zi) = Eij,t(Zi) + Dij,t(Zi), which depend on the scaled firm revenue Zi,t

(see Appendix F).

Consider for now that firm i in country j defaults at time TD
ij = inf{t � 0 | Zi,t  ZD

ij },

when Zi,t falls to the constant default threshold ZD
ij for the first time, while the Foreign

government defaults when Zi,t falls to the default threshold ZG
i < ZD

ij , which occurs at time

TG = inf{t � 0 | Zi,t  ZG
i }.3

G.1 Firm defaults before the Foreign government defaults

This section provides the asset valuation of firm i in country j when this firm defaults before

the Foreign government defaults, i.e. TD
ij < TG.

3The firm optimal default policy is determined subsequently (see Appendix H). The details of the Foreign
government’s default policy will be examined in Appendix J.
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G.1.1 Equity value

The value of equity for firm i in country j is given by

Eij,t(Zi) = Et

"

Z TD
ij

t

⇠u
⇠t
(1� ⌧j)

�

Ri,u � CF
j,u � Iij,u

�

du

#

(44)

= Et

"

Z TD
ij

t

⇠u
⇠t
(1� ⌧j)

 

Ri,u

e✓X,Hu
�

CF
j

e✓X,Hu
� Iij

e✓X,Hu

!

e✓X,Hudu

#

(45)

= Et

"

gt

Z TD
ij

t

⇠u
⇠t
(1� ⌧j)

�

Zi,u � CF
j � Iij

�

e✓X,H(u�t)du

#

(46)

= EQ
t

"

gt

Z TD
ij

t

(1� ⌧j)
�

Zi,u � CF
j � Iij

�

e�r̄H(u�t)du

#

, (47)

where ⌧j is the tax rate in country j and Equation 45 introduces the change of variables

proposed in Appendix F.

Solving for the equity value yields

Eij,t(Zi) = EQ
t



gt

Z 1

t

(1� ⌧j)
�

Zi,u � CF
j � Iij

�

e�r̄H(u�t)du

�

�EQ
t

"

gt

Z 1

TD
ij

(1� ⌧j)
�

Zi,u � CF
j � Iij

�

e�r̄H(u�t)du

#

(48)

= (1� ⌧j)gt

 

Zi,t

r̄H � ✓̃Z,H
�

CF
j + Iij

r̄H

!

�(1� ⌧j)gt

 

ZD
ij

r̄H � ✓̃Z,H
�

CF
j + Iij

r̄H

!

✓

Zi,t

ZD
ij

◆!H

, (49)

where the present value of Zi,t is given by the standard Gordon formula

EQ
t



Z 1

t

Zi,ue
�r̄H(u�t)du

�

=
Zi,t

r̄H � ✓̃Z,H
, (50)

while the present value of the perpetual stream of payments CF
j + Iij is given by

EQ
t



Z 1

t

�

CF
j + Iij

�

e�r̄H(u�t)du

�

=
CF

j + Iij

r̄H
(51)
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and the second part of the Equation 49 is obtained as follows: First, it is known from Karatzas

and Shreve (1991, p.197) that

EQ
t

h

e�r̄H(TD
ij �t)

i

=

✓

Zi,t

ZD
ij

◆!H

, (52)

where !s is the negative root of the quadratic equation 1
2�

2
Z!s(!s � 1) + ✓̃Z,s! � r̄s = 0 in

state s, defined by

!s =
1

2
� ✓̃Z,s

�2
Z

�

v

u

u

t

 

1

2
� ✓̃Z,s

�2
Z

!2

+
2r̄s
�2
Z

< 0, s = {L,H} , (53)

with �Z =
q

�2
X,d + �2

X,f + 2⇢�X,d�X,f . Then, from the strong Markov property for Brownian

motion,

EQ
t

"

Z 1

TD
ij

Zi,ue
�r̄H(u�t)du

#

= EQ
t

"

e�r̄H(TD
ij �t)ZD

ij

Z 1

t

e
�ZZi,u�

✓
r̄H�✓̃Z,H+

�2
Z
2

◆
(u�t)

du

#

=

 

ZD
ij

r̄H � ✓̃Z,H

!

✓

Zi,t

ZD
ij

◆!H

. (54)

G.1.2 Corporate debt

Bondholders receive the coupon CF
j,t as long as the firm does not default. In the case of

default, bondholders are entitled to perpetual value of the after-tax cash flows of the unlevered

firm Xi,t � Iij,t, net of a fraction ⌘ 2 (0, 1) that consists of default costs.

Using the same change of variables and the Brownian motion properties discussed in

Appendix G.1.1, the value of corporate debt is given by

Dij,t(Zi) = Et

"

gt

Z TD
ij

t

⇠u
⇠t
CF

j e
✓X,H(u�t)du

#

+Et

"

gt

Z 1

TD
ij

⇠u
⇠t

(1� ⌘) (1� ⌧j) (Zi,u � Iij) e
✓X,H(u�t)du

#

(55)

=
CF

j gt

r̄H



1�
✓

Zi,t

ZD
ij

◆!H
�

+ Vij,TD
ij
(Zi)gt

✓

Zi,t

ZD
ij

◆!H

, (56)
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with Vij,TD
ij
(Zi) being the unlevered firm asset value at the time of default, which equals

Vij,TD
ij
(Zi) = +Et

"

Z TG

TD
ij

⇠u
⇠t

(1� ⌘) (1� ⌧j) (Zi,u � Iij) e
✓X,H(u�t)du

#

+Et



Z 1

TG

⇠u
⇠t

(1� ⌘) (1� ⌧j) (Zi,u � Iij) e
✓X,H(u�t)du

�

(57)

= (1� ⌧j) (1� ⌘)

 

ZD
ij

r̄H � ✓̃Z,H
� Iij

r̄H

!+

�(1� ⌧j) (1� ⌘)

 

ZG
i

r̄H � ✓̃Z,H
� Iij

r̄H

!+ 

ZD
ij

ZG
i

!!H

+Vij,TG(Zi)

 

ZD
ij

ZG
i

!!H

, (58)

where the upperscript + indicates that debtholders are only entitled to the unlevered firm

value if it is positive, ZG
i is the level of the firm i’s scaled revenue at time of sovereign default

TG, while Vij,TG(Zi) denotes unlevered firm asset value at time of the sovereign default. This

value is derived as follows.

Once the Foreign government has defaulted, the state of the economy temporarily switches

from s = H to s = L, which decreases the cash flow growth rate and the risk-free rate. There

is an exogenous intensity �LH such that the probability that the regime returns to the pre-

crisis state over the next infinitesimal time instant dt is �LHdt.4 The discounting value of

the after-tax cash flows of the unlevered firm after sovereign default must then account for

the stochastic change in regime from s = L to s = H. To do so, I follow the derivation

of Bhamra, Kuehn, and Strebulaev (hereafter BKS) (2010a,b).5 The unlevered value of the

firm at time of the sovereign default, when the state is s = L, satisfies

Vij,TG(Zi) = Et



Z 1

TG

⇠u
⇠TG

(1� ⌧j) (1� ⌘) (Zi,u � Iij) e
✓X,H(u�TG)du

�

= (1� ⌧j) (1� ⌘)

✓

ZG
i

rA,L

� Iij
rP,L

◆+

,

4With logarithmic utility (and more generally under CRRA preferences), the risk-neutral and the actual
switching probabilities are identical.

5In BKS (2010a,b), the economy stochastically switches from a state to another. In the present paper,
there is only one stochastic regime change that is absorbing.
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where the discount rate of Zi,t, when the current state is s, is given by

rA,s = r̄s � ✓̃Z,s +

⇣

r̄H � ✓̃Z,H

⌘

�
⇣

r̄L � ✓̃Z,L

⌘

�LH + r̄H � ✓̃Z,H
�LH1{s=L}, (59)

where 1{s=L} equals one if the current state is s = L and zero otherwise. The discount rate

rA,L, relevant at time TG, accounts for the possibility that the economy quits the low state

and returns to the normal situation with an intensity �LH > 0.

Finally, the discount rate for a riskless perpetuity, when the current state is s, is given by

rP,s = r̄s +
r̄H � r̄L
�LH + r̄H

�LH1{s=L}, (60)

which indicates that the discount rate rP,L is greater than r̄L because the risk-free rate is

expected to increase in the future when economic growth returns to the normal state.

G.2 Firm defaults after the Foreign government defaults

This section examines the case in which a firm i in country j defaults after the Foreign

government defaults, i.e. TD
ij > TG. Consider the same change in variables as in section G.1.

G.2.1 Equity

The value of equity for firm i in country j is given by

Eij,t(Zi) = Et

"

gt

Z TG

t

⇠u
⇠t
(1� ⌧j)

�

Zi,u � CF
j � Iij

�

e✓X,H(u�t)du

#

+Et



⇠TG

⇠t
e✓X,H(TG�t)Eij,TG(Zi)

�

(61)

= (1� ⌧j)gt

 

Zi,t

r̄H � ✓̃Z,H
�

CF
j + Iij

r̄H

!

�(1� ⌧)gt

 

ZG
i

r̄H � ✓̃Z,H
�

CF
j + Iij

r̄H

!

✓

Zi,t

ZG
i

◆!H

+gtEij,L,TG(Zi)

✓

Zi,t

ZG
i

◆!H

, (62)
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where the equity value at time of the sovereign default, denoted by Eij,L,TG(Zi), accounts for

the fact that s = L at TG but can change stochastically to s = H. As in BKS (2010a,b),

the firm can default in either state.

Firm asset valuation in a regime-switching model is determined in terms of the prices

of a set of Arrow-Debreu corporate default claims. The Arrow-Debreu corporate default

claim, denoted by qD,ij,s,sD , is the value of a unit of consumption paid if a firm i in country

j defaults in state sD = {L,H} when the current state is s = {L,H}. Since each Arrow-

Debreu corporate default claim is effectively a perpetual digital put, their values can be derived

by solving a system of ordinary differential equations (see Appendix G.3).

The value of equity for firm i located in country j at the time of sovereign default, when

the state is s = L, is equal to

Eij,L,TG(Zi) = (1� ⌧j)Et

"

Z TD
ij

TG

⇠u
⇠TG

�

Zi,u � CF
j � Iij

�

e✓X,H(u�TG)du

#

(63)

= Aij,L

�

ZG
i

�

� (1� ⌧j)
CF

j

rP,L

+
H
X

sD=L

qD,ij,L,sD

"

(1� ⌧j)
CF

j

rP,sD
� Aij,sD

�

ZD
ij,sD

�

#

, (64)

where Aij,s (Zi,t) denotes the firm liquidation value at time t and in state s, which is given by

Aij,s (Zi,t) = Et



Z 1

t

⇠u
⇠t

(1� ⌧j) (Zi,u � Iij) e
✓X,H(u�t)du

�

(65)

= (1� ⌧j)

✓

Zi,t

rA,s

� Iij
rP,s

◆

, s = {L,H} . (66)

As Equation 64 indicates, the firm default policy is characterized by two boundaries ZD
ij,sD

,

depending on whether the firm defaults before (sD = L) or after (sD = H) the economy

returns to the normal state following the Foreign government’s default.

G.2.2 Corporate debt

The value of corporate debt for firm i located in country j is determined by
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Dij,t(Zi) = Et

"

gt

Z TG

t

⇠u
⇠t
CF

j e
✓X,H(u�t)du

#

+Et



gt
⇠TG

⇠t
e✓X,H(TG�t)Dij,TG(Zi)

�

(67)

=
CF

j gt

r̄H



1�
✓

Zi,t

ZG
i

◆!H
�

+Dij,TG(Zi)gt

✓

Zi,t

ZG
i

◆!H

, (68)

where the value of corporate debt at time of sovereign default is given by

Dij,TG = Et

"

Z TD
ij

TG

⇠u
⇠TG

CF
j e

✓X,H(u�TG)du

#

+ Et

"

⇠TD
ij

⇠TG

(1� ⌘)Aij,TD
ij

#

(69)

=
CF

j

rP,L

 

1�
H
X

sD=L

lD,sDqD,ij,L,sD

!

, (70)

where

lD,sD =

CF
j

rP,sD

� (1� ⌘)Aij,sD

�

ZD
ij,sD

�

CF
j

rP,L

(71)

is the loss ratio when the firm defaults in state sD = {L,H} (see BKS, 2010a,b).

G.3 Arrow-Debreu corporate default claims

To compute the Arrow-Debreu corporate default claims, I build on the derivation proposed

by BKS (2010a,b). I impose two specific assumptions: i) the initial state at the time of

sovereign default is s = L; ii) the change in regime (s = L ! H) is absorbing.

From no-arbitrage conditions, the Arrow-Debreu corporate default claims can be derived

by solving a system of ordinary differential equations

dqD,ij,s,sD,t

dZi,t

✓̃Z,sZi,t +
1

2

d2qD,ij,s,sD,t

dZ2
i,t

�2
ZZ

2
i,t + �LH1{s=L} (qD,ij,s̄,sD,t � qD,ij,s,sD,t)

= r̄sqD,ij,s,sD,t, s, sD = {L,H} , s̄ 6= s, (72)
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which are obtained, using Itô’s Lemma, from the set of equations

EQ
t [dqD,ij,s,sD � r̄sdqD,ij,s,sDdt] = 0, s, sD = {L,H} . (73)

Given that the initial state at the time of sovereign default is s = L and that the change

in regime (from s = L to s = H) is absorbing, one can directly set qD,ij,H,L = 0.

The matrix form of Equation 72 is then given by

0

@

2

4

✓̃Z,L 0

0 ✓̃Z,H

3

5Zi,t
d

dZi,t

+
1

2
�2
ZZ

2
i,tI2⇥2

d2

dZ2
i,t

+

2

4

��LH �LH

0 0

3

5�

2

4

r̄L 0

0 r̄H

3

5

1

A

⇤

2

4

qD,ij,L,L qD,ij,L,H

0 qD,ij,H,H

3

5 =

2

4

0 0

0 0

3

5 , (74)

where I2⇥2 is an identity matrix. The definitions of the payoffs of the Arrow-Debreu default

claims give the boundary conditions

qD,ij,s,sD =

8

>

<

>

:

1,

0,

s = sD, Zi,t  ZD
ij,s,

s 6= sD, Zi,t  ZD
ij,s,

(75)

which are used to solve Equation 74 for the region Zi,t > ZD
ij,L. If we conjecture that the

Arrow-Debreu corporate default claims have the form

qD,ij,s,sD = hij,ssDZ
k
i,t, s, sD = {L,H} , (76)

Equation 74 becomes

0

@

2

4

✓̃Z,L 0

0 ✓̃Z,H

3

5 k +
1

2
�2
ZI2⇥2k(k � 1) +

2

4

��LH �LH

0 0

3

5�

2

4

r̄L 0

0 r̄H

3

5

1

A

⇤

2

4

hij,LL hij,LH

0 hij,HH

3

5 =

2

4

0 0

0 0

3

5 . (77)
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There exists a solution in the above equation if

det

0

@

2

4

✓̃Z,L 0

0 ✓̃Z,H

3

5 k +
1

2
�2
ZI2⇥2k(k � 1) +

2

4

��LH �LH

0 0

3

5�

2

4

r̄L 0

0 r̄H

3

5

1

A =

2

4

0 0

0 0

3

5 ,

(78)

which is given by solving the following quartic polynomial



1

2
�2
Zk(k � 1) + ✓̃Z,Lk � r̄L � �LH

� 

1

2
�2
Zk(k � 1) + ✓̃Z,Hk � r̄H

�

= 0. (79)

Because there are four distinct real roots in Equation 79, the general solution of the

Arrow-Debreu corporate default claims should be

qD,ij,s,sD =
4
X

m

hij,ssDmZ
km
i,t , (80)

where k1, k2 < 0 and k3, k4 > 0. Several restrictions help reduce the number of coefficients

hij,ssDm to evaluate.

First, given that Lim
Zi!1

qD,ij,s,sD = 0, only the negative roots become relevant to the

solution. The Arrow-Debreu corporate default claims therefore have the following form

qD,ij,s,sD =
2
X

m

hij,ssDmZ
km
i,t , (81)

where k1 and k2 denote, respectively, the negative roots of the quadratic equations



1

2
�2
Zk(k � 1) + ✓̃Z,Lk � r̄L � �LH

�

= 0 (82)

and


1

2
�2
Zk(k � 1) + ✓̃Z,Hk � r̄H

�

= 0. (83)

Second, the default probability in state s = L only depends on the information related to

that state, which suggests that hij,LL2 = 0.
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Third, Equation 77 indicates that

hij,HHm = hij,LHm✏(km), m = {1, 2} (84)

with

✏(km) = �
1
2�

2
Zk(k � 1) + ✓̃Z,Lk � r̄L � �LH

�LH

, (85)

which yields hij,HH1 = 0 given that ✏(k1) = 0, by definition of k (Equation 82).

Finally, under these conditions, the Arrow-Debreu corporate default claims are given by

the following expressions:

qD,ij,L,L =

8

>

<

>

:

hij,LL1Z
k1
i,t ,

1,

Zi,t > ZD
ij,L,

Zi,t  ZD
ij,L,

(86)

qD,ij,L,H =

8

>

<

>

:

hij,LH1Z
k1
i,t + hij,LH2Z

k2
i,t ,

0,

Zi,t > ZD
ij,L,

Zi,t  ZD
ij,L,

(87)

qD,ij,H,H =

8

>

<

>

:

hij,LH2✏(k2)Z
k2
i,t ,

1,

Zi,t > ZD
ij,H ,

Zi,t  ZD
ij,H ,

(88)

qD,ij,H,L = 0, (89)

where the three constants hij,LL1, hij,LH1, and hij,LH2 are the solutions of the three simulta-

neous linear equations

qD,ij,L,L |Zi=ZD
ij,L

= 1, qD,ij,H,H |Zi=ZD
ij,H

= 1, qD,ij,L,H |Zi=ZD
ij,L

= 0 . (90)

Solving for the above coefficients is straightforward. The first two boundary conditions in
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Equation 90 yield

hij,LL1 =
�

ZD
ij,L

��k1
, (91)

hij,LH2 =
1

✏(k2)

�

ZD
ij,H

��k2
, (92)

while, after substituing Equation 92 in Equation 87, in combination with the third boundary

condition of Equation 90, the last coefficient is given by

hij,LH1 = � 1

ZD
ij,L

k1✏(k2)

 

ZD
ij,L

ZD
ij,H

!k2

. (93)

H Default policy

The determination of a firm’s default policy requires knowledge on the default boundary that

prevails in each possible case. Consider first the case in which the firm defaults before the

Foreign government defaults.

H.1 Firm defaults before the Foreign government defaults

The firm i’s default policy in country j is characterized by a constant boundary ZD
ij that

maximizes the value of equity Eij,0 at time t = 0, along the standard smooth-pasting condition

(see Merton, 1973; Dumas, 1991). The first-order maximization yields

@Eij,0(Zi)

@Zi

=
(1� ⌧j)

r̄H � ✓̃Z,H
� !H

ZD
ij

(1� ⌧j)

 

ZD
ij

r̄H � ✓̃Z,H
�

CF
j + Iij

r̄H

!

✓

Zi

ZD
ij

◆!H�1

. (94)

Using the smooth-pasting condition @[Eij,0(Zi)]
@Zi

|Zi=ZD
ij
= 0, the default boundary is given by

ZD
ij |TDij<TG =

!H

�

CF
j + Iij

�

⇣

r̄H � ✓̃Z,H

⌘

(!H � 1) r̄H
. (95)
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H.2 Firm defaults after the Foreign government defaults

If a firm chooses to default after the government defaults, it can occur in either regime.

Hence, firm i located in country j has a set of two default boundaries, with ZD
ij,sD

being the

default boundary that prevails when the firm defaults in state sD = {L,H}.

If we assume that firm i does not default before the Foreign government defaults, the

cash flows entitled to shareholders before TG become irrelevant for the timing of default.

Hence, the optimal default policy is the one that maximizes equity value at time TG, which

is given by Eij,s,TG when the state is s = {L,H}. The default boundaries satisfy, for each

state s, the following standard smooth-pasting condition:

@Eij,s,TG(Zi)

@Zi

|Zi=ZD
ij,sD

= 0, s = sD = {L,H} . (96)

These state-contingent boundaries do not have analytical solutions and but can be ob-

tained numerically.

H.3 Timing of default

The following rules determine a firm’s final optimal default policy, which can be to default

before, during, or after the Foreign government defaults. The optimal default policy is char-

acterized by the default boundary ZD
ij that yields the greater value of equity at time t = 0. It

satisfies the following conditions:

ZD
ij =

8

>

>

>

>

>

<

>

>

>

>

>

:

ZD
ij |TD

ij <TG if ZD
ij |TD

ij <TG> ZG
i and Eij,0(Zi) |TD

ij <TG� Eji,0(Zi) |TD
ij >TG ,

ZD
ij,s |TD

ij >TG if ZD
ij,L |TD

ij >TG< ZG
i and Eij,0(Zi) |TD

ij >TG> Eji,0(Zi) |TD
ij <TG

ZG
i otherwise.

,(97)
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I Equity Return Volatility

This Appendix derives the level of equity return volatility. Applying Itô’s formula to the value

of equity Eij,t yields

dEij (t, Zi) = Eij,Z,tZi,t

⇣

✓Z,sdt+ �X,ddW
d
t + �X,fdW

f
t

⌘

+Eij,ZZ,tZ
2
i,t

⇥

�2
X,ddt+ �2

X,fdt+ 2⇢�X,d�X,fdt
⇤

(98)

=
⇥

✓Z,sEij,Z,tZi,t +
�

�2
X,d + �2

X,f + 2⇢�X,d�X,f

�

Eij,ZZ,tZ
2
i,t

⇤

dt

+Eij,Z,tZi,t

⇣

�X,ddW
d
t + �X,fdW

f
t

⌘

, (99)

where Eij,Z,t and Eij,ZZ,t denote the first and second derivatives of equity value Eij,t with

respect to Zi,t, respectively. Hence, the dynamics of the equity return at time t are given by

dEij,t

Eij,t

=
1

Eij,t

⇥

✓Z,sEij,Z,tZi,t +
�

�2
X,d + �2

X,f + 2⇢�X,d�X,f

�

Eij,ZZ,tZ
2
i,t

⇤

dt

+
Eij,Z,tZi,t

Eij,t

�

�X,ddW
d + �X,fdW

f
�

. (100)

Finally, the equity return volatility of firm i in country j is given by

�Eij,t
=

Zi,tEij,Z,t

Eij,t

q

�2
X,d + �2

X,f + 2⇢�X,d�X,f , (101)

where the first derivative Eij,Z,t equals

Eij,Z,t(Zi) =
1� ⌧j

r̄H � ✓̃Z,H
e✓X,H t (102)

+e✓X,H t!H

ZG
i

✓

Zi,t

ZG
i

◆!H�1
"

Eij,L,TG(ZG
i )� (1� ⌧j)

 

ZG
i

r̄H � ✓̃Z,H
�

CF
j + Iij

r̄H

!#

if the firm defaults after the Foreign government defaults
�

TD
ij � TG

�

and

Eij,Z,t(Zi) =
1� ⌧j

r̄H � ✓̃Z,H
e✓X,H t

�e✓X,H t !H

ZD
ij

(1� ⌧j)

 

ZD
ij

r̄H � ✓̃Z,H
�

CF
j + Iij

r̄H

!

✓

Zi,t

ZD
ij

◆!H�1

(103)
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if it defaults before the Foreign government defaults
�

TD
ij  TG

�

.

J Government

This Appendix computes the present value of the fiscal revenue received by the government,

derives the valuation of government debt, and determines the government’s default policy.

J.1 Fiscal revenue

The country j’s government receives corporate taxes at time t, denoted by TCj,t and equal

to

TCj,t =

Z

⌧j
�

Pj,tXij,t � Iij,t � CF
j,t

�

(1� 1
def,ij) dG

| {z }

(Ij)

Corporate taxes before firms default

+

Z

⌧j (1� ⌘)
�

Pj,tXij,t � �Iij,t � CF
j,t

�

1
def,ijdG(Ij)

| {z }

Corporate taxes from reorganized firms

+

Z

⌧j⌘
�

Pj,tXij,t � �Iij,t � CF
j,t

�

1
def,ijdG(Ij)

| {z }

Corporate taxes from new firms

, (104)

where the indicator 1
def,ij equals one if firm i in country j has defaulted (i.e., t � TD

ij ) and zero

otherwise, while G(Ij) denotes the distribution of firms in country j. When a firm defaults,

its size is reduced by the default costs and thus equals a fraction (1� ⌘) of the former firm

(second term of Equation 104). A new firm immediately enters the market to compensate

for the loss in output, which equals a fraction ⌘ of the former firm’s production (third term of

Equation 104). The debt coupon levels of the reorganized and the new firms are (1� ⌘)CF
j,t

and ⌘CF
j,t, respectively, while the corresponding operating costs are (1� ⌘) �Iij,t and ⌘�Iij,t.

The scaling parameter � < 1 ensures that default does not immediately reoccur after a firm

is reorganized. Its value is chosen such that the reorganized and the new firms start with the

same default probability as that of the former firm at t = 0.
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Labor income taxes related to employment in country j at time t equal to

TLj,t =

Z

⌧jIij,t (1� 1
def,ij) dG(Ij)

| {z }

Labor taxes from firms before default

+

Z

⌧j (1� ⌘) �Iij,t1def,ijdG(Ij)
| {z }

Labor taxes from reorganized firms

+

Z

⌧j⌘�Iij,t1def,ijdG(Ij)
| {z }

Labor taxes from new firms

. (105)

Total fiscal revenue in country j, denoted by FRj,t, combine Equations 104 and 105:

FRj,t = TCj,t + TLj,t (106)

= ⌧j

Z

⇥

Ri,t � CF
j,t

⇤

dG(Ij) (107)

= ⌧j
�

Xt � C̄F
j,t

�

(108)

where Ri,t denotes the firm i’s revenue, Xt ⌘
R

Ri,tdG(Ij) represents total revenue in the

country, and C̄F
j,t =

R

CF
j,tdG(Ij) aggregates all corporate debt coupons in country j.

The discounted fiscal revenue in country j, denoted by TRj,t, are given by

TRj,t = EQ
t



Z 1

t

⌧j
�

Xu � C̄F
j,u

�

e��g(u�t)du

�

(109)

= EQ
t



gt

Z 1

t

⌧j
�

Zu � C̄F
j

�

e��̄g(u�t)du

�

, (110)

where the last equation is obtained by scaling the variables Xt and C̄F
j,t by the growth of firm

revenue gt, as proposed in Appendix F, such that

Zt ⌘
Xt

gt
and C̄F

j ⌘
C̄F

j,t

gt
, (111)

while �g is the government’s rate of preference for time. The corresponding discount rate

that can be used to conveniently solve the scaled version of the model is given by

�̄g ⌘ �g � ✓X,H . (112)

I now solve for the present value of the Foreign government’s fiscal revenue, TRf,t, as-
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suming that the Foreign government defaults at time TG = inf{t � 0 | Zi,t  ZG
i } = inf{t �

0 | Zt  ZG}. Accounting for a temporary change in state s at time TG, the present value

of the Foreign government’s fiscal revenue is given by

TRf,t = ⌧fgt

(

EQ
t

"

Z TG

t

Zue
��̄g(u�t)du

#

+ EQ
t



Z 1

TG

Zue
��̄g(u�t)du

�

)

�⌧fgtEQ
t



Z 1

t

C̄F
f e

��̄g(u�t)du

�

(113)

= ⌧fgt

(

Zt

rG,H

+ ZG

✓

1

rG,L

� 1

rG,H

◆✓

Zt

ZG

◆!g

�
C̄F

f

�̄g

)

, (114)

with

EQ
t

"

Z TG

t

�

Zu � C̄F
f

�

e��̄g(u�t)du

#

= EQ
t



Z 1

t

Zue
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and
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from the strong Markov property for Brownian motion, with
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where the government’s discount rate, which accounts for a stochastic change in regime from

s = L to s = H, is given by

rG,s = �̄g � ✓̃Z,s +

⇣

�̄g � ✓̃Z,H

⌘

�
⇣

�̄g � ✓̃Z,L

⌘

�LH + �̄g � ✓̃Z,H
�LH1{s=L}. (119)
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J.2 Tax transfer

From Appendix J.1, the level of fiscal revenue, FRj,t, raised in country j at time t is given by

FRj,t = ⌧j

Z

⇥

Pj,tXij,t � CF
j,t

⇤

dG(Ij), (120)

while the fiscal expenses, FEj,t, of the country j’s government at time t are given by

FEj,t = Cj,t

�

1� �1{t�TG\ j=f}
�

+ TTj,t (121)

where TTj,t denotes the excess tax revenue transferred to the country’s representative resi-

dent.

In equilibrium, government revenue must equal expenses in each country such that govern-

ment’s budget is balanced at each point in time, i.e., FRj,t = FEj,t (see Aguiar and Amador,

2011). Hence, there is a tax transfer TTj,t that satisfies this condition, which is given by

TTj,t = ⌧j

Z

⇥

Pj,tXij,t � CF
j,t

⇤

dG(Ij)� Cj,t

�

1� �1{t�TG\ j=f}
�

. (122)

J.3 Sovereign debt

This section derives the value of the Foreign country’s government debt, which is character-

ized by a time-dependent debt coupon Cf,t = Cfe
✓X,H t.

The solution to the value of sovereign debt Dt(Z) is subject to a number of conditions.

First, when Zt tends to infinity, the value of the sovereign debt tends to the value of a risk-

free debt. Second, when default occurs at time TG, the debt payment is reduced from Cf,t

to (1� �)Cf,t.

The value of sovereign debt associated with the above boundary conditions, under the

risk-neutral measure Q, is given by

Dt(Z) = Et

"

Z TG

t

⇠u
⇠t
Cf,tdu

#

+ Et



Z 1

TG

⇠u
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(123)

= Cfgt

⇢

1
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✓

Zt
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+
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rP,L

✓

Zt

ZG

◆!H
�

, (124)
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where the debt value depends on the scaled debt coupon Cf = Cf,t/e
✓X,H t, following the

change of variables discussed in Appendix F.

J.4 Sovereign wealth and default policy

Sovereign wealth in the Foreign country, denoted by SWt(Z), can be written as the present

value of fiscal revenue TRf,t net of the country’s debt Dt(Z):

SWt(Z) = TRf,t(Z)�Dt(Z). (125)

The default policy, characterized by the default boundary ZG, maximizes sovereign wealth

SWt(Z) at time t = 0 subject to the usual smooth-pasting condition (see Merton, 1973;

Dumas, 1991).

The first-order maximization of sovereign wealth yields

@SWt(Z) |t=0

@Z
=

⌧f
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+ !g⌧f
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+
!HCf
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◆!H�1✓ 1
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.

Using the smooth-pasting condition @SW (Z)
@Z

|Z=ZG= ⌧f
rG,L

, we have
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. (127)

Solving Equation 127, we obtain the optimal sovereign default policy, which satisfies

ZG⇤ =
!HCf

⇣

1
r̄H

� 1��
rP,L

⌘

⌧f (!g � 1)
⇣

1
rG,H

� 1
rG,L

⌘ . (128)
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J.5 Probability of sovereign default

Given the default policy discussed in Appendix J.4, the probability that the Foreign government

defaults within a time period T is defined by

P
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0tT
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1

A ,(129)

where �(·) is the cumulative density of a standard normal distribution, and ✓Z,H is the physical

growth rate of the process Zt. The risk-neutral probability of defaulting obtains when the

risk-neutral growth rate, ✓̃Z,H , replaces the physical one, ✓Z,H .

K Welfare Impact of Sovereign Default

This Appendix derives the welfare effect of sovereign default risk for the Foreign representative

agent. It determines the compensation in consumption such that this agent is indifferent

between an economy without sovereign default risk and a compensated path with a temporary

lower growth rate due to a sovereign default.

K.1 Compensation factor and consumption path

Consider that the representative agent in the Foreign country has CRRA preferences and

maximizes expected utility

E


Z 1

0

e��t y
1��
t

1� �
dt

�

, (130)

where � is the coefficient of relative risk aversion. It is convenient to derive the general

solution and then analyze the case of logarithmic preferences (i.e., � = 1).

A risk-averse consumer would prefer a stable consumption growth rate to a path that

depends on sovereign default risk. Following Lucas (1987), I quantify this utility difference by
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multiplying the path subject to sovereign default risk by a constant factor 1 + �, choosing �

so that the agent is indifferent between the constant growth rate and the compensated path

with a temporary lower growth rate during the sovereign crisis.

Define the consumption path starting at the time of sovereign default TG. Under the

hypothesis that the Foreign government never defaults, the level of consumption in this

economy follows

yt = Xf,t with ln
�

Xf,t

�

⇠ N

✓

✓f,H � 1

2
�2
f , �

2
f

◆

, (131)

while it is assumed that, if the sovereign defaults, there exists a compensated consumption

stream given by

eyt = (1 + �)Xf,t with ln (Xf,t) ⇠ N

✓

✓f,s �
1

2
�2
f , �

2
f

◆

, s = {L,H} , (132)

where the growth rate starts at a reduced level ✓f,L and increases to ✓f,H with probability

�LH > 0 per unit of time, with ✓f,L < ✓f,H .

K.2 Expected welfare costs

Proposition: The Lucas’ welfare compensation required by the Foreign representative agent

to bear the risk of sovereign default at time TG is given by

� ⇠=
4✓

� + �LH

(133)

in the case of logarithmic preferences (� = 1).

The welfare costs at time t = 0, per unit of consumption at sovereign default TG, are

given by

EQ
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, (135)
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where !0 is the negative root of the quadratic equation 1
2�

2
Z!
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Proof: When equalizing the lifetime utility in both cases (i.e., with and without sovereign

default), starting at time TG, we have
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#
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, (137)

which yields, after multiplying by 1� �, to
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= E
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�

. (138)

Let us compute the left side of Equation 138 first. From Fubini’s theorem,6

E
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= X
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� � a
X
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f,TG , (141)

with

a ⌘ (1� �)

✓

✓f,H � 1

2
�2
f

◆

+
1

2
(1� �)2 �2

f < �, (142)

using the property that E0 [u
m
t ] = e(mµ+ 1

2m
2�2)t if ln (ut) ⇠ N (µt, �2t).

Let us now compute the right side of Equation 138, which is the case with sovereign

default. Denote the time of a change in state from s = L to s = H by T �, which is an

exponentially distributed random variable with expected value 1
�LH

. Using the law if iterated

6The order of integration can be interchanged because the integrand is absolutely integrable.
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expectations, we can first write
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=

Z t

TG

X1��
f,TGe

a(t�TG)e(1��)(✓f,L�✓f,H)(u�TG)F�(u)du

+

Z 1

t

X1��
f,0 ea

0(t�TG)F�(u)du (144)

=X1��
f,TGe

a(t�TG)
Z t

TG

�LHe
b(u�TG)du

+X1��
f,TGe

a0(t�TG)
Z 1

t

�LHe
��LH(u�TG)du (145)

=X1��
f,TG

2

4ea(t�TG)
�LH

⇣

eb(t�TG) � 1
⌘

b
+ e(a

0��LH)(t�TG)

3

5 (146)
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b
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�

, (147)

where F�(u) = �LHe
��LHu is the probability density function of an exponential distribution,

a0 ⌘ a+ (1� �) (✓f,L � ✓f,H) (148)

b ⌘ (1� �) (✓f,L � ✓f,H)� �LH < 0 (149)

and b < 0 given that ✓f,L < ✓f,H and �LH > 0.

Therefore, the expected utility is given by
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�

, (151)

where the necessary conditions a+ b�� < 0 and a�� < 0 are satisfied given Equations 142

and 149.

When combining Equations 141 and 151, the value of � satisfies the following equality:

1

� � a
= (1 + �)1�� 1

b

✓

b+ �LH

� � a� b
� �LH

� � a

◆

, (152)
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which yields, after simplifications, to

1 = (1 + �)1��

✓

� � a+ �LH

� � a� b

◆

(153)

= (1 + �)1��

✓

� � a+ �LH

� � a0 + �LH

◆

, (154)

where a+ b = a0 � �LH when combining Equations 148 and 149.

Hence, for � > 1, the solution of � satisfies

1 + � =



� � a+ �LH

� � a0 + �LH

�

1
��1

. (155)

Consider the case with logarithmic preferences (� = 1). For convenience, first take the

logarithm of the above solution, which yields

ln (1 + �) =
ln (� � a+ �LH)� ln (� � a0 + �LH)

� � 1
. (156)

Using L’Hospital’s rule,

lim
�!1

ln (1 + �) =
✓f,H � ✓f,L
� + �LH

, (157)

and the final solution is given by

� ⇠=
✓f,H � ✓f,L
� + �LH

=
4✓

� + �LH

. (158)

L Markov-switching Probability of Recession

This Appendix describes the Markov regime-switching model used to compute the probability

of an economic crisis in the US. Consider that two regimes characterize the mean and the

volatility of the US economy’s growth rate. The time-series of monthly industrial production

in the US, denoted by Xd,t, from January 1950 to December 2013, identifies the different
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regimes:

dXd,t

Xd,t

= ✓d,stdt+ �d,stdW
d
t (159)

st = 1, 2 with ✓d,1 > ✓d,2 and �d,1 < �d,2 (160)

where the transition of regimes is stochastic. The dynamics behind the switching process is

known and driven by the transition matrix:

P =

2

4

p11 p12

p21 p22

3

5 =

2

4

0.96 0.11

0.04 0.89

3

5 (161)

where pij denotes the probability of a switch from regime i to regime j. The volatility and

the mean of the growth rate and the transition probability matrix are obtained by maximum

likelihood.7 The annualized estimates for the mean growth rate are ✓Y,1 = 3.82% and ✓Y,2 =

0.94%, while they are �Y,1 = 1.85% and �Y,2 = 5.77% for the volatility. The two regimes

obtained from this estimation essentially capture a recession regime and growth regime. The

expected duration of a crisis (state 2) is 8.7 months over the period 1950-2013.

M Structural Estimation

The econometric methodology involves testing a set of over-identifying restrictions on a

system of moment equations, using the generalized method of moments (GMM) developed

by Hansen (1982).8 The GMM estimation procedure chooses the parameter estimates that
7I use the code developed by Marcelo Perlin, which is generously posted on James D. Hamilton’s home page

(http://weber.ucsd.edu/~jhamilto/software.htm).
8Compared with the Maximum Likelihood estimation, the GMM technique is particularly attractive in this

setting: first, the GMM approach does not require the distribution of equity return volatility and corporate
leverage to be normal. The asymptotic justification for the GMM procedure requires only that the distribution
of these series be stationary and ergodic, and that the relevant expectations exist; second, the GMM estimators
and their standard errors are consistent, even if the assumed disturbances are conditionally heteroskedastic,
which is the case for the series under consideration.
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minimize the quadratic form J(�✓) = m0(⌦)W (⌦)m(⌦) with

m(⌦) =
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(162)

where ⌦ is the set of parameters to estimate, W (⌦) is a positive-definite symmetric weighting

matrix, and m(⌦) is a vector of orthogonality conditions corresponding to the model’s pricing

errors (i.e., theoretical minus empirical moments).

The weighting matrix W (⌦) determines the relative importance of the various moment

conditions to give more weight to the moment conditions with less uncertainty.9 I estimate the

covariance matrix using the Newey and West (1987) approach to account for heteroskedas-

ticity and serial correlation (with 6 lags) with a correction for small samples. This covariance

matrix is used to test the significance of the parameters, whereas the covariance matrix of

the moments is used to test the significance of individual pricing errors.

As it is not possible to set every moment to zero, the key concern is the distance from

zero. The minimized value of the quadratic form J(⌦), which is �2-distributed under the null

hypothesis that the model is true, provides the goodness-of-fit test for the model.

9The optimal weighting matrix W (⌦) requires an estimate of the set of parameters ⌦; at the same time,
estimating the set of parameter ⌦ requires the weighting matrix. To solve this dependency, I account for a two-
stage estimation method. I first set the initial weighting matrix to be equal to the identity matrix W0 = I and
then calculate the parameter estimates. I then compute a new weighting matrix with the parameter estimates
obtained at the first stage.
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