
Internet Appendix

A Duan’s Risk Neutralization

Consider the following model:

Rt+1 = r + λ
√

ht+1 −
1
2

ht+1 +
√

ht+1εt+1 ,(A-1)

ht+1 = f
(
{hs, εs}s≤t

∣∣∣ Θh
)
,(A-2)

where the εt are i.i.d. N(0, 1) under P.

The risk-neutralization of Duan (1995) is a special case of Christoffersen, Elkamhi,

Feunou, and Jacobs (CEFJ) (2010) in which the equivalent martingale measure (EMM) obtains by

assuming that the Radon-Nikodym derivative is linear in stock return innovations. That is

(A-3) ξτ ≡
dQ
dP

∣∣∣∣∣Fτ = exp
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t=1

(
ηtεt + Ψε

t (ηt)
) ,

where Ψε
t is the natural logarithm of the moment-generating function of the {εt} innovations: that

is, Ψε
t (η) = 1

2η
2 .

For the Q measure defined by equation (A-3) to be an EMM, it must be that
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which implies that ηt = λ,∀t . Hence, ε∗t = εt + λ
Q
∼ N(0, 1).

Replacing εt by ε∗t − λ in equations (A-1) and (A-2) yields

Rt+1 = r −
1
2

ht+1 +
√

ht+1ε
∗
t+1 ,(A-5)

ht+1 = f
( {

hs, ε
∗
s − λ

}
s≤t

∣∣∣ Θh
)
.(A-6)

A.1 Risk-Neutral Form of the NGARCH Model

Replacing εt by ε∗t − λ in the NGARCH model yields

(A-7) ht+1 = σ2 + αht((ε∗t − λ)2 − 1 − 2γ(ε∗t − λ)) + β(ht − σ
2) .

Letting γ∗ = γ + λ, I obtain

(A-8) ht+1 = σ2 + αht(ε∗2t − 1 − 2γ∗ε∗t ) + αht(γ∗2 − γ2) + β(ht − σ
2) .

Then, letting β∗ = β + α(γ∗2 − γ2)

(A-9) ht+1 = (1 − β)σ2 + +αht(ε∗2t − 1 − 2γ∗ε∗t ) + β∗ht .

Finally, letting σ∗2 = (1 − β)σ2/(1 − β∗)
ht+1 = (1 − β∗)σ∗2 + αht(ε∗2t − 1 − 2γ∗ε∗t ) + β∗ht(A-10)

= σ∗2 + αht(ε∗2t − 1 − 2γ∗ε∗t ) + β∗(ht − σ
∗2) .(A-11)
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A.2 Risk-Neutral Form of the NGARCH(C) Model

Replacing εt by ε∗t − λ in the NGARCH(C) model yields

ht+1 = qt+1 + α1ht((ε∗t − λ)2 − 1 − 2γ1(ε∗t − λ)) + β1(ht − qt) ,(A-12)

qt+1 = σ2 + α2ht((ε∗t − λ)2 − 1 − 2γ2(ε∗t − λ)) + β2(qt − σ
2) .(A-13)

Letting γ∗i = γi + λ, I obtain

ht+1 = qt+1 + α1ht(ε∗2t − 1 − 2γ∗1ε
∗
t ) + α1ht(γ∗21 − γ

2
1) + β1(ht − qt) ,(A-14)

qt+1 = σ2 + α2ht(ε∗2t − 1 − 2γ∗2ε
∗
t ) + α2ht(γ∗22 − γ

2
2) + β2(qt − σ

2) .(A-15)

By replacing q in h

ht+1 = σ2 + α2ht(ε∗2t − 1 − 2γ∗2ε
∗
t ) + α2ht(γ∗22 − γ

2
2) + β2(qt − σ

2)(A-16)

+α1ht(ε∗2t − 1 − 2γ∗1ε
∗
t ) + α1ht(γ∗21 − γ

2
1) + β1(ht − qt) ,

= σ2 + α2ht(ε∗2t − 1 − 2γ∗2ε
∗
t ) + α1ht(ε∗2t − 1 − 2γ∗1ε

∗
t ) + β2(qt − σ

2) − β1qt

+
[
β1 + α1(γ∗21 − γ

2
1) + α2(γ∗22 − γ

2
2)
)]

ht .

Then, letting β∗i = βi + α1(γ∗21 − γ
2
1) + α2(γ∗22 − γ

2
2)

ht+1 = (1 − β2)σ2 + α2ht(ε∗2t − 1 − 2γ∗2ε
∗
t ) + α1ht(ε∗2t − 1 − 2γ∗1ε

∗
t ) + β∗1ht(A-17)

+
[
β∗2 − α1(γ∗21 − γ

2
1) + α2(γ∗22 − γ

2
2)
]
qt −

[
β∗1 − α1(γ∗21 − γ

2
1) + α2(γ∗22 − γ

2
2)
]
qt

= (1 − β2)σ2 + α1ht(ε∗2t − 1 − 2γ∗1ε
∗
t ) + β∗1(ht − qt) + α2ht(ε∗2t − 1 − 2γ∗2ε

∗
t ) + β∗2qt .
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Finally, letting σ∗2 = (1 − β2)σ2/(1 − β∗2)

ht+1 = (1 − β∗2)σ∗2 + α2ht(ε∗2t − 1 − 2γ∗2ε
∗
t ) + β∗2qt + α1ht(ε∗2t − 1 − 2γ∗1ε

∗
t ) + β∗1(ht − qt)(A-18)

= σ∗2 + α2ht(ε∗2t − 1 − 2γ∗2ε
∗
t ) + β∗2(qt − σ

∗2) + α1ht(ε∗2t − 1 − 2γ∗1ε
∗
t ) + β∗1(ht − qt)

⇔ ht+1 = qt+1 + α1ht(ε∗2t − 1 − 2γ∗1ε
∗
t ) + β∗1(ht − qt) ,

qt+1 = σ∗2 + α2ht(ε∗2t − 1 − 2γ∗2ε
∗
t ) + β∗2(qt − σ

∗2) .

B Risk Neutralization with Macro-Finance Variables

Assume that the macro-finance variable under consideration follows a dynamics of the

form

(B-1) xt+1 = ϕ
(
{xs, us}s≤t

∣∣∣ Θx

)
+ σx ut+1

where ut
P
∼ N(0, 1) are serially uncorrelated macroeconomic innovations.21

Given that asset returns are potentially correlated with macroeconomic innovations, I

consider a GARCH model of the form

Rt+1 = r + λt+1

√
ht+1 −

1
2ht+1 +

√
ht+1

(
ρut+1 +

√
1 − ρ2zt+1

)
(B-2)

ht+1 = f ( · | Θ, Ft ) ,(B-3)

21The volatility of the series could follow a GARCH process, i.e. σx,t+1 = ϕσ
( {
σx,s, us

}
s≤t

∣∣∣ Θσx

)
. For

simplicity, I here assume constant volatility.
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where λt+1 and ht+1 are Ft-measurable and zt
P
∼ N(0, 1) may be seen as a “pure-market”

innovation process, independent of ut. To formally demonstrate the risk neutralization of ut and zt,

I here draw on CEFJ (2010) for the treatment of two-shock stochastic volatility models (see

CEFJ’s (2010) Section 7). Note that my model is, however, fundamentally different from a

stochastic volatility model because in my case the “second” shock, ut+1, does not

contemporaneously impact the variance; instead, it impacts the mean of the return process. I will

return to the implications of this fundamental difference shortly.

First, I write the risk neutralization of my return process in terms of the risk neutralization

of the bivariate, uncorrelated normal innovations {ut, zt} using the following Radon-Nikodym

derivative:

(B-4) ξτ ≡
dQ
dP

∣∣∣∣∣Fτ = exp

− τ∑
t=1

(
ηu,tut + ηz,tzt + Ψu,z

t
(
ηu,t, ηz,t

)) ,

where Ψu,z
t is the natural logarithm of the moment-generating function of the {ut, zt} pairs, that is,

(B-5) Ψu,z
t (ηu, ηz) = 1

2

(
η2

u + η2
z

)
.

For the probability measure Q defined by the Radon-Nikodym derivative of equation (B-4) to be

an equivalent martingale measure (EMM), it must be the case that
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or, equivalently,

(B-7) 0 = Ψu,z
t

(
ηu,t − ρ

√
ht , ηz,t −

√
(1 − ρ2)ht

)
− Ψu,z

t
(
ηu,t, ηz,t

)
+ λt

√
ht −

1
2ht ,

which boils down to

(B-8) ρηu,t +
√

1 − ρ2ηz,t = λt .

Equation (B-8) admits an infinite number of solutions. However, as highlighted above, my

model has the specificity that both shocks affect the mean of the return process. Thus, the

bivariate normal shocks may be seen as blending into a single stream of standard normal

innovations {εt} and equation (B-2) is equivalent to

(B-9) Rt+1 = r + λt+1

√
ht+1 −

1
2ht+1 +

√
ht+1εt+1 .

This last equation is that of Duan (1995), which is a special case of CEFJ (2010) for which the

(linear) Radon-Nikodym derivative can be written as

(B-10) ξτ ≡
dQ
dP

∣∣∣∣∣Fτ = exp

− τ∑
t=1

(
ηtεt + Ψε

t (ηt)
) ,

where Ψε
t is the natural logarithm of the moment-generating function of the {εt} innovations: that

is, Ψε
t (η) = 1

2η
2 . Again, for the Q measure defined by equation (B-10) to be an EMM, it must be
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that
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which implies that ηt = λt,∀t . For equations (B-4) and (B-10) to describe the same

Radon-Nikodym derivative, it must be that

ξτ = exp

− τ∑
t=1

(
λtεt + 1

2λ
2
t

)
Using equation (B-8)

(B-12)

= exp
{
−

τ∑
t=1

(
λtρut + λt

√
1 − ρ2zt + 1

2

︷                                               ︸︸                                               ︷(
ρ2η2

u,t + 2ρ
√

1 − ρ2ηu,tηz,t + (1 − ρ2)η2
z,t

) )}

= exp

− τ∑
t=1

(
ηu,tut + ηz,tzt + Ψu,z

t
(
ηu,t, ηz,t

))
where the last equality holds if and only if for all t,

(B-13) ηu,t = ρλt and ηz,t =
√

1 − ρ2λt .

I thus have

u∗t = ut + ρλt(B-14)

z∗t = zt +
√

1 − ρ2λt ,(B-15)
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that is, the mean shift on each process is proportional to the correlation of that process with total

market innovations. Notably, if ρ=0, that is if market shocks and macroeconomic shocks were

uncorrelated, the latter would be unaffected by the risk neutralization.

Finally, observing that both processes u∗t and z∗t are standard normal under Q, I end with

the familiar risk-neutralization from Duan (1995)

(B-16) ε∗t = εt + λt = ρu∗t +
√

1 − ρ2z∗t .

The risk-neutral form of the MacroGARCH model is thus a straightforward extension of that

typically used for the NGARCH(C) model (Appendix A.2). This leads to the risk-neutral form of

the model in Equations (21) to (23).

To simulate this risk-neutral form of the model, the question remains as to how to forecast

the future values of the ADS business conditions index. First, by construction, ρ = Corr(εt, ut) is

the correlation between market returns and macroeconomic innovations. In the estimation of my

model, the dynamics of xt, and thus the uts, are assumed to be exogenous. Therefore, an estimate

of ρ may be obtained simply by measuring the correlation between the filtered εts and the uts.

Filtering the εts using the MacroGARCH model and the uts assuming that the index follows an

AR(1), as in ADS (2009), the correlation that I obtain is 1.99% with a p-value of 6.3%. The

correlation is thus not statistically significant, and more importantly not economically significant.

Second, the estimate of the autoregressive coefficient is 0.9992 and is not significantly different

from 1 at the 5% level. Based on these two observations, I simply assume that the best forecast

for future fundamental volatility is its current value; that is, I set τt+k = τt when forecasting at

time t. I do the same for the RP-based version of the model. For the VIX-based model, I fit an
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AR(1) process to the natural logarithm of the VIX over the estimation period. This model is used

to simulate the VIX in the Monte Carlo pricing. As expected, the (log-) VIX model’s innovations

are highly correlated with return innovations as Corr(εt, ut) = −0.649.
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Table IA.1: Option-Pricing Results: IVRMSE for the Alternative Specifications (Estimation Period,
1990/05–2007/11)

Table IA.1 reports the IVRMSE results corresponding to the results in Table 7. More specifically,
this table reports, in percentage points, the average IVRMSE for various subsamples of options
during the estimation period. For each subsample, I also report t-stats (in parentheses) on the
average of IVRMSEMw − IVRMSEamg(c)w , to assess whether model M is significantly outperformed
by the asymmetric MacroGARCH(C) model (amg(c)); negative t-stats arise when M dominates.
The t-stats are computed using Newey-West standard errors with a lag of 12 weeks and are bold
whenever their magnitude is larger than 1.96. Additionally, I report the ratio [in square brackets]
of the model’s pricing error to that of the ADS-based asymmetric MacroGARCH(C) model.

NGARCH(C) NGARCH(C3) Rec. Prob. VIX Asym. ADS
All options 3.93 3.84 3.85 3.31 3.71

(6.94) (3.33) (6.68) (-3.31) −
[1.06] [1.03] [1.04] [0.89] [1.00]

Maturity
Short-Term 3.71 3.69 3.63 3.34 3.55

(6.59) (4.27) (4.38) (-1.98) −
[1.04] [1.04] [1.02] [0.94] [1.00]

Medium-Term 3.80 3.69 3.70 3.17 3.60
(7.19) (2.70) (4.90) (-3.28) −
[1.06] [1.03] [1.03] [0.88] [1.00]

Long-Term 3.99 3.86 3.93 3.14 3.72
(6.34) (2.75) (8.18) (-3.70) −
[1.07] [1.04] [1.06] [0.85] [1.00]

Calls
All 1.96 1.91 1.89 2.27 1.88

(2.67) (0.78) (1.10) (3.29) −
[1.04] [1.02] [1.01] [1.21] [1.00]

ATM 2.13 2.07 2.06 2.08 2.01
(3.59) (1.36) (2.54) (0.62) −
[1.06] [1.03] [1.02] [1.03] [1.00]

OTM 1.88 1.83 1.82 2.37 1.81
(2.19) (0.51) (0.45) (4.50) −
[1.04] [1.01] [1.00] [1.31] [1.00]

Puts
All 4.63 4.52 4.53 3.68 4.35

(7.27) (3.74) (7.22) (-5.19) −
[1.06] [1.04] [1.04] [0.84] [1.00]

ATM 2.53 2.46 2.47 2.27 2.40
(3.98) (1.67) (3.16) (-1.07) −
[1.06] [1.03] [1.03] [0.95] [1.00]

OTM 4.99 4.88 4.89 3.91 4.69
(7.51) (3.96) (7.72) (-5.69) −
[1.06] [1.04] [1.04] [0.83] [1.00]

IVRMSE
MacroGARCH(C)
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Table IA.2: Option-Pricing Results: IVRMSE for the Alternative Specifications (Out-of-Sample,
2007/12–2010/10)

Table IA.2 reports the IVRMSE results corresponding to the results in Table 8. More specifically,
this table reports, in percentage points, the average IVRMSE for various subsamples of options
between Dec. 2007 and Oct. 2010 (out-of-sample). For each subsample, I also report t-stats (in
parentheses) on the average of IVRMSEMw − IVRMSEamg(c)w , to assess whether modelM is signif-
icantly outperformed by the asymmetric MacroGARCH(C) model (amg(c)); negative t-stats arise
whenM dominates. The t-stats are computed using Newey-West standard errors with a lag of 12
weeks and are bold whenever their magnitude is larger than 1.96. Additionally, I report the ratio
[in square brackets] of the model’s pricing error to that of the ADS-based asymmetric MacroGA-
RCH(C) model.

NGARCH(C) NGARCH(C3) Rec. Prob. VIX Asym. ADS
All options 6.07 5.87 5.67 7.35 5.54

(5.04) (4.80) (2.91) (2.49) −
[1.10] [1.06] [1.02] [1.33] [1.00]

Maturity
Short-Term 5.51 5.41 5.28 6.52 5.20

(5.27) (4.03) (2.83) (2.52) −
[1.06] [1.04] [1.02] [1.25] [1.00]

Medium-Term 5.86 5.62 5.50 7.22 5.40
(4.55) (2.94) (2.28) (2.39) −
[1.09] [1.04] [1.02] [1.34] [1.00]

Long-Term 6.83 6.54 6.24 8.53 6.01
(4.32) (4.15) (2.99) (2.47) −
[1.14] [1.09] [1.04] [1.42] [1.00]

Calls
All 3.21 2.98 3.15 4.79 3.19

(0.08) (-1.01) (-0.59) (3.51) −
[1.01] [0.93] [0.99] [1.50] [1.00]

ATM 3.26 3.03 2.94 5.12 2.96
(1.92) (0.48) (-0.31) (3.82) −
[1.10] [1.02] [0.99] [1.73] [1.00]

OTM 3.07 2.84 3.05 4.70 3.10
(-0.15) (-1.19) (-0.64) (3.40) −
[0.99] [0.92] [0.98] [1.52] [1.00]

Puts
All 7.01 6.80 6.39 8.57 6.14

(6.70) (4.64) (4.07) (2.31) −
[1.14] [1.11] [1.04] [1.40] [1.00]

ATM 3.63 3.42 3.17 5.64 3.15
(3.83) (2.74) (0.32) (3.17) −
[1.15] [1.08] [1.01] [1.79] [1.00]

OTM 7.32 7.11 6.68 8.87 6.41
(6.77) (4.60) (4.10) (2.27) −
[1.14] [1.11] [1.04] [1.38] [1.00]

IVRMSE
MacroGARCH(C)
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