
Internet Appendix: Labor Income, Relative Wealth Concerns, and the Cross-

section of Stock Returns

This Appendix includes some results that, although not essential to understand the main

arguments of the paper, provides complementary material and further support to the evidence

presented in the body of the paper. The Appendix has three main parts, and two figures

referenced in the paper. In Appendix A, we summarize the optimal portfolio choice problem

of an agent with either endogenous or exogenous keeping up with the Joneses preferences.

For a detailed derivation, we refer the reader to Gómez, Priestley and Zapatero (2009). In

Appendix B we present the portfolio tests of the country level analysis. This is a robustness

test. We also perform portfolio tests at the divisional level, but these are less likely to

be biased by the sorting procedure, therefore we leave them in the body of the paper. In

Appendix C we derive a linear approximation to the stochastic discount factor (SDF) implied

by our model. We then apply the SDF to the estimation of the prices of risk by the General

Method of Moments (GMM).
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Appendix A

0.1 Exogenous keeping up with the Joneses preferences

In this subsection we analyze the implications of a version of the keeping up with the Jone-

ses preferences of Abel (1990) and Gaĺı (1994). In particular, in the economy we consider

investors are endowed with an utility function1

(1) u(c, C) =
c(1−α)

1 − α
Cγα,

where c denotes the investor’s consumption of the single consumption good, the economy’s

numeraire; C is the division average or per capita consumption; α > 0 is the (constant)

relative risk-aversion coefficient and 1 > γ ≥ 0 is the “Joneses parameter.”

Here, workers represent agents endowed with non-tradable income. For instance, their

human capital, that will materialize into wage income, or entrepreneurial income. Call w0
k the

initial aggregate endowment of non-financial wealth for workers in division k; wk denotes the

final (t = 1) random value of their non-tradable income. Workers face incomplete markets

because they cannot trade their human capital (due to moral hazard issues) and have no

access to financial markets; therefore, they cannot hedge their income risk.

Since each investor takes C as exogenous and common, the typical aggregation property

of the CRRA utility functions allows us to replace all the investors in a given division by

a representative investor with utility function (1) endowed with the aggregated investors

income without affecting the equilibrium prices. At time t = 0 each representative investor

is endowed with a share of the local firm (unit value by assumption); hence, c0 = 1 in all

divisions.

We can write the problem’s first order condition as a function of the investor’s consump-

tion and the workers relative wealth, w/c:

(2) E
(
r c−α(1−γ)(1 + w/c)αγ

)
= 0.

1To simplify the notation, we drop the division subindex k for the moment (thus, all variables to be

introduced next apply to investors in any division).
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Notice that, in the absence of keeping up with the Joneses behavior (γ = 0), the previous

condition reduces to E (r c−α) = 0, the standard CRRA Euler equation.

Condition (2) allows us to solve for the representative investor’s optimal portfolio. Since

financial markets are complete, there exists a mimicking portfolio Xw that maps the workers

relative income onto the investment opportunity set such that w/c = w0(R + r′Xw). Fol-

lowing Gaĺı (1994), given w0 and Xw, for small values of E(r), the optimal portfolio of the

representative investor of division k can be approximated as a function of α, γ and the risk

adjusted risk premia Ω−1E(r):

(3) x∗k =
θkγk

1 − γk
Xw
k +

1

αk(1 − γk)
Ω−1E(r),

with θk =
w0

k

1+w0
k
, the workers initial wealth as a proportion of the division’s total wealth

(investor’s plus non-diversifiable wealth).

Notice that even if there is a friction (θk > 0) that prevents full risk-diversification for a

set of agents (the workers), investors will hold well diversified portfolios unless they exhibit

some degree of keeping up with the Joneses behavior (γk > 0). Thus, it is important to

emphasize that investors’ portfolios will be locally biased if and only if both keeping up with

the Joneses behavior and a market friction exist.

0.2 Endogenous keeping up with the Joneses preferences

In this section, we discuss the endogenous keeping up with the Joneses preferences presented

in DeMarzo, Kaniel and Kremer (2004). In this specification agents consume two types of

goods: c, which has the interpretation of a global good, and wk, a local good, like housing

services. Utility over consumption for these two goods is given by:

u(c, w) =
1

1 − α
(c1−α + δw1−α).

The parameter δ > 0 specifies the relative importance of the local good. All consumption

takes place at the end of the period. At time t = 0, investors are endowed with shares of

the firm that produces the global good. Call c0
k the aggregate value of those shares at the

beginning of the period for agents in division k. For simplicity, let c0
k = 1 in all divisions.
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Workers in each division will receive a fixed number w̄k of units of the local good at time

t = 1. In equilibrium, the relative price of the local good in terms of the global good at

t = 1 is given by pk = δ
(
ck
w̄k

)α
. As it would be expected, the scarcer the (fixed) local good

endowment relative to the (stochastic) global good consumption, the higher the relative price

of the former. The investor’s hedging demand for this risk will trigger the endogenous keeping

up with the Joneses behavior in this model. Financial markets are complete.

If workers can not diversify their endowment risk (due, for instance, to short-selling

constraints and moral hazard), Proposition 2 in DeMarzo, Kaniel and Kremer (2004) shows

that the representative investor’s marginal utility is given by:

(4) uc(c, p) = c−α
(
1 + δ1/αp1−1/α

)α
.

Let p0 = δ
(
c0

w̄

)α
denote the relative price at t = 0 of one unit of the non-diversifiable, local

good endowment of workers at time t = 1. Recall that we normalized the initial investor’s

shares endowment c0 = 1. Hence, p0 = δw̄−α. The present value of the workers endowment

is therefore w̄0 = δw̄1−α.

In this model, the relative wealth at t = 0 of the workers in division k as a proportion of

the total division wealth is given by θk =
w̄0

k

1+w̄0
k
. Call w̄kpk/w̄

0
k the return on the workers wealth

(in units of the global good) over the period. Like in the exogenous preferences specification,

under complete (financial) markets, there exists a portfolio Xw
k such that w̄kpk

w̄0
k

= R+ r′Xw
k .

After these definitions, we can write the approximate function for division k investor’s

optimal portfolio as follows:

(5) x∗k =
θk(αk − 1)

αk
Xw
k +

1

αk
Ω−1E(r).

Notice that, in this model, the optimal portfolio for the logarithmic investor (α = 1)

coincides with the benchmark, well diversified portfolio Ω−1E(r). No relative wealth concern

arises even in the presence of local, non-diversifiable wealth. Only for α > 1 should we

observe a local bias in portfolio holdings.
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Appendix B

0.1 Country Level Portfolios

We complement here the results of Section 4 in the paper. In that section we test the im-

plications of the model using individual stocks. In addition, it is standard in empirical asset

pricing tests to use portfolios of stocks as test assets in order to reduce the errors in variables

problem that plagues the two-step Fama and MacBeth (1973) estimation methodology. Fur-

thermore, it is common to use factor mimicking portfolios to proxy risk factors in order to be

able to interpret the estimated prices of risk in terms of returns (risk premia). Furthermore,

model performance that focuses on pricing errors is easier to undertake with the use of well

diversified portfolios.

We construct a factor mimicking (FM) portfolio for the orthogonal state labor income

risk as follows. For each stock i, we use the slope coefficient on the orthogonal labor factor

β̂Fi estimated in equation (6) in the paper until the fourth quarter of 1964, to rank stocks in

1965. Next, we form three equally weighted portfolios according to the size of the coefficient.

We then add one year of quarterly data. We re-estimate the coefficient, rank the stocks, sort

them into three portfolios and compute their quarterly returns in 1966. We continue adding

one year and re-estimating the coefficients until we have thirty-six quarterly observations in

the time-series regressions. At this point, we start rolling the data one year at a time: adding

on a new year and taking off the first year. We continue this process until the end of the

sample.

The above procedure results in three portfolios, from the first quarter of 1965 to the

final quarter of 2011, formed in year t based on the estimated coefficient on orthogonal

labor income estimated until year t − 1. The returns of the factor mimicking portfolio are

computed as the returns of the portfolio (P1) formed by the stocks with the highest one third

of coefficient estimates minus the returns on the portfolio (P3) formed by the stocks with the

lowest one third of coefficient estimates. We represent by rFMt the return of the state factor

mimicking portfolio at t.

As test assets, we consider the Fama and French twenty-five size and book to market

portfolios that have become standard in asset pricing tests due to their large spread in

returns. In addition, we form test portfolios based on the sorted orthogonal betas from

individual stocks estimated in equation (6) in the paper. The reason for this is that Daniel

and Titman (2011) and Lewellen, Nagel, and Shanken (2010) note that testing asset pricing

models using portfolios formed on firm characteristics, such as size and book to market, can

lead to spurious conclusions about the usefulness of a proposed factor. This is because the

factor structure of the portfolios is so strong that any proposed factor that is only weakly

correlated with size or book-to-market will appear to price the test assets. That is, testing a
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new proposed factor on test assets sorted only by size and book-to-market is likely to have very

low power. In order to alleviate this concern, we follow the recommendations in Daniel and

Titman (2011) and Lewellen, Nagel, and Shanken (2010) and sort stocks by lagged loadings

on our proposed factor. We use these beta-sorted portfolios together with the twenty-five

Fama and French portfolios sorted by size and book-to-market in the cross-sectional tests of

our model.

To generate the beta-sorted test portfolios we repeat the procedure discussed above and

construct ten and twenty equally weighted portfolios.2 We calculate excess returns on all the

test portfolios by subtracting the one month T-bill rate from the actual returns.

Panel A of Table 1 in this Appendix shows the average return spread between the portfolio

containing the stocks with the highest orthogonal betas (P1) and the portfolio containing

the stocks with the lowest orthogonal betas (P3, P10 and P20, respectively). Notice that,

consistent with the model’s prediction, portfolios with a higher orthogonal beta carry a

lower return relative to portfolios with lower orthogonal beta. This difference is economically

significant and above 1% per quarter. We test whether the difference between both portfolios

is different from zero. In the first two cases (P1-P3 and P1-P10) we strongly reject that the

difference is zero. In the third case (P1-P20) we can only reject it marginally, however it

should be noted that the size of the spread on the P1-P20 portfolio is larger than the spread

on the P1-P3 portfolio. The lower level of statistical significance could be due to the smaller

number of stocks in the 20 portfolios.

Panel B of Table 1 presents the average excess return on each of the twenty beta-sorted

portfolios and the correlation coefficient between each portfolio and the factor mimicking

portfolio.3 Notice that as we move from top to bottom in the table, the average return on

the portfolios increases while the correlation decreases. That is, portfolios more correlated

with the factor mimicking portfolio offer a better hedging against deviations from the Joneses

consumption (including non-diversifiable wealth) and trade at a higher price (lower expected

return). Using the full sample, the coefficient β̂FMp is obtained by regressing the return on

each of the portfolios against the return on the factor mimicking portfolio and the market

excess return:

(1) rp,t = αp + βFMp rFMt + βermp rerm,t + up,t.

2All the results presented in the paper are generally robust to the use of market capitalization weighted

portfolios.
3When examining portfolios, we use excess returns in order to test whether the models’ pricing errors are

equal to zero.
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where rp,t is the excess return on portfolio p, rFMt is the return on the factor mimicking

portfolio, rerm,t is the excess return on the aggregate stock market portfolio, and up,t is the

residual. All but the three top betas are strongly statistically significant. The spread in

returns and betas indicates that orthogonal local labor income is closely related to stock

returns. It is worth mentioning that if the distributions of betas and the prices of risk

are different across divisions, the estimates of αp from regression (1) cannot be interpreted

as KEEPM pricing errors even if the KEEPM model is true. The fact that the spread in

average returns in panel B of Table 1 is not monotonic suggests so.4 Furthermore, nine of the

estimate of αp are statistically significant although the patterns is the alpha have no clear

relation to the portfolios sorting. In order to address the concern that the distribution of

betas and prices of risk could be different across divisions, we will repeat the time series and

cross-section tests at the divisional level in section 5 in the paper.

We now turn to analyzing the cross-sectional performance of the KEEPM. As test assets,

we use the excess returns on the twenty beta-sorted portfolios plus the Fama and French

twenty-five size and book to market portfolios.5 The cross sectional regressions regress excess

returns in each quarter on the portfolio betas on the factor mimicking portfolio based on the

orthogonal state labor income return, β̂FMp , and the stock market return, β̂ermp , estimated in

(1):

(2) rp = λ0
t + λFMt β̂FMp + λermt β̂ermp + ξp.

The results from this cross-sectional regression are reported in Panel A of Table 2 in this Ap-

pendix. The quarterly price of risk on the orthogonal factor mimicking portfolio is negative,

economically important at -0.88% per quarter, and statistically significant. The adjusted R2,

R
2
, is 66% indicating a good measure of fit.6 Notice that the intercept, which should be

zero, is positive and statistically significant, which indicates that the model is not correctly

specified. As noted above, one potential reason for this that we explore later is that we

restrict the price of risk on the orthogonal labor income risk to be the same across all stocks

irrespective of where the stocks come from.

4We thank the referee for this comment.
5All cross-sectional results are qualitatively analogous when the prices of risk are estimated with respect

to the one-year lagged betas.
6Following Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b), we calculate R2 as[

V arc(rp) − V arc(ξp)
]
/V arc(rp), where V arc is the cross-sectional variance, rp is the average return and ξp

is the average residual. R
2

is the adjusted R2.
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For comparison, the second row of Panel A reports the price of risk, λerm, and the average

R
2

from the cross-sectional regression of the CAPM. As in previous tests of the unconditional

CAPM, the estimated price of risk is statistically not different from zero and the R
2

is only

8%. The third row of Panel A presents the results from the three-factor Fama and French

model. The prices of risk associated with size, λsmb, and book-to-market, λhml, are positive

and statistically different from zero. The average R
2

is 73% and similar to the value from

the KEEPM.

In order to assess whether there is any additional explanatory power in the size and

book-to market risk factors relative to that of the KEEPM, in the fourth row of Panel A, we

estimate the KEEPM whilst including the smb and hml risk factors in (2):

(3) rp = λ0
t + λFMt β̂FMp + λermt β̂ermp + λsmbt β̂smbp + λhmlt β̂hmlp + ξp.

The price of risk on the orthogonal factor mimicking portfolio is -0.896, virtually identical

to the original value reported in the first row, and also statistically significant. The estimated

price of risk on the book-to-market factor remains positive and significant, although the size

risk premium is smaller and only marginally significant and the R
2

is 75%. We interpret these

findings as evidence that the model’s prediction of a negative price of risk on the Joneses

risk-hedging factor remains robust to the inclusion of other risk factors known for their ability

to explain the cross-section of the US stock returns. In light of the results in the fourth row

of Panel A, we conclude that the orthogonal labor income factor commands a price of risk

not explained by the size and book-to-market risk premia. Appendix C shows that these

results are robust, and even stronger, when estimated by GMM.

To provide a more formal test of the performance of the KEEPM relative to the CAPM

and the three-factor Fama and French model, Panel B presents the square root of the squared

pricing errors for each test portfolio and each model. We define the pricing error of a given

portfolio as the difference between the actual portfolio return and the expected return ac-

cording to the cross-sectional model. Overall, the size of the pricing errors of the KEEPM

are small relative to the portfolio returns in Panel B of Table 1. In particular, the average

pricing error is 0.287, about ten times smaller than the average portfolio return. The pricing

errors from the CAPM, as expected, are large relative to those of the other models, with an

average value of 0.483. A comparison of the pricing errors of the KEEPM with those of the

three-factor Fama and French model reveals that they are of similar magnitude (the average

value is 0.241) and smaller in eight out of the twenty-five Fama and French portfolios (Panel
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B.1) and eleven out of the twenty beta-sorted portfolios (Panel B.2). When we add the size

and book-to-market risk factors to the KEEPM in the last column, the average pricing error

decreases to 0.222 and the pricing errors are smaller than those from the three-factor model

for eleven of the Fama and French portfolios and thirteen of the beta-sorted portfolios.

Panel B.3 includes the average cross-sectional pricing errors from each model for the

forty-five portfolios of panels B.1 and B.2. We also test whether the pricing errors are jointly

zero.7 Except for the three-factor Fama and French model, the test rejects the hypothesis

that the pricing errors are jointly zero, although it should be emphasized that the pricing

errors are economically small and very similar in size for the KEEPM and the Fama-French

three factor model and actually smaller for the model that incorporates all four factors.

The evidence presented so far shows strong support at the country level for the main

prediction of the model: a negative and significant price of risk on the orthogonal state

labor income return factor. In the time-series, the test portfolios’ betas with respect to

the orthogonal factor mimicking portfolio are strongly significant in most cases and give a

reasonable and statistically significant spread in returns. In the cross-sectional tests, the

KEEPM performs well both in its own right and in comparison with the three-factor Fama

and French model, and the orthogonal factor mimicking portfolio is shown to be robust to

the inclusion of the size and book-to-market risk factors.

7This is a Chi-sq test given as α̂′cov(α̂)−1α̂, where α̂ is the vector of average pricing errors across the

forty-five portfolios and cov is the covariance matrix of the pricing errors. p-values in brackets.
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Appendix C

0.1 A linear approximation to the Stochastic Discount Factor (SDF)

We will derive this approximation both for the endogenous and the exogenous case. Like in

the derivation of the optimal portfolio, the only difference will lay on the interpretation of

the deep parameters.

Let us start with the exogenous Joneses specification. The investor’s (first order condition)

optimal consumption choice is given in equation (2). This condition holds for any asset

i and any division k. The first-order approximation to the marginal’s utility is given by

uc(ck, wk/ck) ≈ uc(c
0
k, w

0
k/c

0
k) + uc,c(c

0
k, w

0
k/c

0
k)(ck − c0

k) + uc,w/c(c
0
k, w

0
k/c

0
k)(wk/ck − w0

k/c
0
k) =

uc(1, w
0
k) [1 − α(1 − γ)(r′x∗k +R− 1) + θk αγ(r′Xw

k +R− 1)] .

Replacing the later expression in (2) we obtain the following condition:

(1) E (ri [τk − (r′x∗k +R− 1) + θkbk(r
′Xw

k +R− 1)]) = 0,

where τk = 1
αk(1−γk)

and bk = γk
1−γk

. We multiply (1) by ωk, the proportion of country

market capitalization in division k and add up across all divisions:

(2) E

(
ri

[
H−1 − (rM +R− 1) +

∑
k

ωkθkbk(r
w
k +R− 1)

])
= 0,

where H−1 =
∑

k ωkτk is the aggregate risk aversion coefficient. We have used the market

clearing condition
∑

k ωkx
∗
k = xM and the definitions rM = r′xM and rwk = r′Xw

k . After

regressing the workers non-diversifiable income onto the country market portfolio return –

equation (2) in the paper– we can write rwk = βkrM + rFk . We replace the later expression

in the Euler equation. Moreover, we assume that E(ri)(R− 1) ≈ 0 for small values of E(ri)

and the (net) risk-free rate, R− 1. This results into the following Euler equation:
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(3) E

(
ri,t

[
H−1 − (1 −

K∑
k=1

ωkθkbkβk)rM +
K∑
k=1

ωkθkbkr
F
k

])
= 0.

We turn now to the endogenous Joneses specification. The investor’s optimal consumption

choice is given in equation (4). This expression can be linearly approximated as follows:

uc(ck, pk) ≈ uc(c
0
k, p

0
k) + uc,c(c

0
k, p

0
k)(ck − c0

k) + uc,p(c
0
k, p

0
k)(pk − p0

k).

Replacing the values of c0
k, p

0
k, and ck in the later expression we obtain the following:

uc(ck, pk) ≈ uc(1, δkw̄
−αk
k )

[
1 − αk(r

′x∗k +R− 1) + θk (αk − 1)

(
w̄kpk
w̄0
k

− 1

)]
.

We replace the later expression in (4). Given that w̄kpk
w̄0

k
= R + r′wk , we obtain condition

(1) with τk = 1
αk

and bk = αk−1
αk

. Following the same procedure as in the exogenous case we

arrive at equation (2) and finally equation (3).

Equation (3) implies an approximate linear expression to the stochastic discount factor:

(4) m ≈ c0 + cMrM +
K∑
k=1

ckr
F
k ,

where c0 = H−1, cM =
∑K

k=1 ωkθkbkβk−1 and ck = ωkθkbk. We define c ≡ (cM , c1, ..., ck, ..., cK)

as the vector of coefficients; recall that rF = (rM , r
F
1 , ..., r

F
k , ..., r

F
K) denotes the vector of fac-

tor returns. Hence, we can write the stochastic discount factor is a more compact way as

m ≈ c0 + crF .

Define the forecast error at time t for the parameter vector c as vt(c) ≡ rt(c0 +crF ), such

that, according to the equilibrium orthogonality condition (3), its unconditional expectation

E(vt(c)) = 0. Define the sample mean of the forecast errors over the T observations as:

µT (c) ≡ 1

T

T∑
t=1

vt(c).
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The GMM methodology estimates the parameter vector c that minimizes

ĉ = arg min
c

(µ′T (c)ΣµT (c)),

where Σ is a positive definite weighting matrix. Under GMM this weighting matrix is the

inverse of a consistent estimator of the spectral density matrix of vt at frequency zero, defined

as S =
∑∞

j=−∞E[vtv
′
t−j] = T · var(µT ). Hansen (1982) shows that it is optimal to use the

inverse of a consistent estimator of S as the weighting matrix, since the estimated parameter

vector has the lowest variance asymptotically. When Σ is the optimal weighting matrix S−1,

the asymptotic standard errors are given by var(ĉ) = 1
T

(D′TS−1DT )−1, where DT = ∂µT (c)
∂c′ .

0.2 GMM Estimation of the Prices of Risk

In this subsection, we approach the estimation of prices of risk implied by the KEEPM

model in sections 0.1 in this Appendix and 5.2 in the paper using the GMM procedure

described above. This allows for any heteroscdasticity in the residuals to be controlled for,

a potential weakness of the OLS based Fama-MacBeth methodology. Whilst it is possible

to use GLS in the Fama-MacBeth methodology, there are well know problems associated

with the GLS method in cross sectional regressions. In particular, in finite samples the

covariance matrix could be poorly estimated (see Cochrane (2005)). In order to capture

possible heteroscedasticity in the residuals, we have decided to estimate the prices of risk

using one-step GMM which provides robust standard errors. This approach is based on the

derivation of an approximate linear stochastic discount factor (SDF) in Appendix C.1 based

on the model equilibrium condition for the prices of risk (4).

Equation (2) in section 0.1 shows the Fama-MacBeth cross-section regression that we

used to estimate the orthogonal price of risk on the factor mimicking portfolio (common

across all portfolios), λFM , and the market price of risk, λerm. We now use the approximate

Euler equation (3) and the implied stochastic discount factor, m, in (4) to estimate the

corresponding loadings and prices of risk using the GMM approach. In particular, for each

portfolio p, the orthogonality condition is given by:

(5) rp
(
c0 + cermrerm + c

FM
rFM

)
= 0,

where rFM represents the return on the (orthogonal) labor risk factor-mimicking portfolio,
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common across all divisions; c
FM

is the corresponding factor loading in the SDF. We also

follow Cochrane (2005), who notes that, given a stochastic discount factor m, a risk factor

vector rF , and factor risk premia vector λ, E(mrF − rF + λ) = 0. This results into two

additional orthogonality conditions:

(
c0 + cermrerm + c

FM
rFM

)
rerm − rerm + λerm = 0,

(6) (
c0 + cermrerm + c

FM
rFM

)
rFM − rFM + λFM = 0,

which we can incorporate into the moment conditions given by (5) to produce efficient es-

timates of the SDF loadings (c0, cerm, and c
FM

), the prices of risk λerm and λFM , and their

associated standard errors (see Li, Vassalou and Xing (2006)). As testing portfolios we use

the 20 state beta-sorted portfolios from Table 1 Panel B of this Appendix plus the twenty-five

Fama-French portfolios sorted first by size from smaller to larger and sorted then within each

quintile by book-to-market from lower to higher. The system involves N = 20 + 25 + 2 = 47

orthogonality conditions to estimate L = 5 parameters.

In Table 3 of this Appendix, the KEEPM Model (second row) is supported by the data,

with a sizeable quarterly premium (-2.045) significant at almost the 1% level. The corre-

sponding coefficient in the pricing kernel, c
FM

, is also significant at the 1% level. Looking at

the KEEPM model extended with the Fama and French factors (bottom row), all the esti-

mated prices of risk are very similar to those reported in Table 3 Panel A with a quarterly

premium on the orthogonal labor risk factor equal to -0.936, significant at the 5% level.

We estimate next the prices of risk from the KEEPM model per division. Table 4 of

the Appendix presents the coefficients and prices of risk estimated in each division using

the orthogonality conditions in (5) and (6). When comparing these estimates and their

statistical significance with those in Table 4 in the paper, obtained using the Fama-MacBeth

methodology, we find, with the exception of MA and EN which have a larger estimates, very

similar results in terms of the size and the extent of the statistical significance of the estimate

prices of risk.

Summarizing, the results regarding the statistical significance of the estimated prices of

risk are robust to two different estimation techniques, the traditional Fama-MacBeth cross

sectional regressions (reported in tables 2 of the Appendix and 4 of the paper) and the GMM

technique (reported in tables 3 and 4 of the Appendix) which is robust to heteroscedacticity.
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