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Juan-Pedro Gómez Richard Priestley, and Fernando Zapatero
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Labor Income, Relative Wealth Concerns, and the Cross-section of Stock

Returns

Abstract

The finance literature documents a relation between labor income and the

cross-section of stock returns. One possible explanation for this is the hedging

decisions of investors with relative wealth concerns. This implies a negative risk

premium associated with stock returns correlated with local undiversifiable

wealth, since investors are willing to pay more for stocks that help their hedging

goals. We find evidence that is consistent with these regularities. In addition,

we show that the effect varies across geographic areas depending on the size and

variability of undiversifiable wealth, proxied by labor income.



I. Introduction

In this paper, we propose a channel that can explain the relationship between labor

income and the cross-section of stock returns. In particular, the optimal hedging strategy of

an investor with relative wealth concerns results in a multifactor equilibrium model in

which the undiversified wealth of the investor’s “peers” (for which, we argue, the

component of labor income unrelated to stock market returns is a good proxy) is a

negatively priced risk factor. We find strong empirical evidence in support of this channel.

Over the years, the finance literature has accumulated evidence of a connection

between labor income and the cross-section of stock returns. Mayers (1972) is credited as

the first to suggest the analysis of labor income as a measure of human capital in an asset

pricing setting. In two influential papers, Campbell (1996) and Jagannathan and Wang

(1996) use growth in labor income as a measure of the return on human capital. Their

intuition is that human capital, a fundamental part of the economy’s endowment, has been

typically overlooked in the capital asset pricing model (CAPM). The inclusion of the return

to human capital in empirical asset pricing models is able to explain a much higher portion

of the cross-sectional variation in stock returns relative to the standard CAPM. Lettau and

Ludvigson (2001a), (2001b) and Santos and Veronesi (2006) both introduce variables based

on labor income into conditional asset pricing models and find that the explanatory power

of the model increases substantially.
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We consider a different channel. Our empirical evidence shows that labor income is

related to the cross-section of stock returns through the hedging activity of investors with

relative wealth concerns. This idea is based on the KEEping up Pricing Model (KEEPM)

of relative wealth concerns developed in Gómez, Priestley, and Zapatero (2009). Investors

hedge the risk that their reference group or “peers” will experience an income shock by

investing in securities strongly correlated with the income of these peers. Equilibrium prices

reflect the price pressure resulting from these hedging activities.

Relative wealth concerns implies restrictions on the relationship between human

capital and stock returns not previously identified in the literature. First, the risk premium

associated with the labor income factor is negative, since investors are willing to pay extra

for securities that hedge this risk. Second, this relation must hold at the local level, since

the main source of relative wealth concerns pertains to the surroundings of the investor.

We test the implications of the KEEPM using U.S. data. We begin using individual

securities and study their relationship to the smallest unit for which we have disaggregated

labor income, the state. We then undertake similar tests, using both individual securities

and stock portfolios, at the US Census divisions level since this level of aggregation has

been employed to examine local effects in the literature.1 In addition, given the larger size

1The U.S. Census partitions the country in nine divisions (see Figure A1 in the Internet Appendix at

www.jfqa.org).
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of the divisions (some states have low Gross Domestic Product (GDP) and few stocks) we

can perform further qualitative analysis. In particular, the model predicts that the hedging

demand will be higher the higher the volatility of the factor investors want to hedge and

the higher the relevance of that factor, as measured by the amount of undiversifiable labor

income. The estimation of the model deep parameters shows evidence consistent with this

prediction.

We compare the cross-sectional performance of our model with the performance of

the CAPM and the 3-factor Fama and French (1992) model. In terms of pricing errors and

R2, our model performs much better than the CAPM and similarly to the three-factor

model. Our risk factor is robust to the inclusion of the size and book-to-market factors

from the Fama and French model. Finally, to double-check the local nature of the effect, we

jointly test the local (state or division) factor and the aggregate (country) factor. We show

that when we include both the country and the local (divisional or state) factors, both are

priced and their risk premia are negative.

The literature has discussed two main sources of relative wealth concerns. On one

hand, Keeping Up with the Joneses preferences, first introduced in the finance literature by

Abel (1990) and further analyzed by Gaĺı (1994); they show that in the absence of a market

friction, optimal portfolio holdings are identical across investors and only market risk is

priced. Brown, Ivković, Smith, and Weisbenner (2008) find that individual market
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participation increases with average community market participation. On the other hand,

DeMarzo, Kaniel, and Kremer (2004) present a model of endogenous, price-driven relative

wealth concerns; this idea is applied to technological investment and investment cycles in

DeMarzo, Kaniel, and Kremer (2007) and to financial bubbles in DeMarzo, Kaniel, and

Kremer (2008). Ravina (2007) presents evidence of this behavior using credit card data.

Gómez (2007) analyzes its impact on portfolio choice. Garćıa and Strobl (2011) study the

implications for information acquisition. Shemesh and Zapatero (2016) study its

relationship with population density. Johnson (2012) finds that there exists a premium for

stocks that hedge against income inequality.

Our paper is closely related to Korniotis (2008) who considers a consumption-based

model of external habit formation as in Campbell and Cochrane (1999) for different

partitions of the U.S. (the four U.S. census regions and eight Bureau of Economic Analysis

(BEA) regions). These findings are in the spirit of Hong, Kubik, and Stein (2008). They

show that the cross-section of stock returns depends on the census division where the

headquarters of the firm are located. In this line of research, Korniotis and Kumar (2009)

and Bernile, Korniotis, Kumar, and Wang (2015) show the connection between stock

returns and local economic conditions.

Although we do not perform any direct test on portfolio holdings in this paper, the

KEEPM yields partial equilibrium results that are consistent with those in the home bias
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literature that started with French and Poterba (1991).2 Subsequently, a strand of the

literature has shown a similar effect at the domestic level termed “home bias at home.”

Coval and Moskowitz (1999), for instance, study the investment behavior of money

managers and observe that they favor (with respect to what would be optimal) local firms.

Ivković and Weisbenner (2005) and Massa and Simonov (2006) show that U.S. and Swedish

households, respectively, exhibit a strong preference for local investments. In our setting,

investors in a given location (state or division) are willing to pay a premium for assets

positively correlated with the divisional, non-diversifiable wealth. A related idea is the

“familiarity” argument of Huberman (2001), who show that investors favor positions in

local stocks. However, in our empirical work, we find that one factor that can explain the

local bias is the correlation between labor income and security returns –regardless of the

location of the firm.

The paper is organized as follows. We derive the KEEPM in Section II. Section III

describes the data. In Section IV, we perform our baseline tests at the country level,

pooling all securities in the tests. In Section V, we perform similar tests at the U.S. census

divisional level. We then repeat the basic tests using aggregate labor income (instead of

state labor income) as a proxy for undiversifiable wealth in Section VI. We close the paper

with some conclusions. In addition, we have prepared an internet Appendix (we refer to it

2For a literature review of the home bias puzzle see Lewis (1999).
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throughout the paper as “the Appendix”).

II. The KEEPM

We consider the two main specifications discussed in the literature: exogenous and

endogenous keeping up with the Joneses preferences. In both specifications, we assume a

one-period economy with K geographical denominations. For the moment, let us assume

that these denominations represent country divisions indexed by k (we will use both states

and U.S. Census divisions in the empirical tests). In each division there is a local firm. At

time t = 0, each firm issues one share that will yield a random payoff in time t = 1. We

normalize the initial value of the firm to 1. Let rk denote the random excess return on a

share of firm k. The vector r = (r1, ..., rk, ..., rK)′ has a joint distribution function F (r),

with mean return vector E(r) and covariance matrix Ω. Firm shares can be freely traded

across divisions. There is also a risk-free bond in zero net supply. Let R denote the return

on the risk-free bond. Financial markets are complete. In each division there are two types

of agents: “investors” and “workers,” endowed with non-diversifiable stochastic local labor

or entrepreneurial income.

We show in the Appendix that, whether endogenous or exogenous, relative wealth

concerns and non-diversifiable income implies the following optimal portfolio for the

representative investor in division k:
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x∗k = θkbkX
w
k + τk Ω−1E(r),(1)

where Xw
k represents a mimicking portfolio that maps the workers endowment return onto

the investment opportunity set; θk denotes the the relative wealth at t = 0 of the division’s

workers as a proportion of the total division’s wealth. The parameters b and τ represent the

portfolio bias and the risk-tolerance coefficient, respectively, with values:

JONESES b τ

Exogenous γ
1−γ

1
α(1−γ)

Endogenous α−1
α

1
α

Notice that, given these definitions, there will exist a bias in portfolio holdings

towards the Joneses portfolio (hence, consumption) only if 0 < γ < 1, in the exogenous

specification, and α > 1, in the endogenous specification.3

Market clearing in financial markets at time t = 0 requires that
∑

k ωkx
∗
k = xM , with

xM the market portfolio, with excess return rM , and ωk = c0k/
∑

k c
0
k. Spot market clearing

at time t = 1 implies that workers consume the proceedings of their (non-tradable)

endowment, w, and investors the return on their portfolios, c. We regress the workers

non-diversifiable wealth return, rwk = r′Xw, onto the country market portfolio excess return:

3The constraint on α > 1 is already present in DeMarzo, Kaniel, and Kremer (2004).
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(2) rwk = βk rM + rFk .

Portfolio βk xM represents the projection of the workers income onto the security market

line spanned by the aggregate market portfolio xM . Define the portfolio Fk ≡ Xw
k − βk xM

as an orthogonal factor portfolio with return rFk = r′Fk and mean return µFk . After these

definitions, the workers’ portfolio can be expressed as a linear combination of the market

portfolio and a zero-beta (orthogonal) portfolio: Xw
k = Fk + βkxM . We replace Xw

k in

equation (1):

x∗k = θk bk Fk + θk bk βk xM + τk Ω−1E(r).

This portfolio has three components. Portfolio Fk is division-specific and can be interpreted

as a hedge portfolio: portfolio Fk hedges investors from the risk involved in keeping up with

the local non-diversifiable Joneses risk. Given the orthogonality conditions, this portfolio

plays the role of a division-specific, zero-beta asset. The projection component, βkxM ,

corresponds to that part of the workers wage income perfectly correlated with the country
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market portfolio. The standard component, Ω−1E(r), is the highest global Sharpe ratio

portfolio and it is common across divisions.

We define the coefficient H as the inverse of the risk-tolerance coefficient

H−1 =
∑

k ωkτk. After imposing market clearing, we solve for equilibrium expected returns:

E(r) = H Ω

[(
1 −

K∑
k=1

ωkθk bk βk

)
xM −

K∑
k=1

ωkθk bk Fk

]
.(3)

Define the matrix F of dimension N × (K + 1) as the column juxtaposition of the market

portfolio and the orthogonal portfolios, F ≡ (xM , F1, ..., Fk, ..., FK). Let

rF ≡ (rM , r
F
1 , ..., r

F
k , ..., r

F
K) denote the vector of factor returns. Additionally, define the

wealth vector as

W ≡ H

(
1 −

K∑
k=1

ωkθk bk β1,−ω1θ1 b1, ...,−ωkθk bk, ...,−ωKθK bK

)′
.

Given these definitions, the equilibrium condition of equation (3) can be re-written as

E(r) = ΩFW . Pre-multiplying both terms of the previous equation by the transpose of

matrix F we obtain the equilibrium condition for the vector of prices of risk,

λ ≡ (λM , λ1, ..., λk, ..., λK), with the market risk premium, λM , as the first component.

Thus, λ = F ′ΩF W , where F ′ΩF is a matrix of dimension (K + 1) × (K + 1) whose first
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column (row) includes the market return volatility and a vector of K zeros and the

remaining elements are the covariances between Fk and Fk′ The expected risk premia on

the market and the zero-beta portfolios will be:

λM = H

(
1 −

K∑
k=1

ωkθk bk βk

)
σ2
M ,(4)

λk = −H

(
ωkθk bk var(rFk ) +

∑
k′ 6=k

ωk′θk′ bk′ cov(rFk , r
F
k′)

)
.(5)

The market portfolio, xM , is partially correlated with each division’s

non-diversifiable risk. This correlation is captured by the coefficient βk and offers partial

hedging against deviations from the local Joneses (in case θb > 0). Therefore, the

equilibrium price of risk for the country market risk factor, λM , is different from the

symmetric equilibrium. The parenthesis in equation (4), which in the case of a symmetric

equilibrium would be 1, captures the net price of risk on the aggregate market risk factor,

after discounting the (capitalization weighted) Joneses hedging effect. If the weighted value

of the betas is higher than the country market beta (i.e., 1), the market price of risk could

turn negative: if the hedging properties of the market portfolio against Joneses deviations

outweigh the compensation for systematic risk, the net expected market price of risk
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becomes negative.

More importantly, if there is a relative wealth concern (b > 0) in the economy and

workers income is not diversifiable (θ > 0), there should be K additional risk factors (one

per division) to the market risk factor. Regarding their sign, the model predicts that if

cov(rFk , r
F
k′) > 0 for all k, k′, then every λk will be negative.4 To understand this result,

suppose for the moment that the zero-beta portfolios were orthogonal (cov(rFk , r
F
k′) = 0) for

all k, k′. Then, the price of risk would be strictly negative: An asset that has positive

covariance with portfolio Fk will hedge the investor in division k from the risk of deviating

from the non-diversifiable (local) income of the Joneses. This investor will be willing to pay

a higher price for the asset thus yielding a lower return. In equilibrium, the price of risk for

Fk would be, in absolute terms, increasing in bk and the volatility of the hedge portfolio. If

the covariance across zero-beta portfolios is positive, this just increases the absolute value

of the negative prices of risk for every division’s hedge portfolio. Solving for W we obtain:

E(r) = βF λ,(6)

where βF = ΩF (F ′ΩF )−1 denotes the K × (K + 1), in general, for N assets,

4Notice that this is a sufficient condition satisfied by our data in Panel B of Table 4.
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N × (K + 1), matrix of betas, with the first column as the market betas for all assets.

We call this pricing model that captures the equilibrium implications of relative

wealth concerns, both under the exogenous and endogenous specifications KEEPM,

(“KEEping up Pricing Model”). In the following sections, we test the models’ restrictions

in equations (4), (5), and (6).

III. Data Description

To construct the risk factors that will proxy relative wealth concerns, we need to

make some assumption regarding the geographical dimension of “the peers.”For example,

should they be defined at the city, state, division, region or national level? Arguably, the

relevance of keeping up with the Joneses should be higher (larger γ in the model) at the

state level, the smallest unit for which we have data on labor income, than at the divisional

or national levels. Therefore, from Compustat, we obtain annual information on

headquarter location for the period 1963 to 2011. Consistently with previous studies, we

exclude Hawaii and Alaska to avoid biases in our results. Using this information, we obtain

stock returns for all NYSE, AMEX and NASDAQ stocks from CRSP for 1960Q1 to

2011Q4.

For each stock, we proxy local non-diversifiable wealth using personal income data

from the BEA corresponding to the state where the company’s headquarters are located.
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Following Santos and Veronesi (2006), we calculate the return on personal income per

capita in quarter t by dividing the difference in personal income between quarter t and

quarter t− 1 by the personal income in quarter t− 1, all per capita.

Following equation (2) in the model, for each state s we regress the return on state

level personal income per capita on the CRSP aggregate stock market excess return and use

the residuals from this regression as the orthogonal return on state labor income, denoted

by rFs . As a robustness test, we replace the state labor income with the divisional labor

income. Following the same orthogonalization procedure, we obtain for each division k the

time series of orthogonal divisional labor income return, denoted by rFk . Finally, in order to

compare the local versus country effect of the Joneses behavior, we calculate the U.S.

country labor income per capita. The corresponding orthogonal country labor income

return is denoted by rC .

Regarding the test assets, we use individual assets and assets sorted into portfolios.

Using individual assets, we test in the first place the cross-sectional predictions of the

model at the country level. This requires using all U.S. individual stocks jointly, regardless

of their headquarters location, as test assets. This approach presumes that the price of risk

associated to the non-diversifiable labor income risk is the same across all states and

divisions.

To compare the performance of our model with other standard models in the
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literature (notably, the CAPM and 3-factor Fama and French (1992) model), we replace the

individual stocks with portfolios. At the same time, we construct factor mimicking

portfolios for the orthogonal labor income risk, both at the aggregate level and in the

divisional tests. In addition to the local risk factors, we also require the excess return on

the aggregate stock market portfolio (ERM), as proxied by the CRSP aggregate index, the

small minus big market capitalization portfolio (SMB) and the high minus low book to

market portfolio (HML). All these portfolios are taken from the web site of Kenneth

French. The quarterly premia on ERM, SMB and HML are 1.33%, 0.85%, and 1.32%,

respectively, over the sample period.

IV. Country Level Tests

Our first test of the model assumes that the price of risk for the local orthogonal

labor income risk is unique across states and divisions. This is a strong assumption that we

will relax in the following section where the tests will be conducted division by division.

The country level tests in this section offer the first evidence in favor of the model’s main

prediction: namely, that there exists a negative price of risk on the orthogonal state labor

income return. We also compare the cross-sectional performance of our model relative to

the performance of other established asset pricing models in the literature.

Starting in 1960, we use five years of quarterly data and regress the return on every
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individual stock i in the U.S. on a constant, the orthogonal state labor income return, rFs,t,

and the CRSP aggregate stock market excess return, rRM,t:
5

ri,t = αi + βFi r
F
s,t + βRM

i rRM,t + ui,t.(7)

We then add one quarter of data and re-estimate. We keep adding one quarter of returns

and re-estimating the orthogonal beta and the market beta until we have 36 quarters. After

that point, every time a new quarter of data is added, the first quarter is removed and the

process is repeated. The time series of quarterly estimated rolling betas starts in 1965Q1

and ends in 2011Q4. We use this time series to run cross-sectional regressions, quarter by

quarter, to estimate the price of risk on the state orthogonal labor income factor:6

ri = λ0t + λFt β̂
F
i + λRM

t β̂RM
i + ξi.(8)

Table 1 presents the time series averages of the intercept λ0, and the prices of risk, λF and

λRM where absolute t-values are reported in parenthesis. As predicted by the model, the

average price of risk on the orthogonal labor income risk is negative and strongly significant

5We assume that a firm that is headquartered in state s in 1963 is headquartered in that state in 1960,

1961 and 1962.

6All cross-sectional results are qualitatively analogous when the prices of risk are estimated with respect

to the one-year lagged betas.
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with an absolute t-value equal to 2.27.7 The size of the orthogonal risk premium is

economically significant at -0.198. This implies that a stock with a unit beta on the

orthogonal local labor income factor has a quarterly return twenty basis points lower than a

stock with a zero beta. This lower return reflects the fact that a stock with a unit beta is a

good hedge for orthogonal local labor income and its price has been pushed up, and hence

returns are lower. The market price of risk, λRM, is 1.4% per quarter implying an annual

equity market risk premium of around 5.5%. However, the intercept at 1.9% per quarter,

which should be equal to the risk free rate of return, is large suggesting some model

misspecification. One possible explanation for this is the restriction that the price of risk

associated with the local relative wealth concerns is forced to be the same for every stock.

Another explanation is that there are missing risk factors.8

The findings in Table 1 illustrate the importance of labor income in explaining the

cross-section of individual stocks returns. The negative estimate on the price of risk

associated with this local factor suggests that stocks that have a hedging potential for

7Recall that the estimate sign on λFt should be negative. Therefore the test is one-sided.

8The positive and statistically significant intercept may be capturing risk resulting from other factors

that might have a positive price. For example, hedging demands from peer-dependent preferences related

to the agents concern for status (as in Roussanov (2010)). To assess whether the negative prices of risk on

the local risk factor are affected by this, we have re-estimated the cross-sectional regressions omitting the

intercept. We find that this has no material impact on the size, sign or statistical significance of the prices of

risk on the local factors in the KEEPM model. Results are available from the authors. We thank the referee

for suggesting this test.
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investors have lower expected returns, since investors are willing to pay a premium to hold

these stocks.

It is standard in empirical asset pricing tests to use portfolios of stocks as test assets

in order to reduce the errors in variables problem that plagues the two-step Fama and

MacBeth (1973) methodology. In addition, it is common to use factor mimicking portfolios

to proxy risk factors in order to be able to interpret the estimated prices of risk in terms of

returns (risk premia). Furthermore, model performance that focuses on pricing errors is

easier to undertake with the use of well diversified portfolios. On the other hand this

approach also has well-known problems, as documented in Daniel and Titman (2011) and

Lewellen, Nagel, and Shanken (2010), for example. We perform these tests for robustness

purposes and discuss them in the Appendix. The results corroborate the findings of this

section.

V. Tests Per Division

We now focus on the divisional level. The objective is to test if the intensity of

keeping up with the Joneses varies across U.S. divisions and whether this is reflected in the

size of the orthogonal labor income price of risk in a way consistent with the predictions of

the model. Every state belongs to one of the nine Census Bureau divisions: West South

Central (WS), Pacific (PA), East South Central (ES), Mountain (MO), East North Central
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(EN), South Atlantic (SA), West North Central (WN), Middle Atlantic (MA), and New

England (NE).

A. Individual Stocks

Stocks are first sorted into divisions according to the location of the company’s

headquarters. We then follow the procedure explained in Section IV and estimate, for each

stock in the division, the betas with respect to the orthogonal state labor income and the

U.S. stock market beta from equation (7). We then run Fama-MacBeth cross-sectional

regressions at each quarter t from 1965Q1 through 2011Q4 using as dependent variable the

stock return, and as independent variables the estimated orthogonal, β̂Fi , and market,

β̂ERM
i , betas. The only difference with respect to the cross-sectional tests in the previous

section is that we use only stocks headquartered within each division. In particular, for

each division k we run:

ri,k = λ0t,k + λFt,kβ̂
F
i + λERM

t,k β̂ERM
i + ξi,k.(9)

Panel A of Table 2 reports the intercept, λ0k, and the average prices of risk, λFk and

λERM
k for each division k. Considering a one sided test, all the orthogonal prices of risk are

negative and significant at the 5% level with the exception of MA, only marginally
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significant at the 10%, and WN. In the cases of SA, PA, ES and MO, the price of risk is

statistical significant at the 2.5% level, with SA and PA significant at the 0.5% level. In

terms of size, there is a wide discrepancy across divisions: from the smallest in absolute

value in the case of MA (-0.165) to the largest corresponding to MO (-0.324).

As a robustness test, we replace the orthogonal state labor income rFs with the

orthogonal divisional labor income, rFk . We then run, for each division, the time series

regression of equation (7) for every stock in the U.S., regardless of the location of the

company’s headquarters. We estimate the corresponding betas with respect to the

orthogonal divisional labor income and the market. These betas replace β̂Fi and β̂ERM
i ,

respectively, in equation (9). The average prices of risk λ0k, λ
F
k and λERM

k for each division k

are reported in Panel B of Table 2. The prices of risk on the orthogonal factors are, overall,

very similar to those of Panel A. In the case of MA, ES and MO the price of risk increases

marginally in absolute terms (more notably in ES), whereas in EN and WN it decreases,

remaining practically the same in the other divisions.

The differences in the prices of risk of Panels A and B can be understood as follows.

Arguably, as reasoned in Section III, the relevance of keeping up with the Joneses should be

higher (larger γ in the model) at the state level. On the other hand, as it is clear from

equation (5), the size of the orthogonal price of risk depends on the volatility of the “local”

(i.e. divisional) orthogonal factor and the weighted covariance with the orthogonal factors
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from other divisions. Insofar as these factors are correlated, holding or shorting stocks from

other divisions may affect the average orthogonal price of risk. These two effects partially

compensate each other. A comparison of Panels A and B in Table 2 reveals that the net

effect varies across divisions although it is, on average, very small. These results suggest

that most of the hedging against the risk of deviating from the local Joneses consumption

comes from the stocks of firms that are located closer to the source of non-diversifiable

labor income, consistent with the documented home-bias at home phenomenon in U.S.

portfolio holdings (Coval and Moskowitz (1999) and Brown at al. (2008)).

B. Portfolios

We construct a factor mimicking portfolio for the orthogonal state labor income risk

in each division: Each year t, we sort stocks within each division into three equally-weighted

portfolios, from the first quarter of 1965 to the final quarter of 2011, based on the

coefficient on orthogonal labor income, β̂Fi , estimated until year t− 1. The returns of the

factor mimicking portfolio are computed as the returns of the portfolio (P1) formed by the

stocks with the highest one third of coefficient estimates minus the returns on the portfolio

(P3) formed by the stocks with the lowest one third of coefficient estimates. We represent

by rFMk,t the time-series return on the state factor mimicking portfolio in division k.

Similarly, to generate the beta-sorted test portfolios we repeat the procedure
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discussed above and construct ten equally weighted portfolios per division.9 We calculate

excess returns on all the test portfolios by subtracting the 1-month T-bill rate from the

actual returns.

Panel A of Table 3 reports the average return spread between portfolio P1 and

portfolio P3 (alternatively, portfolio P10) for each division. All spreads are negative. As in

Panel A of Table 2, the spreads P1–P3 are not uniform in size across divisions. They range

from −0.429 in NE to −2.081 in PA. In four out of the nine divisions (MA, PA, ES, and

WS) the spread is different from 0 at least at the 5% confidence level (at the 0.5% level in

the case of PA and WS). When we analyze P1–P10, the spread increases in (absolute) size

for all divisions except PA, where it marginally decreases, and ES.

In Panel B of Table 3, we recalculate the spreads using the divisional labor income

return in each division. We use all stocks regardless of their headquarter’s location. The

effect varies from division to division. Looking first at P1–P3, compared to Panel A, the

spreads increase in all divisions except in PA, ES, and WS, where they decrease, although

they still remain strongly significant. All spreads are now statistically significant at least at

the 5% level, which is probably due to the fact that the portfolios contain more stocks.

When we compare P1–P10 with P1–P3 in Panel B of Table 3, the spreads increase in

9All the results presented in the paper are generally robust to the use of market capitalization weighted

portfolios.
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(absolute) size in all divisions.

We report the excess returns for each portfolio in Panel C of Table 3. The portfolios

in this panel are created by sorting stocks within each division with respect to the

coefficient β̂Fi estimated with respect to the orthogonal state labor income return. Virtually

all returns are strongly different from zero and they tend to increase in size as we move

from P1 to P10 indicating that there is a reasonable spread in returns driven by the

loadings on the mimicking portfolio.

Panel D of Table 3 reports, for each division k and each portfolio p, the coefficient

with respect to the orthogonal state labor income factor mimicking portfolio, rFMk,t , from:

rp,k,t = αp,k + βFM
p,k r

FM
k,t + βERM

p,k rERM,t + up,k,t.(10)

Most of the estimated coefficients are statistically significant. They decrease is size as we

move from portfolios with higher covariance with the orthogonal state labor income (P1) to

portfolios with lower covariance (P10). This, together with the negative price of risk on the

orthogonal risk factor reported in Table 2, implies that portfolios more correlated with the

orthogonal state labor income carry a lower expected return.

We study now the cross-sectional performance division by division. In each division

k, we run the following contemporaneous regression each quarter t from 1965Q1 until
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2011Q4 for the ten portfolios sorted by the orthogonal state labor income beta of Table 3:

rp,k = λ0t,k + λFMt,k β̂
FM
p,k + λERM

t,k β̂ERM
p,k + ξp,k,(11)

The results are reported in Panel A of Table 4. The estimated intercept, λ0k, is not

statistically different from zero in any division. Qualitatively, the estimated prices of risk

λFMk are very similar to the P1–P3 spreads reported in Table 3 Panel A. They are all

negative, and range from −0.101 in EN to −1.812 in PA. Five out of the nine risk premia

are significant at least at the 5% confidence level (at the 0.5% level in the case of PA and

WS).

The last three columns in Panel A of Table 4 report, for each division, the

cross-sectional regression adjusted R
2
, the average pricing errors and the test of whether

the pricing errors are jointly zero. R
2

ranges from 17% for EN to 92% for WS.10 In all

divisions with high factor mimicking variance (PA, ES, WS, and MO) the cross-sectional

power of the test is above 60%. The pricing errors, defined as the difference between the

actual portfolio return and the expected return, are small relative to the average portfolio

return reported in Panel C of Table 3. In all cases the test rejects the null hypothesis that

10Following Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b), we calculate R2 as[
varc(rp) − varc(ξp)

]
/varc(rp), where varc is the cross-sectional variance, rp is the average return and ξp is

the average residual. R
2

is the adjusted R2.
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these pricing errors are different from zero.11 It is worth noting that when we performed

the same test at the aggregate level for all U.S. beta-sorted portfolios simultaneously

(reported in the Appendix) the null hypothesis could not be rejected. We interpret this

evidence as support for the KEEPM model at the local level where we allow for the price of

risk on the orthogonal factor mimicking portfolio to vary across divisions.12

The variation in the size of prices of risk is consistent with the predictions of the

model. In particular, observe that if we ignore the covariance terms, the value of the price

of risk on the orthogonal labor income return is, according to equation (5), a function of

three factors. First, the proportion of local non-diversifiable wealth in the division, ωkθk;

second, the Joneses preference parameter, γk; third, the variance of the orthogonal labor

income return, var(rFk ).

We test empirically the model’s prediction on the Joneses parameter, γ, in

Subsection C. According to the BEA (a map is included in the Appendix, Figure A2) there

is a high concentration of non-diversifiable wealth (proxied in our tests by personal income)

11This is a Chi-sq test given as α̂′cov(α̂)−1α̂, where α̂ is the vector of average pricing errors across the

forty-five portfolios and cov is the covariance matrix of the pricing errors.

12To check the robustness of our results to the homecedasticity assumption implicit in the OLS cross

sectional estimates, Table 4 in the Appendix reports the General Method of Moments (GMM) estimates of

the prices of risk and their factor loadings in an approximate linear stochastic discount factor derived from

the KEEPM equilibrium conditions. The results are very similar to those reported in Table 4 Panel A; in

some divisions, like MA and EN, even stronger. We thank the editor and the referee for suggesting this

robustness test.
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in certain states and divisions. PA, MA, EN, SA, and WS are the divisions with higher

concentration and MO, WN, NE, and ES are the divisions with lower concentration.

Regarding the effect of volatility of labor risk factors, Panel B of Table 4 shows, on

the diagonal, the variance of the divisional factor mimicking portfolios. There is wide

heterogeneity. Divisions with high factor volatility like PA (0.86%), ES (0.83%), WS

(0.83%) and MO (0.89%) exhibit the largest (absolute) orthogonal prices of risk in Panel A

of Table 4. Within these divisions, PA (−1.812%) and WS (−1.805%) have the absolute

largest premia, and they are both strongly significant at the 0.5% confidence level –both

divisions comprise states with a high concentration of personal income.

In contrast, ES (−1.456%) and MO (−1.193%) have relatively smaller premia,

significant at the 5% only in the case of MO. Both divisions include states with a low

concentration of personal income. Among the rest of divisions, some of them have either

low factor volatility like NE (0.33%) and EN (0.22%) or a small concentration of personal

income like WN. MA (0.37%) and SA (0.59%) have relatively low factor volatility but both

divisions include states with high concentration of personal income. This may explain why

their (absolute) prices of risk are relatively large in comparison with other divisions with

similar factor volatility but lower concentration of personal income.

Finally, in Panel C of Table 4, we repeat the cross-sectional tests in equation (11)

including the size, λSMB
k , and book-to-market, λHML

k , risk factors in each division:
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rp,k = λ0t,k + λFMt,k β̂
FM
p,k + λERM

t,k β̂ERM
p,k + λSMB

t,k β̂SMB
p,k + λHML

t,k β̂HML
p,k + ξp,k.

The prices of risk of the orthogonal factor mimicking portfolios λFMk are very similar to the

estimates from the KEEPM reported in Panel A of Table 4, both in size and significance,

perhaps with the exception of ES that increases (in absolute value) from −1.456 to −2.771

and turns marginally significant at the 10% level. The estimate prices of risk the 2 Fama

and French factors are generally not statistically significant.

The average pricing errors are similar in size to those reported in Panel A of Table 4

for the KEEPM while the test of whether the joint pricing errors are statistically different

from zero is rejected in all divisions except MA. We therefore conclude that the orthogonal

state labor income factor that captures the risk of deviating form the Joneses consumption

in each division is robust to the inclusion of the Fama and French risk factors. Moreover,

after analyzing the pricing errors and the explanatory power of the tests, the cross-sectional

performance of the KEEPM, division by division, improves relative to the aggregate (all

U.S. stocks simultaneously) performance and does not improve in a significant way when we

introduce the Fama and French risk factors. Overall, the results reported in Table 4 provide

support for the KEEPM but also show that Keeping up with the Joneses behavior is not
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uniform across divisions, which is consistent with the model.

C. Estimation of the Joneses Parameter

The equilibrium conditions in equations (4) and (5) link explicitly the prices of risk

to the deep parameters of the model. We derive the following orthogonality conditions from

these equations:

0 = λERM −H

(
1 − b

K∑
k=1

ωkθk βk

)
(rM − E(rM))2 ,(12)

0 = λFMk +H b
(
ωkθk

(
rFMk − E(rFMk )

)2
(13)

+
∑
k′ 6=k

ωk′θk′
(
rFMk − E(rFMk )

) (
rFMk′ − E(rFMk′ )

))
,

for each division k = 1, 2, ..., K. Ideally, we would like to estimate every divisional Joneses

parameter, γk. The system, however, is not uniquely determined when we allow this

parameter to vary across divisions. Hence, we assume a common γ across divisions. This

implies b = γ/(1 − γ).13 rM and rFMk denote, respectively, the time series of the U.S. market

return and the return on the factor mimicking portfolio from division k, from the first

quarter of 1965 to the final quarter of 2011. We take the estimates of the price of risk for

13We only present the results for the exogenous specification. The estimation does not converge when we

try to estimate the endogenous version of the model.
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each division, λFMk , from Table 4 Panel A. We proxy for θk using the time series of

divisional personal income as a proportion of the divisional GDP. To proxy ωk we divide

each quarter the market capitalization of all stocks in the division by the aggregate market

capitalization. The GMM methodology outlined in Hansen (1982) provides a natural way

to estimate the deep parameters of our model. The system of equations (12) and (13)at the

divisional level (K = 9) involves N = 10 moment conditions. We assume different values of

the aggregate risk aversion coefficient H and estimate L = 2 parameters: the parameter γ

and the market price of risk, λERM.14

Table 5 presents the results for a two-step GMM estimation. The initial value for

the Joneses parameter is γ = 0.1. The results are robust to alternative initial values. The

estimate of γ is, both economically (the model predicts it should be bigger than zero and

smaller than one) and statistically significant at the 1% level in all cases. There is a clear

inverse relation between γ and H, supported by the model in the definition of λk in

equation (5). Intuitively, the absolute size of the price of risk for the non-diversifiable

income risk in a given division depends, directly, on the aggregate risk aversion coefficient,

H, and the Joneses parameter, γ. Given the estimated prices of risk from Table 4 Panel A,

a higher assumed value for H results, consequently, in a lower estimated value for γ.

14The ability of the model to price the assets is assessed by testing that the orthogonality conditions,

which follow a χ2(N − L) distribution, are zero. This is known as Hansen’s J-test.
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Notice that the estimate of λERM is negative. This is consistent with the equilibrium

equation for the market price of risk, λM , in the equilibrium condition of equation (4). In

particular, if b
∑K

k=1 ωkθk βk > 1, the model predicts that the hedging property of the

market portfolio vis− à− vis the risk of deviating from the Joneses portfolio outweighs the

traditional positive market risk-reward mechanism. The “net” result is a negative market

premium. Since γ decreases with H, the average value of b
∑K

k=1 ωkθk βk ranges from 8.06

for H = 1 to 1.44 for H = 6, higher than 1 in all cases. This also explains why λM

decreases in absolute value with H in Table 5. For higher H, the model implies a lower

estimate of γ. Thus, hedging Joneses risk becomes less relevant. The market risk premium,

although negative and statistically significant at the 1% level for all the values of H,

becomes smaller in absolute terms.

Since γ is assumed to be constant, all variation in the estimated prices of risk

reported in Panel A of Table 4 must come, according to equations (4) and (5), from the

interaction of the percentage of divisional non-diversifiable wealth (relative to total country

wealth), ωkθk, and the volatility of the orthogonal risk factors. In other words, the GMM

test offers an explanation for the variation in the prices of risk across divisions based on

exogenous Joneses risk-hedging consistent with the predictions of the KEEPM model.

Whilst we obtain sensible estimates of the model’s parameters, the J-test rejects the

model, like in Korniotis (2008). We cannot rule out the possibility that this rejection is the
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result of forcing the parameter γ to be the same across divisions. As we have shown in the

previous subsection, there is evidence that the factor is local. Therefore, the imposition

that the relative wealth concerns parameter is the same across regions would seem to be too

restrictive and leads to a rejection of the model.

VI. Country-Wide Orthogonal Income

We now study the cross-sectional performance of the KEEPM when the orthogonal

state labor income return is replaced with the orthogonal U.S. country labor income return.

Gómez, Priestley, and Zapatero (2009) show that the orthogonal U.S. country labor income

return carries a negative price of risk. The evidence reported so far in this paper points in

the direction of a local hedging demand that varies across divisions. Our objective is to

compare the divisional and country performance of the KEEPM and test whether the

variation in the prices of risk across divisions persist after considering jointly local and

country risk factors. The results of these tests are presented in Table 6.

We denote by rCt the orthogonal country labor income return. We follow the

procedure of in Section IV. For each individual stock i in the U.S. we estimate the rolling

betas with respect to the orthogonal country labor income return and the U.S. stock

market return:
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ri,t = αi + βCi r
C
t + βERM

i rERM,t + ui,t.

The slope coefficients β̂Ci and β̂ERM
i are estimated for every stock in the U.S. The time

series of quarterly estimated betas starts in 1965Q1 and ends in 2011Q4. We then run the

Fama-MacBeth cross-sectional regressions at each period t:

ri = λ0t + λCt β̂
C
i + λERM

t β̂ERM
i + ξi.

Panel A reports the estimated intercept, λ0, and the prices of risk, λC and λERM. The

quarterly price of risk on the orthogonal labor income return is −0.241 and significant at

the 1%. This is consistent with the evidence in Gómez, Priestley, and Zapatero (2009) of an

aggregate U.S. level negative price of risk associated with relative wealth concerns. The size

of the estimated coefficient is larger than the state level estimate of 0.198 in Table 1, which

in isolation would suggest that stocks that hedge aggregate relative wealth concerns have

higher demand.

In Panel B, for each individual stock i, we estimate the rolling betas with respect to

the orthogonal income return of the state where the firm headquarters are located, the
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orthogonal country labor income return, and the stock market return, using nine years of

rolling observations (36 quarters):

ri,t = αi + βFi r
F
t + βCi r

C
t + βERM

i rERM,t + ui,t.

We then estimate the cross sectional regression every quarter:

ri = λ0t + λFt β̂
F
i + λCt β̂

C
i + λERM

t β̂ERM
i + ξi.

Both the country and state factors carry a negative price of risk. The size for the

state factor, −0.174, is similar to the price of risk reported in Table 1. The size of the

estimated price of risk on the orthogonal country level labor income relative to when it is

included on its own is smaller but remains statistically significant.

As a robustness test, the state orthogonal income is replaced with the orthogonal

divisional labor income. Both the orthogonal state and country prices of risk reported in

Panel C decrease marginally, but remain strongly significant. These results suggest that

both deviations from the Joneses consumption at the local (divisional) and country level
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are priced.

One way to disentangle both effects is to test the model division by division. In

Table 6 Panel D, we report the cross-sectional prices of risk on the orthogonal country labor

income estimated using only stocks within each division. In all divisions the price of risk is

negative and strongly significant. It is worth noting that the size of these premia is very

uniform across divisions, consistent with the country-wide nature of the Joneses risk

considered in this test. In Panel E we observe that the risk premia vary considerably from

division to division, consistent with the tests in the previous section. Five of the orthogonal

state factors (MA, SA, PA, ES, WS) carry a negative premium statistically significant at

least at the 5% level.

These tests corroborate the country-wide evidence in favor of the KEEPM already

documented in Gómez, Priestley, and Zapatero (2009). Moreover, they show that there

exists a local hedging component that varies in magnitude and power across divisions.

VII. Conclusion

Mayers (1972) pointed out the importance of human capital as a component of

aggregate wealth. Following up on this idea, the finance literature has used labor income as

an indicator of human capital and linked it to the cross-section of stock returns. In this

paper, we show that relative wealth concerns can explain the link between labor income
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and stock returns.

In this paper, we show that there are local sources of relative wealth concerns that

are priced in the cross section of stock returns. State level orthogonal labor income is an

important determinant of the cross section of returns. In particular, the risk premium

associated with labor income is negative and, even more importantly, the risk factor is

local, as consistent with the economic nature of relative wealth concerns. We also document

that the empirical implications of the model vary across different regions, depending on the

size of the risk factor and its variability, as predicted by the model. In general, local labor

income has higher correlation with local stock returns than with stock returns of other

divisions, as we show in this paper. However, as we clearly document, the pricing factor is

the correlation between stock returns and labor income, and not geographic location. This

is clearly different from the notion of familiarity suggested in the literature as a possible

factor.

34



References

Abel A.B. “Asset Prices under Habit Formation and Catching up with the Joneses.”

American Economic Review, 80 (1990), 38–42.

Bernile, G.; G. Korniotis; A. Kumar; and Q. Wang. “Local Business Cycles and Local

Liquidity.” Journal of Financial and Quantitative Analysis, 50 (2015), 987–1010.
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Table 1

Individual stocks

The KEEPM model: Aggregate

Let rFs,t denote the orthogonal labor income return in state s and period t;

rRM,t denotes the return on the aggregate, country stock market index. For each

individual stock i we estimate the rolling betas with respect to the orthogonal

labor income return from the state where the stock headquarters are located and

the stock market return, using nine years of rolling observations (36 quarters).

The slope coefficient β̂Fi is estimated for every stock in the U.S. Every time a

new year of quarterly data is added, the first (oldest) year is removed and the

process is repeated. The time series of quarterly estimated betas starts in

1965Q1 and ends in 2011Q4. We then run cross-sectional regressions at each

quarter of all U.S. individual stock returns on their estimated betas:

ri = λ0t + λFt β̂
F
i + λRM

t β̂RM
i + ξi.

The table reports the average (percentage) quarterly prices of risk λ0, λF and

λRM. Absolute t-values are reported below in parentheses.
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Average prices of risk

λ0 λF λRM

1.993
(4.64)

−0.198
(2.27)

1.403
(1.92)
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Table 2

Individual stocks

The KEEPM model: Per division

There are nine Census Bureau Divisions which we index with two capital

letters: West South Central (WS), Pacific (PA), East South Central (ES),

Mountain (MO), East North Central (EN), South Atlantic (SA), West North

Central (WN), Middle Atlantic (MA), and New England (NE). First, stocks are

sorted into divisions according to the location of the company’s headquarters.

We then follow the same procedure described in Table 1 and estimate the slope

coefficient β̂Fi for every stock i with respect to the orthogonal labor income

return from the state where the stock headquarters are located. We then run

the contemporaneous Fama-MacBeth cross-sectional regressions at each period t

across stocks i in each division k:

ri,k = λ0t,k + λFt,kβ̂
F
i + λERM

t,k β̂ERM
i + ξi,k.

Panel A reports the average (percentage) quarterly prices of risk λ0k, λ
F
k and

λERM
k for each division k. Absolute t-values are reported in parenthesis. In

Panel B we repeat the same procedure as in Panel A but, in this case, the
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orthogonal state labor income is replaced with the orthogonal divisional labor

income. Simultaneously, the betas in each division are estimated using all stocks

in the U.S., regardless of the location of their headquarters.
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Average prices of risk

Panel A Panel B

Only stocks All stocks

within the division across divisions

State labor income Divisional labor income

λ0k λFk λERM
k λ0k λFk λERM

k

MA 1.965
(3.83)

−0.165
(1.62)

1.390
(1.80)

1.889
(3.67)

−0.187
(1.87)

1.450
(1.84)

NE 2.132
(4.71)

−0.172
(1.84)

1.473
(2.00)

2.180
(4.79)

−0.157
(1.72)

1.435
(1.95)

SA 1.988
(4.15)

−0.284
(2.71)

1.052
(1.38)

1.923
(3.98)

−0.277
(2.46)

1.203
(1.59)

EN 2.058
(4.55)

−0.178
(1.85)

1.092
(1.35)

1.942
(4.28)

−0.107
(1.20)

1.261
(1.57)

PA 1.951
(3.64)

−0.320
(2.58)

1.375
(1.76)

1.927
(3.55)

−0.315
(2.56)

1.423
(1.82)

ES 2.745
(3.28)

−0.279
(2.26)

0.542
(0.50)

2.802
(3.25)

−0.379
(2.77)

0.653
(0.58)

WS 1.675
(2.97)

−0.248
(1.87)

2.123
(2.58)

1.628
(2.85)

−0.244
(1.73)

2.154
(2.61)

WN 1.709
(3.97)

−0.209
(1.50)

1.535
(2.12)

1.755
(3.97)

−0.159
(1.23)

1.503
(2.05)

MO 2.785
(3.23)

−0.324
(2.05)

0.017
(0.02)

2.835
(3.38)

−0.343
(2.08)

0.079
(0.08)
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Table 3

Beta-sorted portfolios

Time-series regressions: Per division

In each divisions, stocks are sorted according to their slope coefficients β̂Fi

estimated in equation (8) into three and ten equally weighted portfolios denoted

by subscript p. The quarterly return on these portfolios is estimated over the

following year. The time series of estimated quarterly returns starts in 1966Q1

and ends in 2011Q4. Panel A reports, for each division, the average percentage

return on the difference between the portfolio that includes the stocks with the

highest betas (P1) and the portfolio with the lowest betas (P3 and P10,

respectively). Absolute t-statistics that test whether the difference between the

two portfolios is different from zero are reported in parenthesis. In Panel B we

repeat the same procedure as in Panel A but, in this case, the orthogonal state

labor income is replaced with the orthogonal divisional labor income.

Simultaneously, the betas in each division are estimated using all stocks in the

U.S., regardless of the location of their headquarters. Panel C reports the

average percentage return on the ten portfolios constructed with the orthogonal

state income betas. Absolute t-statistics are reported in parenthesis. We next

estimate, for each division, a factor mimicking (FM) portfolio for the orthogonal
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state labor income risk by going long on the top portfolio containing one-third

of the stocks with the highest beta (P1) and short on the bottom portfolio

containing one-third of the stocks with the lowest beta (P3) in the division. Let

rFMk,t denote the return on the factor mimicking portfolio from division k. Panel

D reports, for each division, full sample estimates of the coefficient from the

following regression (absolute t-values in parenthesis):

rp,k,t = αp,k + βFM
p,k r

FM
k,t + βERM

k,p rERM,t + up,k,t.
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Average return spread

Panel A Panel B

Only stocks All stocks

within the division across divisions

State labor income Divisional labor income

P1 − P3 P1 − P10 P1 − P3 P1 − P10

MA −0.802
(1.82)

−1.045
(1.55)

−0.885
(1.79)

−0.894
(1.22)

NE −0.429
(1.01)

−0.793
(0.93)

−0.877
(1.92)

−0.963
(1.46)

SA −0.896
(1.60)

−1.669
(1.76)

−1.266
(2.31)

−1.833
(2.30)

EN −0.229
(0.66)

- 0.692
(1.03)

−1.041
(2.26)

−1.205
(1.78)

PA −2.081
(3.13)

−1.857
(1.74)

−1.373
(2.66)

−1.981
(2.63)

ES −1.335
(2.05)

−0.915
(1.24)

−0.924
(1.76)

−1.008
(1.33)

WS −1.704
(2.59)

−2.987
(2.76)

−1.244
(2.36)

−1.658
(2.20)

WN −0.327
(0.72)

−0.359
(0.48)

−1.090
(2.27)

−1.225
(1.73)

MO −0.987
(1.43)

−2.523
(1.82)

−1.432
(2.64)

−1.727
(2.23)
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Panel C: Portfolio returns

MA NE SA EN PA ES WS WN MO

P1 1.963
(2.19)

2.591
(2.69)

1.751
(2.14)

2.058
(1.91)

1.951
(1.83)

2.386
(2.80)

1.413
(1.39)

2.062
(2.39)

0.526
(0.45)

P2 2.291
(2.96)

2.221
(2.67)

2.104
(2.81)

2.651
(2.84)

2.089
(2.35)

2.292
(3.23)

1.939
(2.26)

2.069
(2.78)

2.474
(2.21)

P3 2.162
(2.68)

2.852
(2.92)

1.878
(2.41)

2.622
(3.08)

2.599
(2.86)

2.376
(3.37)

1.734
(2.14)

1.615
(2.43)

1.989
(2.04)

P4 2.149
(2.58)

2.787
(3.25)

2.396
(3.11)

2.146
(2.50)

2.331
(2.62)

2.197
(2.92)

2.272
(2.82)

2.124
(3.01)

1.787
(1.95)

P5 2.053
(2.47)

2.560
(2.80)

2.218
(2.42)

2.301
(2.87)

2.665
(2.69)

2.383
(2.95)

2.711
(3.06)

2.313
(2.78)

1.852
(1.84)

P6 2.994
(3.48)

2.822
(2.93)

2.644
(3.02)

2.015
(2.64)

2.243
(2.29)

2.659
(3.17)

2.714
(3.24)

2.256
(2.87)

1.883
(1.69)

P7 2.458
(2.70)

3.415
(3.46)

2.945
(3.04)

1.772
(2.21)

4.118
(3.50)

2.569
(2.80)

2.701
(3.18)

2.621
(3.26)

2.237
(2.19)

P8 2.594
(2.68)

2.685
(2.64)

2.597
(2.54)

1.951
(2.67)

3.921
(3.44)

2.793
(2.77)

3.017
(3.24)

2.333
(2.53)

3.186
(2.45)

P9 3.612
(3.24)

2.997
(2.70)

2.649
(2.46)

1.700
(2.30)

4.515
(3.32)

3.249
(2.93)

3.236
(2.81)

2.270
(2.25)

2.685
(2.11)

P10 3.008
(2.32)

3.385
(2.55)

3.421
(2.58)

2.750
(2.96)

3.808
(2.46)

3.301
(2.47)

4.400
(3.39)

2.422
(2.18)

3.056
(2.22)
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Panel D: β̂FM
p,k

MA NE SA EN PA ES WS WN MO

P1 −0.204
(2.34)

0.068
(0.63)

0.158
(2.06)

0.547
(8.76)

0.137
(1.75)

−0.019
(0.32)

0.580
(7.35)

0.102
(0.96)

0.404
(4.31)

P2 −0.038
(0.58)

0.001
(0.02)

0.080
(1.25)

0.072
(0.81)

0.172
(2.85)

−0.074
(1.72)

0.442
(7.44)

0.241
(2.76)

0.304
(3.55)

P3 −0.288
(3.62)

0.079
(0.76)

0.029
(0.42)

0.0644
(0.69)

−0.111
(1.80)

−0.102
(2.49)

0.344
(5.64)

0.059
(0.84)

−0.079
(1.03)

P4 −0.288
(3.62)

−0.282
(3.08)

−0.145
(2.06)

−0.030
(0.30)

−0.160
(2.89)

−0.085
(2.10)

0.192
(3.34)

0.006
(0.08)

−0.025
(0.34)

P5 −0.422
(5.76)

−0.336
(3.55)

−0.228
(3.02)

−0.313
(3.60)

−0.389
(6.19)

−0.139
(3.19)

0.084
(1.25)

−0.356
(4.24)

−0.296
(3.55)

P6 −0.503
(6.37)

−0.342
(3.09)

−0.341
(4.89)

−0.188
(1.86)

−0.417
(6.06)

−0.155
(3.19)

−0.074
(1.15)

−0.400
(4.96)

−0.250
(2.80)

P7 −0.595
(7.27)

−0.552
(5.18)

−0.493
(6.60)

−0.493
(5.08)

−0.601
(8.52)

−0.211
(3.84)

−0.113
(1.83)

−0.396
(4.43)

−0.313
(3.99)

P8 −1.043
(13.52)

−0.768
(8.51)

−0.775
(10.78)

−0.611
(6.59)

−0.625
(9.94)

−0.267
(4.16)

−0.343
(5.40)

−0.735
(8.55)

−0.759
(7.90)

P9 −1.238
(15.36)

−0.850
(8.81)

−0.851
(11.17)

−0.749
(7.32)

−1.091
(15.62)

−0.312
(4.39)

−0.578
(7.57)

−0.864
(9.13)

−0.832
(9.19)

P10 −1.406
(14.43)

−1.411
(12.18)

−1.227
(13.64)

−1.021
(12.34)

−1.141
(12.09)

−0.369
(4.26)

−0.856
(9.56)

−0.950
(9.51)

−0.914
(8.67)
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Table 4

Beta-sorted portfolios

Cross-Sectional regressions: Per division

In Panel A, we estimate in each division the contemporaneous

Fama-MacBeth cross-sectional regressions at each period t:

rp,k = λ0t,k + λFMt,k β̂
FM
p,k + λERM

t,k β̂ERM
p,k + ξp,k,

across portfolios p in each division k. As testing portfolios we use the ten state

beta-sorted portfolios from Table 3 Panel C. β̂FM is the estimated beta for the

factor mimicking portfolio from Table 3 Panel D; β̂ERM is the estimated beta for

the market risk factor. We report the average cross-sectional (percentage)

quarterly prices of risks. R
2

is calculated R2 as
[
V arc(rp) − V arc(ξp)

]
/V arc(rp),

where V arc is the cross-sectional variance, rp is the average return and ξp is the

average residual. R
2

is the adjusted R2. The pricing errors (p.e.) of a given

portfolio are defined as the difference between the actual portfolio return and

the expected return according to the corresponding cross-sectional model. The

p.e. Test is a Chi-sq test given as α̂′cov(α̂)−1α̂, where α̂ is the vector of average

pricing errors across the forty-five portfolios and cov is the covariance matrix of
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the pricing errors. Absolute t-values in parenthesis; p-values in brackets. Panel

B presents the covariances (lower triangular matrix), variances (diagonal), and

correlations (upper triangular matrix) among the divisional factor mimicking

portfolios defined in Table 3. In Panel C we test the KEEPM augmented with

the Fama-French factors (KEEPM-FF):

rp,k = λ0t,k + λFMt,k β̂
FM
p,k + λERM

t,k β̂ERM
p,k + λSMB

t,k β̂SMB
p,k + λHML

t,k β̂HML
p,k + ξp,k.
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Panel A. Prices of risk: KEEPM

λ0k λFMk λERM
k R

2
p.e. p.e. Test

MA 2.406
(1.51)

−0.903
(2.01)

−0.412
(0.24)

0.57 0.261 13.120
[0.11]

NE 2.055
(1.03)

−0.500
(1.11)

0.463
(0.24)

0.40 0.190 3.664
[0.89]

SA 2.059
(1.03)

−0.991
(1.73)

0.025
(0.01)

0.77 0.196 3.427
[0.90]

EN −0.216
(0.13)

−0.101
(0.28)

2.291
(1.28)

0.17 0.253 11.117
[0.20]

PA 0.449
(0.21)

−1.812
(2.63)

1.545
(0.75)

0.76 0.366 0.079
[1.00]

ES 1.117
(0.88)

−1.456
(0.60)

1.046
(0.64)

0.89 0.103 7.266
[0.51]

WS 2.795
(1.31)

−1.805
(2.68)

−0.140
(0.07)

0.92 0.174 2.219
[0.97]

WN 2.366
(1.26)

−0.413
(0.89)

−0.316
(0.14)

0.34 0.132 2.766
[0.95]

MO −0.546
(0.19)

−1.193
(1.77)

2.199
(0.79)

0.63 0.302 2.979
[0.94]
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Panel B. Variances, Covariances and Correlations

MA NE SA EN PA ES WS WN MO

MA 0.0037 0.4350 0.6546 0.4264 0.4546 0.3731 0.5446 0.5543 0.3088

NE 0.0015 0.0033 0.4059 0.3648 0.4670 0.1965 0.4785 0.3655 0.2474

SA 0.0030 0.0018 0.0059 0.5041 0.5047 0.2699 0.5840 0.5214 0.2533

EN 0.0012 0.0009 0.0018 0.0022 0.5040 0.3422 0.4388 0.4810 0.2584

PA 0.0025 0.0025 0.0036 0.0022 0.0086 0.2480 0.6460 0.5496 0.1620

ES 0.0020 0.0010 0.0018 0.0014 0.0021 0.0083 0.3369 0.2663 0.1353

WS 0.0030 0.0025 0.0041 0.0018 0.0055 0.0028 0.0083 0.5729 0.2675

WN 0.0020 0.0013 0.0024 0.0013 0.0031 0.0015 0.0032 0.0038 0.2286

MO 0.0017 0.0013 0.0018 0.0011 0.0014 0.0011 0.0023 0.0013 0.0089
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Panel C. Prices of risk: KEEPM-FF

λ0k λFMk λERM
k λSMB

k λHML
k R

2
p.e. p.e. Test

MA 1.455
(0.71)

−0.938
(2.08)

1.632
(0.57)

−0.969
(0.52)

−0.139
(0.07)

0.64 0.241 14.228
[0.03]

NE 0.693
(0.32)

−0.519
(1.16)

0.098
(0.04)

1.869
(1.35)

1.219
(0.87)

0.78 0.139 1.861
[0.93]

SA 0.907
(0.36)

−1.009
(1.77)

0.008
(0.00)

1.193
(0.72)

1.228
(0.79)

0.80 0.176 2.482
[0.87]

EN −2.883
(1.06)

−0.169
(0.48)

7.678
(2.31)

−1.679
(1.25)

−3.403
(1.64)

0.48 0.232 7.013
[0.32]

PA 1.307
(0.49)

−1.807
(2.61)

2.308
(0.83)

−0.902
(0.51)

−1.293
(0.67)

0.81 0.320 8.448
[0.21]

ES 2.671
(1.55)

−2.771
(1.20)

−0.352
(0.21)

0.571
(0.45)

−0.721
(0.43)

0.88 0.085 5.771
[0.45]

WS 3.696
(1.39)

−1.797
(2.69)

−0.588
(0.28)

0.322
(0.30)

−1.017
(0.39)

0.92 0.152 2.201
[0.90]

WN 1.755
(0.64)

−0.423
(0.91)

−0.582
(0.22)

0.950
(0.87)

1.513
(0.69)

0.61 0.117 1.809
[0.94]

MO −0.714
(0.22)

−1.232
(1.66)

2.044
(0.69)

1.275
(0.77)

−0.436
(0.28)

0.64 0.299 2.795
[0.83]
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Table 5

GMM estimation of the Joneses parameter

We derive the following system system of orthogonality conditions from the

equilibrium condition of equations (4) and (5):

0 = λERM −H

(
1 − b

K∑
k=1

ωkθk βk

)
(rM − E(rM))2 ,

0 = λFMk +H b

(
ωkθk

(
rFMk − E(rFMk )

)2
+
∑
k′ 6=k

ωk′θk′
(
rFMk − E(rFMk )

) (
rFMk′ − E(rFMk′ )

))
,

for each division k = 1, 2, ..., K. b = γ
1−γ . rM and rFMk denote, respectively, the

time series of the U.S. market return and the return on the factor mimicking

portfolio from division k, from the first quarter of 1965 to the final quarter of

2011. We take λFMk from Table 4 Panel A. θk is proxied using the time series of

divisional personal income as a proportion of the divisional GDP. To proxy ωk,

each quarter, the market capitalization of all stocks in the division is divided by

the aggregate market capitalization. We assume different values of the aggregate

risk aversion coefficient H and estimate the parameter γ and the market price of

risk, λERM using Hansen’s Generalized Method of Moments (GMM). Hansen’s

J-test tests whether the orthogonality conditions are jointly zero. It follows a

χ2(N − L) distribution. Standard errors in parenthesis; p-values in brackets.
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H = 1 H = 3 H = 6 J-test

λERM γ λERM γ λERM γ

−0.0573
(0.0103)

0.996
(0.000488)

−0.0421
(0.00940)

0.989
(0.00144)

−0.0194
(0.00864)

0.978
(0.00282)

183.9
[0.000]
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Table 6

Individual stocks

Country-wide orthogonal income

Let rCt denote the orthogonal country labor income return in the U.S. in

period t; rERM,t denotes the return on the aggregate, country stock market

index. For each individual stock i we estimate the rolling betas with respect to

the orthogonal country labor income return and the stock market return, using

the same procedure as in Table 1:

ri,t = αi + βCi r
C
t + βERM

i rERM,t + ui,t.

The slope coefficients β̂Ci and β̂ERM
i are estimated for every stock in the U.S.

The time series of quarterly estimated betas starts in 1965Q1 and ends in

2011Q4. We then run the contemporaneous Fama-MacBeth cross-sectional

regressions at each period t across stocks i:

ri = λ0t + λCt β̂
C
i + λERM

t β̂ERM
i + ξi.

Panel A reports the average (percentage) quarterly prices of risk λ0, λC and
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λERM. Absolute t-values are reported in parenthesis. In Panel B, for each

individual stock i we estimate the rolling betas with respect to the orthogonal

income return of the state where the headquarters are located, the orthogonal

country labor income return and the stock market return, using nine years of

rolling observations (36 quarters):

ri,t = αi + βFi r
F
t + βCi r

C
t + βERM

i rERM,t + ui,t.

In Panel C the state orthogonal income is replaced with the orthogonal

divisional labor income. Each panel reports the corresponding cross-sectional

(percentage) prices of risk. Panels D and E repeat the analysis within each

division. In Panel D, only orthogonal country income is considered. In Panel E

we include the orthogonal state risk factor in each division. In both cases, only

stocks within each division are included.

Country-wide

orthogonal income

Panel A. All U.S. stocks

λ0 λC λERM

1.797
(3.88)

−0.241
(2.56)

1.335
(1.82)
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Local and country-wide orthogonal income

Panel B Panel C

State orthogonal Divisional orthogonal

labor income labor income

λ0 λF λC λERM λ0 λF λC λERM

1.952
(4.76)

−0.174
(2.24)

−0.192
(2.36)

1.317
(1.83)

2.019
(4.95)

−0.161
(2.07)

−0.170
(2.10)

1.295
(1.81)
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Divisional tests

Panel D Panel E

Only country-wide Country-wide and state

orthogonal income orthogonal income

λ0k λCk λERM
k λ0k λFk λCk λERM

k

MA 1.202
(1.96)

−0.251
(2.28)

1.771
(2.18)

2.087
(4.49)

−0.69
(1.72)

−0.176
(1.87)

1.196
(1.87)

NE 2.609
(5.04)

−0.182
(1.89)

0.862
(1.15)

2.076
(4.61)

−0.136
(1.52)

−0.196
(2.10)

1.234
(1.71)

SA 1.940
(3.75)

−0.214
(2.28)

1.106
(1.48)

1.743
(3.75)

−0.282
(2.72)

−0.229
(2.42)

1.230
(1.65)

EN 1.958
(4.10)

−0.206
(2.09)

1.054
(1.29)

2.285
(5.29)

−0.131
(1.47)

−0.171
(1.92)

0.748
(0.95)

PA 1.674
(2.66)

−0.265
(2.29)

1.492
(1.84)

2.184
(4.10)

−0.318
(2.60)

−0.238
(2.37)

1.158
(1.51)

ES 2.302
(3.11)

−0.234
(2.08)

1.207
(1.21)

4.031
(3.01)

−0.406
(2.35)

−0.219
(1.92)

−0.819
(0.50)

WS 1.611
(2.71)

−0.244
(2.46)

2.036
(2.46)

1.557
(2.99)

−0.235
(1.75)

−0.241
(2.58)

2.015
(2.48)

WN 1.992
(4.39)

−0.206
(1.89)

1.179
(1.64)

2.012
(4.80)

−0.177
(1.35)

−0.227
(2.20)

1.076
(1.52)

MO 3.195
(3.53)

−0.229
(2.12)

−0.194
(0.19)

2.968
(3.97)

−0.186
(1.21)

−0.133
(1.24)

0.134
(0.14)
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Internet Appendix: Labor Income, Relative Wealth Concerns, and the Cross-

section of Stock Returns

This Appendix includes some results that, although not essential to understand the main

arguments of the paper, provides complementary material and further support to the evidence

presented in the body of the paper. The Appendix has three main parts, and two figures

referenced in the paper. In Appendix A, we summarize the optimal portfolio choice problem

of an agent with either endogenous or exogenous keeping up with the Joneses preferences.

For a detailed derivation, we refer the reader to Gómez, Priestley and Zapatero (2009). In

Appendix B we present the portfolio tests of the country level analysis. This is a robustness

test. We also perform portfolio tests at the divisional level, but these are less likely to

be biased by the sorting procedure, therefore we leave them in the body of the paper. In

Appendix C we derive a linear approximation to the stochastic discount factor (SDF) implied

by our model. We then apply the SDF to the estimation of the prices of risk by the General

Method of Moments (GMM).
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Appendix A

0.1 Exogenous keeping up with the Joneses preferences

In this subsection we analyze the implications of a version of the keeping up with the Jone-

ses preferences of Abel (1990) and Gaĺı (1994). In particular, in the economy we consider

investors are endowed with an utility function1

(1) u(c, C) =
c(1−α)

1 − α
Cγα,

where c denotes the investor’s consumption of the single consumption good, the economy’s

numeraire; C is the division average or per capita consumption; α > 0 is the (constant)

relative risk-aversion coefficient and 1 > γ ≥ 0 is the “Joneses parameter.”

Here, workers represent agents endowed with non-tradable income. For instance, their

human capital, that will materialize into wage income, or entrepreneurial income. Call w0
k the

initial aggregate endowment of non-financial wealth for workers in division k; wk denotes the

final (t = 1) random value of their non-tradable income. Workers face incomplete markets

because they cannot trade their human capital (due to moral hazard issues) and have no

access to financial markets; therefore, they cannot hedge their income risk.

Since each investor takes C as exogenous and common, the typical aggregation property

of the CRRA utility functions allows us to replace all the investors in a given division by

a representative investor with utility function (1) endowed with the aggregated investors

income without affecting the equilibrium prices. At time t = 0 each representative investor

is endowed with a share of the local firm (unit value by assumption); hence, c0 = 1 in all

divisions.

We can write the problem’s first order condition as a function of the investor’s consump-

tion and the workers relative wealth, w/c:

(2) E
(
r c−α(1−γ)(1 + w/c)αγ

)
= 0.

1To simplify the notation, we drop the division subindex k for the moment (thus, all variables to be

introduced next apply to investors in any division).
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Notice that, in the absence of keeping up with the Joneses behavior (γ = 0), the previous

condition reduces to E (r c−α) = 0, the standard CRRA Euler equation.

Condition (2) allows us to solve for the representative investor’s optimal portfolio. Since

financial markets are complete, there exists a mimicking portfolio Xw that maps the workers

relative income onto the investment opportunity set such that w/c = w0(R + r′Xw). Fol-

lowing Gaĺı (1994), given w0 and Xw, for small values of E(r), the optimal portfolio of the

representative investor of division k can be approximated as a function of α, γ and the risk

adjusted risk premia Ω−1E(r):

(3) x∗k =
θkγk

1 − γk
Xw
k +

1

αk(1 − γk)
Ω−1E(r),

with θk =
w0

k

1+w0
k
, the workers initial wealth as a proportion of the division’s total wealth

(investor’s plus non-diversifiable wealth).

Notice that even if there is a friction (θk > 0) that prevents full risk-diversification for a

set of agents (the workers), investors will hold well diversified portfolios unless they exhibit

some degree of keeping up with the Joneses behavior (γk > 0). Thus, it is important to

emphasize that investors’ portfolios will be locally biased if and only if both keeping up with

the Joneses behavior and a market friction exist.

0.2 Endogenous keeping up with the Joneses preferences

In this section, we discuss the endogenous keeping up with the Joneses preferences presented

in DeMarzo, Kaniel and Kremer (2004). In this specification agents consume two types of

goods: c, which has the interpretation of a global good, and wk, a local good, like housing

services. Utility over consumption for these two goods is given by:

u(c, w) =
1

1 − α
(c1−α + δw1−α).

The parameter δ > 0 specifies the relative importance of the local good. All consumption

takes place at the end of the period. At time t = 0, investors are endowed with shares of

the firm that produces the global good. Call c0
k the aggregate value of those shares at the

beginning of the period for agents in division k. For simplicity, let c0
k = 1 in all divisions.
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Workers in each division will receive a fixed number w̄k of units of the local good at time

t = 1. In equilibrium, the relative price of the local good in terms of the global good at

t = 1 is given by pk = δ
(
ck
w̄k

)α
. As it would be expected, the scarcer the (fixed) local good

endowment relative to the (stochastic) global good consumption, the higher the relative price

of the former. The investor’s hedging demand for this risk will trigger the endogenous keeping

up with the Joneses behavior in this model. Financial markets are complete.

If workers can not diversify their endowment risk (due, for instance, to short-selling

constraints and moral hazard), Proposition 2 in DeMarzo, Kaniel and Kremer (2004) shows

that the representative investor’s marginal utility is given by:

(4) uc(c, p) = c−α
(
1 + δ1/αp1−1/α

)α
.

Let p0 = δ
(
c0

w̄

)α
denote the relative price at t = 0 of one unit of the non-diversifiable, local

good endowment of workers at time t = 1. Recall that we normalized the initial investor’s

shares endowment c0 = 1. Hence, p0 = δw̄−α. The present value of the workers endowment

is therefore w̄0 = δw̄1−α.

In this model, the relative wealth at t = 0 of the workers in division k as a proportion of

the total division wealth is given by θk =
w̄0

k

1+w̄0
k
. Call w̄kpk/w̄

0
k the return on the workers wealth

(in units of the global good) over the period. Like in the exogenous preferences specification,

under complete (financial) markets, there exists a portfolio Xw
k such that w̄kpk

w̄0
k

= R+ r′Xw
k .

After these definitions, we can write the approximate function for division k investor’s

optimal portfolio as follows:

(5) x∗k =
θk(αk − 1)

αk
Xw
k +

1

αk
Ω−1E(r).

Notice that, in this model, the optimal portfolio for the logarithmic investor (α = 1)

coincides with the benchmark, well diversified portfolio Ω−1E(r). No relative wealth concern

arises even in the presence of local, non-diversifiable wealth. Only for α > 1 should we

observe a local bias in portfolio holdings.
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Appendix B

0.1 Country Level Portfolios

We complement here the results of Section 4 in the paper. In that section we test the im-

plications of the model using individual stocks. In addition, it is standard in empirical asset

pricing tests to use portfolios of stocks as test assets in order to reduce the errors in variables

problem that plagues the two-step Fama and MacBeth (1973) estimation methodology. Fur-

thermore, it is common to use factor mimicking portfolios to proxy risk factors in order to be

able to interpret the estimated prices of risk in terms of returns (risk premia). Furthermore,

model performance that focuses on pricing errors is easier to undertake with the use of well

diversified portfolios.

We construct a factor mimicking (FM) portfolio for the orthogonal state labor income

risk as follows. For each stock i, we use the slope coefficient on the orthogonal labor factor

β̂Fi estimated in equation (6) in the paper until the fourth quarter of 1964, to rank stocks in

1965. Next, we form three equally weighted portfolios according to the size of the coefficient.

We then add one year of quarterly data. We re-estimate the coefficient, rank the stocks, sort

them into three portfolios and compute their quarterly returns in 1966. We continue adding

one year and re-estimating the coefficients until we have thirty-six quarterly observations in

the time-series regressions. At this point, we start rolling the data one year at a time: adding

on a new year and taking off the first year. We continue this process until the end of the

sample.

The above procedure results in three portfolios, from the first quarter of 1965 to the

final quarter of 2011, formed in year t based on the estimated coefficient on orthogonal

labor income estimated until year t − 1. The returns of the factor mimicking portfolio are

computed as the returns of the portfolio (P1) formed by the stocks with the highest one third

of coefficient estimates minus the returns on the portfolio (P3) formed by the stocks with the

lowest one third of coefficient estimates. We represent by rFMt the return of the state factor

mimicking portfolio at t.

As test assets, we consider the Fama and French twenty-five size and book to market

portfolios that have become standard in asset pricing tests due to their large spread in

returns. In addition, we form test portfolios based on the sorted orthogonal betas from

individual stocks estimated in equation (6) in the paper. The reason for this is that Daniel

and Titman (2011) and Lewellen, Nagel, and Shanken (2010) note that testing asset pricing

models using portfolios formed on firm characteristics, such as size and book to market, can

lead to spurious conclusions about the usefulness of a proposed factor. This is because the

factor structure of the portfolios is so strong that any proposed factor that is only weakly

correlated with size or book-to-market will appear to price the test assets. That is, testing a
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new proposed factor on test assets sorted only by size and book-to-market is likely to have very

low power. In order to alleviate this concern, we follow the recommendations in Daniel and

Titman (2011) and Lewellen, Nagel, and Shanken (2010) and sort stocks by lagged loadings

on our proposed factor. We use these beta-sorted portfolios together with the twenty-five

Fama and French portfolios sorted by size and book-to-market in the cross-sectional tests of

our model.

To generate the beta-sorted test portfolios we repeat the procedure discussed above and

construct ten and twenty equally weighted portfolios.2 We calculate excess returns on all the

test portfolios by subtracting the one month T-bill rate from the actual returns.

Panel A of Table 1 in this Appendix shows the average return spread between the portfolio

containing the stocks with the highest orthogonal betas (P1) and the portfolio containing

the stocks with the lowest orthogonal betas (P3, P10 and P20, respectively). Notice that,

consistent with the model’s prediction, portfolios with a higher orthogonal beta carry a

lower return relative to portfolios with lower orthogonal beta. This difference is economically

significant and above 1% per quarter. We test whether the difference between both portfolios

is different from zero. In the first two cases (P1-P3 and P1-P10) we strongly reject that the

difference is zero. In the third case (P1-P20) we can only reject it marginally, however it

should be noted that the size of the spread on the P1-P20 portfolio is larger than the spread

on the P1-P3 portfolio. The lower level of statistical significance could be due to the smaller

number of stocks in the 20 portfolios.

Panel B of Table 1 presents the average excess return on each of the twenty beta-sorted

portfolios and the correlation coefficient between each portfolio and the factor mimicking

portfolio.3 Notice that as we move from top to bottom in the table, the average return on

the portfolios increases while the correlation decreases. That is, portfolios more correlated

with the factor mimicking portfolio offer a better hedging against deviations from the Joneses

consumption (including non-diversifiable wealth) and trade at a higher price (lower expected

return). Using the full sample, the coefficient β̂FMp is obtained by regressing the return on

each of the portfolios against the return on the factor mimicking portfolio and the market

excess return:

(1) rp,t = αp + βFMp rFMt + βermp rerm,t + up,t.

2All the results presented in the paper are generally robust to the use of market capitalization weighted

portfolios.
3When examining portfolios, we use excess returns in order to test whether the models’ pricing errors are

equal to zero.
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where rp,t is the excess return on portfolio p, rFMt is the return on the factor mimicking

portfolio, rerm,t is the excess return on the aggregate stock market portfolio, and up,t is the

residual. All but the three top betas are strongly statistically significant. The spread in

returns and betas indicates that orthogonal local labor income is closely related to stock

returns. It is worth mentioning that if the distributions of betas and the prices of risk

are different across divisions, the estimates of αp from regression (1) cannot be interpreted

as KEEPM pricing errors even if the KEEPM model is true. The fact that the spread in

average returns in panel B of Table 1 is not monotonic suggests so.4 Furthermore, nine of the

estimate of αp are statistically significant although the patterns is the alpha have no clear

relation to the portfolios sorting. In order to address the concern that the distribution of

betas and prices of risk could be different across divisions, we will repeat the time series and

cross-section tests at the divisional level in section 5 in the paper.

We now turn to analyzing the cross-sectional performance of the KEEPM. As test assets,

we use the excess returns on the twenty beta-sorted portfolios plus the Fama and French

twenty-five size and book to market portfolios.5 The cross sectional regressions regress excess

returns in each quarter on the portfolio betas on the factor mimicking portfolio based on the

orthogonal state labor income return, β̂FMp , and the stock market return, β̂ermp , estimated in

(1):

(2) rp = λ0
t + λFMt β̂FMp + λermt β̂ermp + ξp.

The results from this cross-sectional regression are reported in Panel A of Table 2 in this Ap-

pendix. The quarterly price of risk on the orthogonal factor mimicking portfolio is negative,

economically important at -0.88% per quarter, and statistically significant. The adjusted R2,

R
2
, is 66% indicating a good measure of fit.6 Notice that the intercept, which should be

zero, is positive and statistically significant, which indicates that the model is not correctly

specified. As noted above, one potential reason for this that we explore later is that we

restrict the price of risk on the orthogonal labor income risk to be the same across all stocks

irrespective of where the stocks come from.

4We thank the referee for this comment.
5All cross-sectional results are qualitatively analogous when the prices of risk are estimated with respect

to the one-year lagged betas.
6Following Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b), we calculate R2 as[

V arc(rp) − V arc(ξp)
]
/V arc(rp), where V arc is the cross-sectional variance, rp is the average return and ξp

is the average residual. R
2

is the adjusted R2.
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For comparison, the second row of Panel A reports the price of risk, λerm, and the average

R
2

from the cross-sectional regression of the CAPM. As in previous tests of the unconditional

CAPM, the estimated price of risk is statistically not different from zero and the R
2

is only

8%. The third row of Panel A presents the results from the three-factor Fama and French

model. The prices of risk associated with size, λsmb, and book-to-market, λhml, are positive

and statistically different from zero. The average R
2

is 73% and similar to the value from

the KEEPM.

In order to assess whether there is any additional explanatory power in the size and

book-to market risk factors relative to that of the KEEPM, in the fourth row of Panel A, we

estimate the KEEPM whilst including the smb and hml risk factors in (2):

(3) rp = λ0
t + λFMt β̂FMp + λermt β̂ermp + λsmbt β̂smbp + λhmlt β̂hmlp + ξp.

The price of risk on the orthogonal factor mimicking portfolio is -0.896, virtually identical

to the original value reported in the first row, and also statistically significant. The estimated

price of risk on the book-to-market factor remains positive and significant, although the size

risk premium is smaller and only marginally significant and the R
2

is 75%. We interpret these

findings as evidence that the model’s prediction of a negative price of risk on the Joneses

risk-hedging factor remains robust to the inclusion of other risk factors known for their ability

to explain the cross-section of the US stock returns. In light of the results in the fourth row

of Panel A, we conclude that the orthogonal labor income factor commands a price of risk

not explained by the size and book-to-market risk premia. Appendix C shows that these

results are robust, and even stronger, when estimated by GMM.

To provide a more formal test of the performance of the KEEPM relative to the CAPM

and the three-factor Fama and French model, Panel B presents the square root of the squared

pricing errors for each test portfolio and each model. We define the pricing error of a given

portfolio as the difference between the actual portfolio return and the expected return ac-

cording to the cross-sectional model. Overall, the size of the pricing errors of the KEEPM

are small relative to the portfolio returns in Panel B of Table 1. In particular, the average

pricing error is 0.287, about ten times smaller than the average portfolio return. The pricing

errors from the CAPM, as expected, are large relative to those of the other models, with an

average value of 0.483. A comparison of the pricing errors of the KEEPM with those of the

three-factor Fama and French model reveals that they are of similar magnitude (the average

value is 0.241) and smaller in eight out of the twenty-five Fama and French portfolios (Panel
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B.1) and eleven out of the twenty beta-sorted portfolios (Panel B.2). When we add the size

and book-to-market risk factors to the KEEPM in the last column, the average pricing error

decreases to 0.222 and the pricing errors are smaller than those from the three-factor model

for eleven of the Fama and French portfolios and thirteen of the beta-sorted portfolios.

Panel B.3 includes the average cross-sectional pricing errors from each model for the

forty-five portfolios of panels B.1 and B.2. We also test whether the pricing errors are jointly

zero.7 Except for the three-factor Fama and French model, the test rejects the hypothesis

that the pricing errors are jointly zero, although it should be emphasized that the pricing

errors are economically small and very similar in size for the KEEPM and the Fama-French

three factor model and actually smaller for the model that incorporates all four factors.

The evidence presented so far shows strong support at the country level for the main

prediction of the model: a negative and significant price of risk on the orthogonal state

labor income return factor. In the time-series, the test portfolios’ betas with respect to

the orthogonal factor mimicking portfolio are strongly significant in most cases and give a

reasonable and statistically significant spread in returns. In the cross-sectional tests, the

KEEPM performs well both in its own right and in comparison with the three-factor Fama

and French model, and the orthogonal factor mimicking portfolio is shown to be robust to

the inclusion of the size and book-to-market risk factors.

7This is a Chi-sq test given as α̂′cov(α̂)−1α̂, where α̂ is the vector of average pricing errors across the

forty-five portfolios and cov is the covariance matrix of the pricing errors. p-values in brackets.
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Appendix C

0.1 A linear approximation to the Stochastic Discount Factor (SDF)

We will derive this approximation both for the endogenous and the exogenous case. Like in

the derivation of the optimal portfolio, the only difference will lay on the interpretation of

the deep parameters.

Let us start with the exogenous Joneses specification. The investor’s (first order condition)

optimal consumption choice is given in equation (2). This condition holds for any asset

i and any division k. The first-order approximation to the marginal’s utility is given by

uc(ck, wk/ck) ≈ uc(c
0
k, w

0
k/c

0
k) + uc,c(c

0
k, w

0
k/c

0
k)(ck − c0

k) + uc,w/c(c
0
k, w

0
k/c

0
k)(wk/ck − w0

k/c
0
k) =

uc(1, w
0
k) [1 − α(1 − γ)(r′x∗k +R− 1) + θk αγ(r′Xw

k +R− 1)] .

Replacing the later expression in (2) we obtain the following condition:

(1) E (ri [τk − (r′x∗k +R− 1) + θkbk(r
′Xw

k +R− 1)]) = 0,

where τk = 1
αk(1−γk)

and bk = γk
1−γk

. We multiply (1) by ωk, the proportion of country

market capitalization in division k and add up across all divisions:

(2) E

(
ri

[
H−1 − (rM +R− 1) +

∑
k

ωkθkbk(r
w
k +R− 1)

])
= 0,

where H−1 =
∑

k ωkτk is the aggregate risk aversion coefficient. We have used the market

clearing condition
∑

k ωkx
∗
k = xM and the definitions rM = r′xM and rwk = r′Xw

k . After

regressing the workers non-diversifiable income onto the country market portfolio return –

equation (2) in the paper– we can write rwk = βkrM + rFk . We replace the later expression

in the Euler equation. Moreover, we assume that E(ri)(R− 1) ≈ 0 for small values of E(ri)

and the (net) risk-free rate, R− 1. This results into the following Euler equation:
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(3) E

(
ri,t

[
H−1 − (1 −

K∑
k=1

ωkθkbkβk)rM +
K∑
k=1

ωkθkbkr
F
k

])
= 0.

We turn now to the endogenous Joneses specification. The investor’s optimal consumption

choice is given in equation (4). This expression can be linearly approximated as follows:

uc(ck, pk) ≈ uc(c
0
k, p

0
k) + uc,c(c

0
k, p

0
k)(ck − c0

k) + uc,p(c
0
k, p

0
k)(pk − p0

k).

Replacing the values of c0
k, p

0
k, and ck in the later expression we obtain the following:

uc(ck, pk) ≈ uc(1, δkw̄
−αk
k )

[
1 − αk(r

′x∗k +R− 1) + θk (αk − 1)

(
w̄kpk
w̄0
k

− 1

)]
.

We replace the later expression in (4). Given that w̄kpk
w̄0

k
= R + r′wk , we obtain condition

(1) with τk = 1
αk

and bk = αk−1
αk

. Following the same procedure as in the exogenous case we

arrive at equation (2) and finally equation (3).

Equation (3) implies an approximate linear expression to the stochastic discount factor:

(4) m ≈ c0 + cMrM +
K∑
k=1

ckr
F
k ,

where c0 = H−1, cM =
∑K

k=1 ωkθkbkβk−1 and ck = ωkθkbk. We define c ≡ (cM , c1, ..., ck, ..., cK)

as the vector of coefficients; recall that rF = (rM , r
F
1 , ..., r

F
k , ..., r

F
K) denotes the vector of fac-

tor returns. Hence, we can write the stochastic discount factor is a more compact way as

m ≈ c0 + crF .

Define the forecast error at time t for the parameter vector c as vt(c) ≡ rt(c0 +crF ), such

that, according to the equilibrium orthogonality condition (3), its unconditional expectation

E(vt(c)) = 0. Define the sample mean of the forecast errors over the T observations as:

µT (c) ≡ 1

T

T∑
t=1

vt(c).
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The GMM methodology estimates the parameter vector c that minimizes

ĉ = arg min
c

(µ′T (c)ΣµT (c)),

where Σ is a positive definite weighting matrix. Under GMM this weighting matrix is the

inverse of a consistent estimator of the spectral density matrix of vt at frequency zero, defined

as S =
∑∞

j=−∞E[vtv
′
t−j] = T · var(µT ). Hansen (1982) shows that it is optimal to use the

inverse of a consistent estimator of S as the weighting matrix, since the estimated parameter

vector has the lowest variance asymptotically. When Σ is the optimal weighting matrix S−1,

the asymptotic standard errors are given by var(ĉ) = 1
T

(D′TS−1DT )−1, where DT = ∂µT (c)
∂c′ .

0.2 GMM Estimation of the Prices of Risk

In this subsection, we approach the estimation of prices of risk implied by the KEEPM

model in sections 0.1 in this Appendix and 5.2 in the paper using the GMM procedure

described above. This allows for any heteroscdasticity in the residuals to be controlled for,

a potential weakness of the OLS based Fama-MacBeth methodology. Whilst it is possible

to use GLS in the Fama-MacBeth methodology, there are well know problems associated

with the GLS method in cross sectional regressions. In particular, in finite samples the

covariance matrix could be poorly estimated (see Cochrane (2005)). In order to capture

possible heteroscedasticity in the residuals, we have decided to estimate the prices of risk

using one-step GMM which provides robust standard errors. This approach is based on the

derivation of an approximate linear stochastic discount factor (SDF) in Appendix C.1 based

on the model equilibrium condition for the prices of risk (4).

Equation (2) in section 0.1 shows the Fama-MacBeth cross-section regression that we

used to estimate the orthogonal price of risk on the factor mimicking portfolio (common

across all portfolios), λFM , and the market price of risk, λerm. We now use the approximate

Euler equation (3) and the implied stochastic discount factor, m, in (4) to estimate the

corresponding loadings and prices of risk using the GMM approach. In particular, for each

portfolio p, the orthogonality condition is given by:

(5) rp
(
c0 + cermrerm + c

FM
rFM

)
= 0,

where rFM represents the return on the (orthogonal) labor risk factor-mimicking portfolio,
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common across all divisions; c
FM

is the corresponding factor loading in the SDF. We also

follow Cochrane (2005), who notes that, given a stochastic discount factor m, a risk factor

vector rF , and factor risk premia vector λ, E(mrF − rF + λ) = 0. This results into two

additional orthogonality conditions:

(
c0 + cermrerm + c

FM
rFM

)
rerm − rerm + λerm = 0,

(6) (
c0 + cermrerm + c

FM
rFM

)
rFM − rFM + λFM = 0,

which we can incorporate into the moment conditions given by (5) to produce efficient es-

timates of the SDF loadings (c0, cerm, and c
FM

), the prices of risk λerm and λFM , and their

associated standard errors (see Li, Vassalou and Xing (2006)). As testing portfolios we use

the 20 state beta-sorted portfolios from Table 1 Panel B of this Appendix plus the twenty-five

Fama-French portfolios sorted first by size from smaller to larger and sorted then within each

quintile by book-to-market from lower to higher. The system involves N = 20 + 25 + 2 = 47

orthogonality conditions to estimate L = 5 parameters.

In Table 3 of this Appendix, the KEEPM Model (second row) is supported by the data,

with a sizeable quarterly premium (-2.045) significant at almost the 1% level. The corre-

sponding coefficient in the pricing kernel, c
FM

, is also significant at the 1% level. Looking at

the KEEPM model extended with the Fama and French factors (bottom row), all the esti-

mated prices of risk are very similar to those reported in Table 3 Panel A with a quarterly

premium on the orthogonal labor risk factor equal to -0.936, significant at the 5% level.

We estimate next the prices of risk from the KEEPM model per division. Table 4 of

the Appendix presents the coefficients and prices of risk estimated in each division using

the orthogonality conditions in (5) and (6). When comparing these estimates and their

statistical significance with those in Table 4 in the paper, obtained using the Fama-MacBeth

methodology, we find, with the exception of MA and EN which have a larger estimates, very

similar results in terms of the size and the extent of the statistical significance of the estimate

prices of risk.

Summarizing, the results regarding the statistical significance of the estimated prices of

risk are robust to two different estimation techniques, the traditional Fama-MacBeth cross

sectional regressions (reported in tables 2 of the Appendix and 4 of the paper) and the GMM

technique (reported in tables 3 and 4 of the Appendix) which is robust to heteroscedacticity.
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Table 1

Beta-sorted portfolios

Time-series regressions: Aggregate

US stocks are sorted according to their slope coefficients β̂F
i estimated in Table 1 in the

paper into three, ten and twenty equally weighted portfolios denoted by subscript p. The

quarterly return on these portfolios is estimated over the following year. The time series of

quarterly portfolio returns starts in 1965Q1 and ends in 2011Q4.

Panel A reports the average percentage quarterly return on the difference between the

portfolio that includes the stocks with the highest betas (P1) and the portfolio with the lowest

betas (P3, P10 and P20, respectively). Absolute t-statistics that test whether the difference

between the two portfolios is different from zero are reported in parenthesis.

We next estimate an aggregate factor mimicking (FM) portfolio for the orthogonal state

labor income risk by going long on the top portfolio containing one-third of the stocks with the

highest beta (P1) and short on the bottom portfolio containing one-third of the stocks with the

lowest beta (P3). Let rFM
t denote the return on the factor mimicking portfolio. Panel B reports

the average returns on the 20 beta-sorted portfolios, the correlation coefficient ρ between each

portfolio return and the return on the factor mimicking portfolio, and the coefficient from the

following regression (absolute t-values in parenthesis):

rp,t = αp + βFM
p rFM

t + βerm
p rerm,t + up,t.

Panel A: Average return spread

P1 − P3 P1 − P10 P1-P20

−1.078
(2.45)

−1.333
(2.11)

−1.294
(1.79)
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Panel B: Portfolio statistics

rp ρ(rp, r
FM) β̂FMp αp

P1 2.033
(2.25)

-0.469 −0.142
(1.43)

0.004
(0.79)

P2 2.108
(2.84)

-0.480 −0.064
(0.97)

0.007
(2.02)

P3 2.006
(2.74)

-0.498 −0.113
(1.69)

0.006
(1.70)

P4 2.101
(2.97)

-0.519 −0.136
(2.28)

0.007
(2.23)

P5 1.840
(2.60)

-0.561 −0.234
(3.90)

0.004
(1.23)

P6 1.867
(2.64)

-0.584 −0.282
(4.81)

0.004
(1.22)

P7 2.185
(2.85)

-0.607 −0.378
(5.76)

0.005
(1.63)

P8 2.444
(3.27)

-0.610 −0.374
(5.89)

0.008
(2.56)

P9 2.257
(3.32)

-0.653 −0.497
(7.81)

0.009
(2.60)

P10 2.511
(3.32)

-0.672 −0.517
(9.31)

0.007
(2.59)

P11 2.307
(2.85)

-0.687 −0.600
(9.64)

0.005
(1.45)

P12 2.545
(3.13)

-0.705 −0.659
(10.56)

0.006
(2.08)

P13 2.446
(2.66)

-0.742 −0.855
(13.21)

0.002
(0.83)

P14 2.875
(3.25)

-0.720 −0.766
(11.48)

0.008
(2.34)

P15 3.070
(3.43)

-0.760 −0.919
(14.32)

0.008
(2.63)

P16 2.984
(2.97)

-0.789 −1.111
(16.85)

0.005
(1.58)

P17 3.230
(3.17)

-0.791 −1.122
(17.36)

0.007
(2.21)

P18 2.705
(2.53)

-0.790 −1.191
(16.74)

0.001
(0.31)

P19 3.428
(3.04)

-0.820 −1.387
(19.64)

0.006
(1.74)

P20 3.327
(2.51)

-0.810 −1.653
(16.65)

0.001
(0.23)
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Table 2

Beta-sorted and Fama and French portfolios

Cross-sectional Fama-MacBeth regressions: Aggregate

Panel A reports estimates from Fama-MacBeth cross-sectional regressions at each period

t:

rp = λ0t +
∑
f

λft β̂
f
p + λermt β̂erm

p + ξp,

across portfolios p. As testing portfolios we use the 20 state beta-sorted portfolios from

Table 1 Panel B plus the twenty-five Fama-French portfolios sorted first by size from smaller

(FF1) to larger (FF21) and sorted then within each quintile by book-to-market from lower to

higher. β̂erm is the estimated beta for the market risk factor; β̂f is the estimated beta for

the risk factor f . In each specification, we estimate and report the average cross-sectional

(percentage) quarterly prices of risks. In the first row we estimate the market portfolio price

of risk, λerm, from the CAPM. In the second row we add the price of risk of the state labor

income factor mimicking portfolio, λFM , from the KEEPM. In row number three we estimate

the Fama and French (FF) three-factor model including the the size (λsmb) and book-to market

(λhml) prices of risk. In the final row we test the KEEPM augmented with the Fama-French

factors (KEEPM-FF). R2 = [V arc(rp) − V arc(ep)] /V arc(rp), where V arc is the cross-sectional

variance, rp is the average return and ep is the average residual. R
2

is the adjusted R2. Absolute

t-values are reported in parenthesis

Panel B presents the square root of the squared pricing errors for the Fama and French

(Panel B.1) and state beta-sorted (Panel B.2) testing portfolios and the four model specifica-

tions. ∗ indicates that the individual pricing error is statistically significant at the 5% level.

Panel B.3 includes the average cross-sectional pricing errors from each model for the forty-five

portfolios from panels B.1 and B.2. We also report a test of whether the pricing errors are

jointly zero. This is a Chi-sq test given as α̂′cov(α̂)−1α̂, where α̂ is the vector of average pricing

errors across the forty-five portfolios and cov is the covariance matrix of the pricing errors.

p-values in brackets.

17



Panel A: Prices of risk

λ0 λFM λerm λsmb λhml R
2

4.773
(3.93)

−0.880
(2.23)

−3.054
(2.32)

0.66

1.273
(1.46)

0.935
(0.85)

0.08

1.023
(1.12)

0.323
(0.29)

0.903
(2.04)

1.283
(2.83)

0.73

2.128
(2.37)

−0.896
(1.98)

−0.700
(0.64)

0.745
(1.74)

1.224
(2.75)

0.75
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Panel B: Pricing errors

CAPM KEEPM FF KEEPM-FF

Panel B.1: Fama-French portfolios

FF1 1.871∗ 1.220∗ 1.290∗ 1.206∗

FF2 0.016 0.035 0.021 0.003

FF3 0.185 0.328 0.142 0.197

FF4 0.857∗ 0.131 0.304∗ 0.246

FF5 1.115∗ 0.501∗ 0.167 0.221

FF6 1.141∗ 0.003 0.233 0.076

FF7 0.200 0.028 0.086 0.011

FF8 0.479∗ 0.568∗ 0.311 0.413∗

FF9 0.609∗ 0.394 0.161 0.226

FF10 0.726∗ 0.484 0.132 0.022

FF11 1.057∗ 0.090 0.110 0.186

FF12 0.076 0.348 0.258 0.316

FF13 0.109 0.071 0.028 0.053

FF14 0.401 0.401 0.087 0.169

FF15 0.981∗ 0.510 0.289 0.319

FF16 0.680 0.419∗ 0.692∗ 0.684∗

FF17 0.670∗ 0.080 0.249 0.168

FF18 0.161 0.147 0.015 0.035

FF19 0.218 0.386 0.187 0.239

FF20 0.252 0.354 0.170 0.050

FF21 0.995∗ 0.313 0.528∗ 0.310

FF22 0.724∗ 0.210 0.115 0.035

FF23 0.774∗ 0.531∗ 0.216 0.300

FF24 0.547∗ 0.544∗ 0.393∗ 0.461∗

FF25 0.504 0.524 0.506∗ 0.549
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Panel B.2: Labor income sorted portfolios

P1 0.312 0.4801 0.215 0.061

P2 0.121∗ 0.3468 0.076 0.203

P3 0.201 0.0698 0.160 0.054

P4 0.092 0.0680 0.018 0.067

P5 0.347∗ 0.4152∗ 0.422∗ 0.397∗

P6 0.316∗ 0.4992∗ 0.370∗ 0.406∗

P7 0.061 0.1835 0.178 0.175

P8 0.219 0.0152 0.111 0.079

P9 0.322 0.0213 0.080 0.036

P10 0.231 0.0423 0.166 0.087

P11 0.008 0.3622 0.139 0.223

P12 0.252 0.2663 0.050 0.077

P13 0.024 0.3647 0.255 0.334

P14 0.494 0.1178 0.168 0.119

P15 0.663∗ 0.0759 0.322 0.204

P16 0.480 0.1028 0.115 0.016

P17 0.701∗ 0.1928 0.366 0.258

P18 0.128 0.3224 0.217 0.305

P19 0.803∗ 0.1452 0.548 0.372

P20 0.536 0.0165 0.148 0.034

Panel B.3: Average pricing errors

CAPM KEEPM FF KEEPM-FF

Average p.e. 0.483 0.287 0.241 0.222

p.e. Test 61.132
[0.04]

74.442
[0.00]

55.182
[0.08]

72.521
[0.00]
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Table 3

GMM Cross-Sectional Tests of KEEPM: Aggregate tests

This table presents the GMM estimates of the following pricing equation:

E[rp
(
c0 + cermrerm + c

FM
rFM

)
] = 0,

where rp is the excess return on portfolio p; c0 is the intercept; cerm is the loading on the market factor;

rerm is the return on the market portfolio; c
FM

is the loading corresponding to the aggregate (common across

divisions) orthogonal component of local labor income; and rFM is the return on the orthogonal labor factor

mimicking portfolio. In the table, λFM is the quarterly risk premium corresponding to the local orthogonal

labor income factor, and λerm is the quarterly risk premium corresponding to the market factor. csmb and

chml denote, respectively, the SMB and HML Fama-French factor loadings in the pricing kernel. λsmb and

λhml are the corresponding prices of risk. Absolute t-values in parenthesis. p-values between brackets.

c0 c
FM

cerm csmb chml λFM λerm λsmb λhml

0.956
(33.06)

5.746
(5.68)

4.946
(4.63)

−2.045
(2.68)

−0.858
(2.20)

0.943
(76.48)

1.669
(1.75)

−1.095
(1.41)

1.056
(24.86)

1.718
(1.46)

−5.181
(3.72)

−4.569
(3.74)

−0.581
(0.78)

1.011
(2.79)

1.434
(3.42)

1.014
(24.97)

1.973
(1.29)

3.283
(2.57)

−4.035
(2.29)

−3.251
(2.51)

−0.936
(2.27)

−1.190
(1.53)

0.936
(2.30)

1.309
(3.06)
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Table 4

GMM Cross-Sectional Tests of KEEPM: Per Division

This table presents the GMM estimates of the following pricing equation:

E[rp,k
(
c0,k + cerm,krerm,k + ckr

FM
k

)
] = 0,

where rp,k is the excess return on portfolio p in division k; c0,k is the intercept; cerm,k is the loading

on the market factor; rerm,k is the return on the market portfolio; ck is the loading corresponding to the

orthogonal component of local labor income in division k; and rFM
k is the return on the orthogonal labor

factor mimicking portfolio in division k. In the table, λFM
k is the quarterly risk premium corresponding to

the local orthogonal labor income factor, and λermk is the quarterly risk premium corresponding to the market

factor, all per division k. Absolute t-values in parenthesis. p-values between brackets.

c0,k ck cerm,k λFMk λermk

MA 1.084
(17.41)

−2.248
(1.17)

−6.889
(2.18)

−2.045
(2.68)

4.688
(2.45)

NE 0.976
(24.10)

0.950
(0.55)

−0.283
(0.12)

−0.491
(1.00)

0.479
(0.31)

SA 0.990
(23.72)

1.500
(0.93)

0.025
(0.01)

−1.167
(1.82)

0.564
(0.32)

EN 1.037
(20.48)

−0.379
(0.25)

−3.350
(1.43)

−0.491
(1.16)

2.616
(1.57)

PA 1.027
(21.97)

−1.646
(0.55)

1.194
(0.86)

−1.703
(2.48)

1.734
(0.91)

ES 0.997
(29.37)

−0.826
(0.75)

1.014
(0.35)

−1.300
(1.48)

1.033
(0.48)

WS 1.010
(23.41)

1.789
(1.86)

−0.607
(0.25)

−1.673
(2.48)

0.910
(0.54)

WN 1.025
(17.73)

−0.515
(0.26)

−3.029
(0.93)

−0.517
(1.00)

2.191
(1.08)

MO 1.201
(17.35)

1.520
(1.87)

−0.736
(0.24)

−1.697
(2.24)

0.819
(0.37)
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Figure 1: US Census Regions and Divisions. We use the nine census divisions, that we denote
with two letters: West South Central (WS), Pacific (PA), East South Central (ES), Mountain
(MO), East North Central (EN), South Atlantic (SA), West North Central (WN), Middle
Atlantic (MA), and New England (NE).
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Figure 2: Personal Income per state as a percentage of US total personal income. We use
this as a proxy of non-diversifiable income to study if, as predicted by the model, the size of
the risk premium is related to the amount of non-diversifiable labor income.

24


