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A. Variations in structural model implementations

Merton (1974) assumes that the total asset value (A) of a company follows a geometric Brownian

motion with instantaneous return volatility σA, the company has a zero-coupon debt with principal

D and time-to-maturity T , and the firm’s equity (E) is a European call option on the firm’s asset

value with maturity equal to the debt maturity and strike equal to the debt principal. The company

defaults if its asset value is less than the debt principal at the debt maturity. These assumptions lead

to the following two equations that link the firm’s equity value E and equity return volatility σE to

its asset value A and asset return volatility σA,

E = A ·N(d +σA
√

T )−D ·N(d),(1)

σE = N(d +σA
√

T )σAA/E.(2)

Equation (1) is the European call option valuation formula that treats the equity as a European call

option on the company’s asset value with strike equal to the debt principle D and expiration equal to

the debt maturity date T . Equation (2) is derived from equation (1) and provides a link between the

equity return volatility (σE) and the asset return volatility (σA). In the two equations, N(·) denotes

the cumulative normal density and d is a standardized measure of distance to default,

d =
ln(A/D)+(r− 1

2σ2
A)T

σA
√

T
,(3)

with r denoting the instantaneous riskfree rate.
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The Merton (1974) model is highly stylized in its assumptions on both the asset value dynamics

and the capital structure. For asset value dynamics, well-documented discontinuous price move-

ments and stochastic volatilities are ignored. For the capital structure, most companies have more

than just a zero-coupon bond. Despite its stylized nature, the model captures two major determi-

nants of credit risk — financial leverage and business risk — and combines them into a standard-

ized distance-to-default measure, which normalizes the financial leverage (log asset to debt ratio,

ln(A/D)) by the asset return volatility over the maturity of the debt (σA
√

T ). It is well known that

given the same financial leverage, firms with riskier business operations can have a higher chance

of default. The distance-to-default measure normalizes the financial leverage by the business risk so

that it reflects the number of standard deviations that the asset value is away from the debt principal.3

The standardized measure becomes comparable across firms that have different levels of business

risk.

To compute a firm’s distance to default, we take the company’s market capitalization as its equity

value E, the company’s total debt as a proxy for the principal of the zero-coupon bond D, and the

one-year realized stock return volatility as an estimator for stock return volatility σE . We further

assume zero interest rates (r = 0) and fix the debt maturity at T = 10 years for all firms. Since our

focus is on the cross-sectional difference across firms, choosing any particular interest rate level for

r or simply setting it to zero generates negligible impacts on the cross-sectional performance. We

solve for the firm’s asset value A and asset return volatility σA from the two equations in (1) and (2)

via an iterative procedure.

The literature has implemented the Merton (1974) model in several variations. This section

discusses the rationale behind our particular choices and investigates the effects of these variations

on the cross-sectional-explanatory power of the resulting MCDS and WCDS.

3Under the assumed dynamics, the log asset value lnAT has a normal distribution with a risk-neutral mean of µ =
lnAt +(r− 1

2 σ2
A)T and a variance of V = σ2

AT . Hence, the negative of the distance to default −d = (lnD−µ)/
√

V can
be formally interpreted as the number of standard deviations by which the log debt principal exceeds the mean of the
terminal log asset value.
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A.1. Maturity choices

By regarding equity as an option on the asset, the Merton model uses the option maturity T to con-

trol the relative contribution of asset volatility to the equity value and hence default probability. We

choose a relatively long option maturity to give more weight to the asset volatility in the determi-

nation of the default probability. By contrast, the KMV implementation as documented in Crosbie

and Bohn (2003) sets the maturity T to one year, matching their default probability forecasting hori-

zon. In Panel A of Table 1, we show how the maturity choice affects the cross-sectional explanatory

power of the model on the five-year CDS spread. As in the main text of the paper, each date, we

use a random half of the universe to calibrate the model and generate CDS valuations on the whole

universe. The left side in the panel reports the time-series average of the cross-sectional R-squared

estimates on the in-sample half of the universe for both MCDS and WCDS valuation. The right side

reports the corresponding average R-squared estimates on the out-of-sample half of the universe.

[Table 1 about here.]

The results in panel A of Table 1 show that choosing a short maturity such as one year in the

Merton model can generate significantly lower cross-sectional explanatory power on the five-year

CDS spreads. The performance improves and reaches a plateau once the chosen maturity is five

years or longer.

A.2. Debt principal proxy

KMV proposes to approximate the debt principal by the firm’s current liabilities plus one half of

its long-term debt, but we find that using total debt generates slightly better performance than the

KMV choice for explaining the cross-sectional variation of the five-year CDS. Nevertheless, we

accommodate alternative leverage measures in our WCDS construction. In panel B of Table 1, we

compare our implementation (“Total Debt”) with the implementation of using current liability plus

half of long-term liability (“CL+LL/2”). In the latter case, we use the ratio of total debt to market

capitalization to replace the ratio of current liability plus half of long-term liability to the market

capitalization as the alternative leverage measure. The results show that using current liability plus
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half of long-term liability generates lower cross-sectional explanatory power for MCDS; however,

by accommodating the other measure as an alternative leverage measure in the WCDS construction,

the two choices generate similar performances for WCDS.

A.3. Solving for asset value and asset return volatility

To solve for the firm’s asset value and asset return volatility, several studies, e.g., Crosbie and Bohn

(2003), Vassalou and Xing (2004), Duffie, Saita, and Wang (2007), and Bharath and Shumway

(2008), propose a more computationally intensive iterative approach that involves the time series

history: Starting with an initial guess on asset return volatility σA, they solve for the history of the

firm’s asset value based on the firm’s equity value history and equation (1). Then, they estimate

the asset return volatility σA from log changes on the solved asset value series. Duan (1994) and

Ericsson and Reneby (2005) propose to embed this iterative procedure into a maximum likelihood

framework.

Computing σA from the asset value time series can be problematic when changes in the asset

value are induced by financing or investment decisions instead of operating activities. In such cases,

returns on assets, upon which the asset return volatility σA should be measured, can be quite different

from log changes in the asset value series. Duan, Sun, and Wang (2012) propose to scale the asset

value by the corresponding book value as an approximate correction for this issue. Directly solving

the two equations (1) and (2) completely circumvents this scaling issue.

In panel C of Table 1, we analyze the effect of different asset return volatility calculation meth-

ods. We label our method as the two-equations-two-unknowns (TETU) approach, and we consider

two alternative approaches based on asset value history (AVH). In AVH-I, we take the suggestion

from Duan, Sun, and Wang (2012) and scale the extracted asset value by the corresponding book

value of total asset. We compute log returns on this scaled asset value and estimate the sample

standard deviation of the return series over the past year as the asset return volatility. The cross-

sectional explanatory power of MCDS computed from this approach averages around 57% and 55%

for the two sub-samples, respectively, markedly lower than the average performance of the MCDS

computed from our TETU approach at 65% and 64%.
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Scaling the asset value by its book value removes the impact of financing activities such as merg-

ers and issuance or retirement of stocks or debt, but it also has the un-intended effect of mitigating

the operating activities because the book value of equity can change due to both financing activities

(e.g., issuing or retiring stock) and operating activities (retained earnings). The latter should not be

excluded from the asset value change as it is an integral part of the return on asset. As a result,

the sample standard deviation computed from the scaled asset value time series may not accurately

reflect the true asset return volatility.

In AVH-II, we do not use the asset value history directly, but rather rely on the stock return

history and adjust the stock return by the asset-stock sensitivity. Specifically, at each date, we first

compute the daily stock total return based on the adjusted stock price series (adjusted for splits and

dividend payments), and then convert this stock return into asset return based on the hedge ratio

implied by the Merton model:

(4) RA
t+1 =

[
RE

t+1
][Et

At
· 1

N(dt +σA
√

T )

]
,

where RE
t+1 in the first bracket denotes the daily stock return, and the second bracket contains the

hedge ratio from the Merton (1974) model. We compute the asset return volatility σA from this

asset return (RA
t+1) time series. The return relation in (4) is analogous to the volatility relation in

(2) used in our TETU approach. Had the hedging ratio (the second bracket in equation (4)) been a

constant, this AVH-II approach would have generated the same result as the TETU approach. The

fact that the hedging ratio varies over time can lead to some differences. The last row in panel C of

Table 1 shows that with the AVH-II approach, the the cross-sectional explanatory power for MCDS

becomes 65% for the in-sample half, and 63% for the out-of-sample half, very close to our TETU

approach. Given the similar performance, we choose the TETU approach because it is much less

computationally intensive and it fits our cross-sectional focus better.

A.4. Equity as a barrier option

A commonly proposed alternative to the Merton (1974) model is to assume as in Leland (1994) and

Leland and Toft (1996) that the firm can default any time before the debt maturity when the firm’s
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asset value falls below a certain threshold. In this case, equity becomes a call option on the firm’s

asset value with a knock-out barrier. If one sets the barrier to the debt principal value and assumes

zero rates, the model implies that the equity value is equal to the intrinsic value of the knock-out

barrier option, E = A−D, and the market value of debt is equal to its principal value. Equity return

volatility no longer plays a role in determining the firm’s asset value. The “naive” Merton alternative

proposed in Bharath and Shumway (2008) can be justified under this barrier option assumption. In

panel D of Table 1, we compare the Merton model performance with this alternative on the simple

implementation of the Leland model. This simple alternative performs better than the Merton model

implementation with T = 1, but worse than our Merton model implementation with T = 10.

B. Local polynomial regressions and bandwidth choice

In constructing MCDS and WCDS, we have used local polynomial regressions to capture the poten-

tially nonlinear relations between two variables x and y,

(5) y = f (x)+ e,

where f (·) denotes the local polynomial form and e denotes the regression error.

To illustrate the specifics of the regression, suppose that we have N observations of the pair

(yi,xi)
N
i=1 and we intend to generate an estimate for ŷk at x = xk. The estimate ŷk is obtained from a

weighted least square regression,

(6) ŷk = Xk(X>WkX)−1X>Wky,

where y denotes the N× 1 vector of the dependent variable observations and X is a matrix made

of polynomials of x. Our MCDS construction involves a local quadratic regression, in which case

X = [1,x,x2] is an N×3 matrix. Our WCDS construction involves many local linear regressions, in

which case X = [1,x] is an N×2 matrix. To construct the weighting matrix Wk, we use a Gaussian
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kernel, with Wk being a diagonal matrix with the ith diagonal element given by,

(7) W i
k = exp

(
−(xi− xk)

2

2h2

)
,

where h is the bandwidth that controls the relative weighting of different observations. Intuitively,

observations that are closer to xk obtain higher weights. The weight declines as the distance |xi−xk|

increases, with the declining speed controlled by the bandwidth h. A higher bandwidth assigns more

uniform weights across observations and thus generates more smoothing. In the limit of h→ ∞, Wk

becomes an identity matrix and we are essentially running just one global regression.

Under normal distribution assumptions on x and the Gaussian kernel, textbooks, e.g., Simonoff

(1996), often propose a default optimal bandwidth choice that balances between smoothing and

fitting,

(8) ĥ = (4/3)(1/5)
σx/N(1/5),

where σx denotes the standard deviation of x.

To show how the bandwidth choice affects the cross-sectional performance both in sample and

out of sample, we repeat the exercise under different bandwidth choices while setting the maturity

to ten years. Table 2 shows the effects of the bandwidth choice on the cross-sectional explanatory

powers of MCDS and WCDS. When we set the bandwidth to half of the default choice, the in-sample

fitting for both MCDS and WCDS becomes better, but the out-of-sample becomes worse, showing

signs of out-of-sample instability. The default bandwidth choice generates both good in-sample and

out-of-sample performances. As we set the bandwidth to twice the default bandwidth or higher, the

in-sample and out-of-sample performance becomes very much similar to each other. In our main

text analysis, we set the bandwidth to twice the default choice.

[Table 2 about here.]

A related choice for the local polynomial regression is the order of the polynomial. If the re-

lations are reasonably flat, one can choose an order of zero and essentially perform local averages
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around each target region. However, when the relation has a steep slope, a local average regression

can generate biases at the boundaries when the averaging can only use data from one side. In this

case, a local linear regression can help reduce the bias at the boundaries. We use the local linear

regression to link ln(CDS/MCDS) to each additional firm characteristic. When we map ln(RCDS)

to the market observation ln(CDS), we choose a local quadratic regression because the observed

relations between the two often show a convex shape. The second-order polynomial helps capture

this observed curvature well even with a large bandwidth.
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TABLE 1
Variations in structural model implementations and cross-sectional explanatory power

Entries report the time-series averages of the R-squared estimates from cross-sectional regressions
of log market CDS quotes on the logarithm of MCDS and WCDS, respectively. Each day, we take
a random half of the universe for calibration and generate predictions on the whole universe. The
left side reports the average R-squared on the in-sample half of the universe whereas the right side
reports the average R-squared on the out-of-sample half of the universe. Panel A shows the effect
of maturity choice in the Merton model implementation. Panel B shows the effect of debt principal
choice either as total debt or current liability (plus half of long-term liability (CL+LL/2). Panel C
shows the effect of different asset return volatility calculation methods. Our default implementation
solves the asset return volatility together with the asset value from two equations implied by the
Merton model. We label it as the two-equations-two-unknowns (TETU) approach. We also consider
two alternative approaches, where the asset return volatility is estimated as the sample annualized
standard deviation of daily log returns on the extracted asset value over the past year. We label them
as asset-value-history (AVH) approaches I and II. Finally, panel D compares the CDS computed
from the Merton model to that from a simplified version of the Leland model, where equity is a
barrier option on the asset and is valued as the difference between the asset value and the debt
principal.

Choices In-sample R2 Out-of-sample R2

MCDS WCDS MCDS WCDS

Panel A. Maturity choice
1 0.40 0.71 0.37 0.66
3 0.58 0.75 0.56 0.71
5 0.62 0.76 0.61 0.73

10 0.65 0.77 0.64 0.74
15 0.66 0.78 0.65 0.75
20 0.66 0.78 0.65 0.75

Panel B. Debt principal choice
Total Debt 0.65 0.77 0.64 0.74
CL+LL/2 0.62 0.77 0.62 0.75

Panel C. Asset return volatility estimation method choice
TETU 0.65 0.77 0.64 0.74
AVH-I 0.57 0.74 0.55 0.70

AVH-II 0.65 0.77 0.63 0.73

Panel D. Different model assumptions
Merton 0.65 0.77 0.64 0.74
Leland 0.63 0.75 0.61 0.70
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TABLE 2
Bandwidth choice in local polynomial regressions and the cross-sectional explanatory power

Entries report the time-series averages of the R-squared estimates from cross-sectional regressions
of log market CDS quotes on the logarithm of MCDS and WCDS, respectively. Each day, we take a
random half of universe for calibration and generate predictions on the whole universe. The left side
reports the average R-squared on the in-sample half of the universe whereas the right side reports
the average R-squared on the out-of-sample half of the universe. The performance shows the effects
of bandwidth choice for the local quadratic and local linear regressions in the MCDS and WCDS
construction, with ĥ denoting the textbook default choice.

Bandwidth In-sample R2 Out-of-sample R2

Choice MCDS WCDS MCDS WCDS

.5ĥ 0.67 0.81 0.63 0.71
1ĥ 0.66 0.79 0.64 0.74
2ĥ 0.65 0.77 0.64 0.74
3ĥ 0.65 0.76 0.64 0.74
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