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A Variance Risk Premium and Empirical Measurement

The central empirical variable of this paper, as a proxy for economic uncertainty, is the

market variance risk premium (VRP)—which is not directly observable but can be esti-

mated from the difference between model-free option-implied variance and the conditional

expectation of realized variance.

A.1 Variance Risk Premium: Definition and Measurement

In order to define the model-free implied variance, let Ct(T,K) denote the price of a European

call option maturing at time T with strike price K, and B(t, T ) denote the price of a time

t zero-coupon bond maturing at time T . As shown by Carr and Madan (1998) and Britten-

Jones and Neuberger (2000), among others, the market’s risk-neutral Q expectation of the

return variance σ2
t+1 conditional on the information set Ωt, or the implied variance IVt at

time-t, can be expressed in a “model-free” fashion as a portfolio of European calls,

IVt ≡ EQ
[
σ2
t+1|Ωt

]
= 2

∫ ∞
0

Ct

(
t+ 1, K

B(t,t+1)

)
− Ct (t,K)

K2
dK, (A1)

which relies on an ever increasing number of calls with strikes spanning from zero to infinity.1

This equation follows directly from the classical result in Breeden and Litzenberger (1978),

that the second derivative of the option call price with respect to strike equals the risk-

neutral density, such that all risk neutral moments payoff can be replicated by the basic

option prices (Bakshi and Madan, 2000).

In order to define the actual return variance, let pt denote the logarithmic price of the

asset. The realized variance over the discrete t to t + 1 time interval can be measured in a

“model-free” fashion by

RVt+1 ≡
n∑
j=1

[
pt+ j

n
− pt+ j−1

n

]2

−→ σ2
t+1, (A2)

where the convergence relies on n → ∞; i.e., an increasing number of within period price

observations. As demonstrated in the literature (see, e.g., Andersen, Bollerslev, Diebold,

1Such a characterization is accurate up to the second order when there are jumps in the underlying asset
(Jiang and Tian, 2005; Carr and Wu, 2009), though Martin (2011) has refined the above formulation to
make it robust to jumps.
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and Ebens, 2001; Barndorff-Nielsen and Shephard, 2002), this “model-free” realized vari-

ance measure based on high-frequency intraday data offers a much more accurate ex-post

observation of the true (unobserved) return variance than the traditional ones based on daily

or coarser frequency returns.

Variance risk premium (VRP) at time t is defined as the difference between the ex-ante

risk-neutral expectation and the objective or statistical expectation at time t of the return

variance at time t+ 1,

V RPt ≡ EQ
[
σ2
t+1|Ωt

]
− EP

[
σ2
t+1|Ωt

]
, (A3)

which is not directly observable in practice.2 To construct an empirical proxy for such a

VRP concept, one needs to estimate various reduced-form counterparts of the risk neutral

and physical expectations. In practice, the risk-neutral expectation EQ
[
σ2
t+1|Ωt

]
is typically

replaced by the CBOE implied variance (VIX2/12) and the true variance σ2
t+1 is replaced by

realized variance RVt+1.

To estimate the objective expectation, EP
[
σ2
t+1|Ωt

]
, we use a linear forecast of future

realized variance as RVt+1 = α + βIVt + γRVt + εt+1, with current implied and realized

variances. The model-free implied variance from options market is an informationally more

efficient forecast for future realized variance than the past realized variance (see, e.g., Jiang

and Tian, 2005, among others), while realized variance based on high-frequency data also pro-

vides additional power in forecasting future realized variance (Andersen, Bollerslev, Diebold,

and Labys, 2003). Therefore, a joint forecast model with one lag of implied variance and

one lag of realized variance seems to capture the most forecasting power based on time-t

available information (Drechsler and Yaron, 2011).

B DCC Model of Engle (2002)

We estimate the conditional covariances of each equity portfolio with the market portfolio

and V RP (σim,t+1 , σi,V RP,t+1 ) based on the mean-reverting DCC model of Engle (2002).

2The difference between option implied and GARCH type filtered volatilities has been associated in
existing literature with notions of aggregate market risk aversion (Rosenberg and Engle, 2002; Bakshi and
Madan, 2006; Bollerslev, Gibson, and Zhou, 2011).
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Engle defines the conditional correlation between two random variables r1 and r2 that each

has zero mean as

ρ12,t =
Et−1 (r1,t · r2,t)√

Et−1

(
r2

1,t

)
· Et−1

(
r2

1,t

) , (A4)

where the returns are defined as the conditional standard deviation times the standardized

disturbance:

σ2
i,t = Et−1

(
r2
i,t

)
, ri,t = σi,t · ui,t, i = 1, 2 (A5)

where ui,t is a standardized disturbance that has zero mean and variance one for each series.

Equations (A4) and (A5) indicate that the conditional correlation is also the conditional

covariance between the standardized disturbances:

ρ12,t =
Et−1 (u1,t · u2,t)√

Et−1

(
u2

1,t

)
· Et−1

(
u2

1,t

) = Et−1 (u1,t · u2,t) . (A6)

The conditional covariance matrix of returns is defined as

Ht = Dt · ρt ·Dt, where Dt = diag
{√

σ2
i,t

}
, (A7)

where ρt is the time-varying conditional correlation matrix

Et−1 (ut · u′t) = D−1
t ·Ht ·D−1

t = ρt, where ut = D−1
t · rt. (A8)

Engle (2002) introduces a mean-reverting DCC model:

ρij,t =
qij,t√

qii,t · qjj,t
, (A9)

qij,t = ρ̄ij + a1 · (ui,t−1 · uj,t−1 − ρ̄ij) + a2 · (qij,t−1 − ρ̄ij) (A10)

where ρ̄ij is the unconditional correlation between ui,t and uj,t. Equation (A10) indicates

that the conditional correlation is mean reverting towards ρ̄ij as long as a1 + a2 < 1.

Engle (2002) assumes that each asset follows a univariate GARCH process and writes

the log likelihood function as:

L = −1

2

T∑
t=1

(
n log(2π) + log |Ht|+ r′tH

−1
t rt

)
= −1

2

T∑
t=1

(
n log(2π) + 2 log |Dt|+ r′tD

−1
t D−1

t rt − u′tut + log |ρt|+ u′tρ
−1
t ut

)
. (A11)
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As shown in Engle (2002), letting the parameters in Dt be denoted by θ and the additional

parameters in ρt be denoted by ϕ, equation (A11) can be written as the sum of a volatility

part and a correlation part:

L(θ, ϕ) = LV (θ) + LC(θ, ϕ). (A12)

The volatility term is

LV (θ) = −1

2

T∑
t=1

(
n log(2π) + log |Dt|2 + r′tD

−2
t rt

)
, (A13)

and the correlation component is

LC(θ, ϕ) = −1

2

T∑
t=1

(
log |ρt|+ u′tρ

−1
t ut − u′tut

)
. (A14)

The volatility part of the likelihood is the sum of individual GARCH likelihoods:

LV (θ) = −1

2

T∑
t=1

n∑
i=1

(
log(2π) + log

(
σ2
i,t

)
+
r2
i,t

σ2
i,t

)
, (A15)

which is jointly maximized by separately maximizing each term. The second part of the like-

lihood is used to estimate the correlation parameters. The two-step approach to maximizing

the likelihood is to find

θ̂ = arg max{LV (θ)}, (A16)

and then take this value as given in the second stage:

ϕ̂ = arg max{LC(θ̂, ϕ)}. (A17)

C System of Regression Equations

Consider a system of n equations, of which the typical ith equation is

yi = Xiβi + ui, (A18)

where yi is a N × 1 vector of time-series observations on the ith dependent variable, Xi is a

N × ki matrix of observations of ki independent variables, βi is a ki × 1 vector of unknown
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coefficients to be estimated, and ui is a N×1 vector of random disturbance terms with mean

zero. Parks (1967) proposes an estimation procedure that allows the error term to be both

serially and cross-sectionally correlated. In particular, he assumes that the elements of the

disturbance vector u follow an AR(1) process:

uit = ρuit−1 + εit; ρi < 1, (A19)

where εit is serially independently but contemporaneously correlated:

Cov (εitεjt) = σij, for any i, j, and Cov (εitεjs) = 0, for s 6= t (A20)

Equation (A18) can then be written as

yi = Xiβi + Piui, (A21)

with

Pi =



(1− ρ2
i )
−1/2

0 0 ... 0

ρi (1− ρ2
i )
−1/2

1 0 ... 0

ρ2
i (1− ρ2

i )
−1/2

ρ 1 ... 0
.
.
.

ρN−1
i (1− ρ2

i )
−1/2

ρN−2 ρN−3 ... 1


. (A22)

Under this setup, Parks (1967) presents a consistent and asymptotically efficient three-

step estimation technique for the regression coefficients. The first step uses single equation

regressions to estimate the parameters of autoregressive model. The second step uses single

equation regressions on transformed equations to estimate the contemporaneous covariances.

Finally, the Aitken estimator is formed using the estimated covariance,

β̂ =
(
XTΩ−1X

)−1
XTΩ−1y, (A23)

where Ω ≡ E[uuT ] denotes the general covariance matrix of the innovation. In our applica-

tion, we use the aforementioned methodology with the slope coefficients restricted to be the

same for all equity portfolios and individual stocks. In particular, we use the same three-step

procedure and the same covariance assumptions as in equations (A19) to (A22) to estimate

the covariances and to generate the t-statistics for the parameter estimates.
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D Robustness Check

In this section, we provide a battery of robustness checks.

D.1 Results from the Generalized Conditional Covariance Model

There appears to be some controversy in the econometrics literature around the consistency

of QMLE parameter estimates generated by the DCC models.3 One may wonder if the lack of

consistency in the DCC models affects our main findings. To address this potential concern,

we use an alternative econometric methodology and estimate the conditional covariances

between excess returns on asset i and the market portfolio m based on the generalized

conditional covariance (GCC) specification of Bali (2008):

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1

Rm,t+1 = αm0 + αm1 Rm,t + εm,t+1

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t

Et
[
ε2
m,t+1

]
≡ σ2

m,t+1 = βm0 + βm1 ε
2
m,t + βm2 σ

2
m,t

Et [εi,t+1εm,t+1] ≡ σim,t+1 = βim0 + βim1 εi,tεm,t + βim2 σim,t

(A24)

where Ri,t+1 and Rm,t+1 denote the time (t + 1) excess return on asset i and the market

portfolio m over a risk-free rate, respectively, and Et[·] denotes the expectation operator

conditional on time t information. In the last equation above, one-month-ahead conditional

covariance, σim,t+1, is defined as a function of the last month’s conditional covariance, σim,t,

and the product of the last month’s unexpected shocks to asset i and the market portfolio

m (εi,tεm,t).

We estimate the conditional covariances between the excess return on each equity port-

folio i and the innovation in the variance risk premia V RP , σi,V RP , using an analogous GCC

model:

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1

V RPt+1 = αV RP0 + αV RP1 V RPt + εV RP,t+1

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t

Et
[
ε2
V RP,t+1

]
≡ σ2

V RP,t+1 = βV RP0 + βV RP1 ε2
V RP,t + βV RP2 σ2

V RP,t

Et [εi,t+1εV RP,t+1] ≡ σi,V RP,t+1 = βi,V RP0 + βi,V RP1 εi,tεV RP,t + βi,V RP2 σi,V RP,t

(A25)

3See Aielli (2013), Caporin and McAleer (2013), and the proposed solution in Noureldin, Shephard, and
Sheppard (2014).
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We estimate the conditional covariances of each equity portfolio with the market portfolio

and with the variance risk premia using the maximum likelihood method described in Bali

(2008). Once we generate the conditional covariances, we estimate the system of equations

given in equations (23)-(24) of the main text using the SUR methodology described in Section

C of the internet appendix.

Table II of the internet appendix reports the parameter estimates and the t-statistics of

the system of equations for the 10 size, 10 book-to-market, 10 momentum, and 10 industry

portfolios (total of 40 portfolios) for the sample period January 1990 to December 2012. As

shown in the first two rows of Table II, the risk aversion and the uncertainty aversion coef-

ficients are estimated to be positive and highly significant for the pooled dataset: A = 2.86

with a t-statistic of 4.78 and B = 0.0026 with a t-statistic of 4.50, indicating a significantly

positive market price of risk and uncertainty. Similar to our earlier findings from the DCC

model, the Wald1 and Wald2 statistics reported in Table II indicate that the two-factor

model with risk and uncertainty provides both statistical and economic success in explaining

stock market anomalies, except momentum.

D.2 DCC with Asymmetric GARCH

Because the conditional variance and covariance of stock market returns are not observable,

different approaches and specifications used in estimating the conditional variance and co-

variance could lead to different conclusions. We have so far used the bivariate GARCH(1,1)

model of Bollerslev (1986) in equations (13)-(14) and (19)-(20) to obtain conditional variance

and covariance estimates. In this section, we investigate whether changing these specifica-

tions influences our main findings.

The current volatility in the GARCH(1,1) model is defined as a symmetric, linear function

of the last period’s unexpected news and the last period’s volatility. Since, in a symmetric

GARCH process, positive and negative information shocks of the same magnitude produce

the same amount of volatility, the symmetric GARCH model cannot cope with the skewness

of stock return distribution. If a negative return shock causes more volatility than a positive

return shock of the same size, the symmetric GARCH model underpredicts the amount
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of volatility following negative shocks and overpredicts the amount of volatility following

positive shocks. Furthermore, if large return shocks cause more volatility than a quadratic

function allows, then the symmetric GARCH model underpredicts volatility after a large

return shock and overpredicts volatility after a small return shock.

In this section we use an asymmetric GARCH model of Glosten, Jagannathan, and

Runkle (1993) that explicitly takes account of skewed distributions and allows good news

and bad news to have different impacts on the conditional volatility forecasts. To test whether

such variations in the variance forecasting specification alter our conclusion, we re-estimate

the DCC-based conditional covariances using the following alternative specification:

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1

Rm,t+1 = αm0 + αm1 Rm,t + εm,t+1

V RPt+1 = αV RP0 + αV RP1 V RPt + εV RP,t+1

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t + βi3ε

2
i,tD

−
i,t

Et
[
ε2
m,t+1

]
≡ σ2

m,t+1 = βm0 + βm1 ε
2
m,t + βm2 σ

2
m,t + βm3 ε

2
m,tD

−
m,t

Et
[
ε2
V RP,t+1

]
≡ σ2

V RP,t+1 = βV RP0 + βV RP1 ε2
V RP,t + βV RP2 σ2

V RP,t + βV RP3 ε2
V RP,tD

−
V RP,t

Et [εi,t+1εm,t+1] ≡ σim,t+1 = ρim,t+1 · σi,t+1 · σm,t+1

Et [εi,t+1εV RP,t+1] ≡ σi,V RP,t+1 = ρi,V RP,t+1 · σi,t+1 · σV RP,t+1

Et [εm,t+1εV RP,t+1] ≡ σm,V RP,t+1 = ρm,V RP,t+1 · σm,t+1 · σV RP,t+1

(A26)

where D−i,t, D
−
m,t, and D−V RP,t are indicator functions that equals one when εi,t+1, εm,t+1, and

εV RP,t+1 are negative and zero otherwise. The indicator function generates an asymmetric

GARCH effect between positive and negative shocks. ρim,t+1, ρi,V RP,t+1, and ρm,V RP,t+1 are

the time-t expected conditional correlations estimated using the mean-reverting DCC model

of Engle (2002).

A notable point in Table III is that the main findings from an asymmetric GARCH

specification of the conditional covariances are very similar to those reported in Table 1.

Specifically, the risk aversion coefficients are estimated to be positive and highly significant

for all equity portfolios; A is in the range of 2.53 to 3.54 with the t-statistics ranging from

2.58 to 3.11, implying a significantly positive link between expected return and risk. Sim-

ilar to our results from GARCH(1,1) specification, asymmetric GARCH model of Glosten,

Jagannathan, and Runkle (1993) yields positive and significant coefficient estimates on the

covariance between equity portfolios and the variance risk premia. Specifically, the uncer-

tainty aversion coefficients (B) are in the range of 0.0054 to 0.0075 with the t-statistics
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between 2.68 and 3.30. These results show that equity portfolios that are highly correlated

with uncertainty (proxied by VRP) carry a significant premium relative to portfolios that

are uncorrelated or lowly correlated with VRP.

With this alternative covariance specification, we also examine the empirical validity of

the conditional asset pricing model by testing the joint hypothesis. As shown in Table III,

the Wald1 statistics for the size, book-to-market, and industry portfolios are, respectively,

16.91, 7.89, and 14.41 with the corresponding p-values of 0.11, 0.72, and 0.21. The signifi-

cantly positive risk and uncertainty aversion coefficients and the insignificant Wald1 statistics

indicate that the two-factor model explains the time-series and cross-sectional variation in

equity portfolios. Finally, we investigate whether the model with asymmetric GARCH spec-

ification explains the return spreads between Small and Big; Value and Growth; and HiTec

and Telcm portfolios. The last row in Table III reports Wald2 statistics from testing the

equality of conditional alphas for high-return and low-return portfolios (H0 : α1 = α10). For

the size, book-to-market, and industry portfolios, the Wald2 statistics provide no evidence

for a significant conditional alpha for “Small-Big”, “Value-Growth”, and “HiTec-Telcm”

arbitrage portfolios. Overall, the DCC-based conditional covariances from the asymmet-

ric GARCH model captures the time-series and cross-sectional variation in returns on size,

book-to-market, and industry portfolios and generates significantly positive risk-return and

uncertainty-return tradeoffs.

D.3 Results from Larger Cross-Section of Industry Portfolios

Given the positive risk-return and positive uncertainty-return coefficient estimates from the

three data sets and the success of the conditional asset pricing model in explaining the

industry, size, and value premia, we now examine how the model performs when we use a

larger cross-section of equity portfolios.

The robustness of our findings is investigated using the monthly excess returns on the

value-weighted 17-, 30-, 38-, 48-, and 49-industry portfolios. Table IV reports the common

slope estimates (A, B), their t-statistics in parentheses, and the Wald1 and Wald2 statistics

along with their p-values in square brackets. For the industry portfolios, the risk aversion
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coefficients (A) are estimated to be positive, in the range of 2.20 to 2.78, and highly significant

with the t-statistics ranging from 2.31 to 3.34. Consistent with our earlier findings from the

10 size, 10 book-to-market, and 10 industry portfolios, the results from the larger cross-

section of industry portfolios (17 to 49) imply a positive and significant relation between

expected return and market risk. Again similar to our findings from 10 decile portfolios,

the uncertainty aversion coefficients are estimated to be positive, in the range of 0.0036 to

0.0041, and highly significant with the t-statistics ranging from 2.44 to 4.21. These results

provide evidence for a significantly positive market price of uncertainty and show that assets

with higher correlation with the variance risk premia generate higher returns next month.

Not surprisingly, the Wald1 statistics for all industry portfolios have p-values in the range

of 0.20 to 0.75, indicating that the two-factor asset pricing model explains the time-series

and cross-sectional variation in larger number of equity portfolios. The last row shows that

the Wald2 statistics from testing the equality of conditional alphas on the high-return and

low-return industry portfolios have p-values ranging from 0.44 to 0.80, implying that there

is no significant risk-adjusted return difference between the extreme portfolios of 17, 30,

38, 48, and 49 industries. The differences in conditional alphas are both economically and

statistically insignificant, showing that the two-factor model introduced in the paper provides

success in explaining industry effects.

D.4 Controlling for Macroeconomic Variables

A series of papers argue that the stock market can be predicted by financial and/or macroeco-

nomic variables associated with business cycle fluctuations. The commonly chosen variables

include default spread (DEF), term spread (TERM), dividend price ratio (DIV), and the

de-trended riskless rate or the relative T-bill rate (RREL).4 We define DEF as the difference

between the yields on BAA- and AAA-rated corporate bonds, and TERM as the difference

between the yields on the 10-year Treasury bond and the 3-month Treasury bill. RREL is

defined as the difference between 3-month T-bill rate and its 12-month backward moving

4See, e.g., Campbell (1987), Fama and French (1989), and Ferson and Harvey (1991) who test the
predictive power of these variables for expected stock returns.
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average.5 We obtain the aggregate dividend yield using the CRSP value-weighted index re-

turn with and without dividends based on the formula given in Fama and French (1988). In

addition to these financial variables, we use some fundamental variables affecting the state

of the U.S. economy: Monthly inflation rate based on the U.S. Consumer Price Index (INF);

Monthly growth rate of the U.S. industrial production (IP) obtained from the G.17 database

of the Federal Reserve Board; and Monthly US unemployment rate (UNEMP) obtained from

the Bureau of Labor Statistics.

According to Merton’s (1973) ICAPM, state variables that are correlated with changes

in consumption and investment opportunities are priced in capital markets in the sense that

an asset’s covariance with those state variables affects its expected returns. Merton (1973)

also indicates that securities affected by such state variables (or systematic risk factors)

should earn risk premia in a risk-averse economy. Macroeconomic variables used in the

literature are excellent candidates for these systematic risk factors because innovations in

macroeconomic variables can generate global impact on firm’s fundamentals, such as their

cash flows, risk-adjusted discount factors, and/or investment opportunities. Following the

existing literature, we use the aforementioned financial and macroeconomic variables as

proxies for state variables capturing shifts in the investment opportunity set.

We now investigate whether incorporating these variables into the predictive regressions

affects the significance of the market prices of risk and uncertainty. Specifically, we estimate

the portfolio-specific intercepts and the common slope coefficients from the following panel

regression:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ λ ·Xt + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ λ ·Xt + εm,t+1

where Xt denotes a vector of lagged control variables; default spread (DEF), term spread

(TERM), relative T-bill rate (RREL), aggregate dividend yield (DIV), inflation rate (INF),

growth rate of industrial production (IP), and unemployment rate (UNEMP). The common

5The monthly data on 10-year T-bond yields, 3-month T-bill rates, BAA- and AAA-rated corporate bond
yields are available from the Federal Reserve statistics release website.
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slope coefficients (A, B, and λ) and their t-statistics are estimated using the monthly excess

returns on the market portfolio and the ten size, book-to-market, and industry portfolios.

As presented in Table V, after controlling for a wide variety of financial and macroe-

conomic variables, our main findings remain intact for all equity portfolios. The common

slope estimates on the conditional covariances of equity portfolios with the market factor

(A) remain positive and highly significant, indicating a positive and significant relation be-

tween expected return and market risk. Similar to our earlier findings, the common slopes

on the conditional covariances of equity portfolios with the uncertainty factor (B) remain

significantly positive as well, showing that assets with higher correlation with the variance

risk premium generate higher returns next month. Among the control variables, the growth

rate of industrial production is the only variable predicting future returns on equity port-

folios; λIP turns out to be positive and significant—especially for the industry portfolios.

The positive relation between expected stock returns and innovations in output makes eco-

nomic sense. Increases in real economic activity (proxied by the growth rate of industrial

production) increase investors’ expectations of future growth. Overall, the results in Table

V indicate that after controlling for variables associated with business conditions, the time-

varying exposures of equity portfolios to the market and uncertainty factors carry positive

risk premiums.6

D.5 Results from Individual Stocks

We have so far investigated the significance of risk, uncertainty, and return tradeoffs using

equity portfolios. In this section, we replicate our analyses using individual stocks trading at

NYSE, AMEX, and NASDAQ. First, we generate a dataset for the largest 500 common stocks

(share code = 10 or 11) traded at NYSE/AMEX/NASDAQ. Following Shumway (1997), we

adjust for stock de-listing to avoid survivorship bias.7 Firms with missing observations on

6We also used “expected business conditions” variable of Campbell and Diebold (2009) and our main
findings remain intact for all equity portfolios. To save space, we do not report these results in the paper.
They are available upon request.

7Specifically, the last return on an individual stock used is either the last return available on CRSP, or the
de-listing return, if available. Otherwise, a de-listing return of -100% is included in the study, except that
the deletion reason is coded as 500 (reason unavailable), 520 (went to OTC), 551-573, 580 (various reason),
574 (bankruptcy), and 584 (does not meet exchange financial guidelines). For these observations, a return
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beginning-of-month market cap or monthly returns over the period January 1990 – December

2010 are eliminated. Due to the fact that the list of 500 firms changes over time as a result

of changes in firms’ market capitalizations, we obtain more than 500 firms over the period

1990-2010. Specifically, the largest 500 firms are determined based on their end-of-month

market cap as of the end of each month from January 1990 to December 2010. There are 738

unique firms in our first dataset. In our second dataset, the largest 500 firms are determined

based on their market cap at the end of December 2010. Our last dataset contains stocks in

the S&P 500 index. Since the stock composition of the S&P 500 index changes through time,

we rely on the most recent sample (as of December 2010). We also restrict our S&P 500

sample to 318 stocks with non-missing monthly return observations for the period January

1990 – December 2010.

Table VI presents the common slope estimates (A, B) and their t-statistics for the indi-

vidual stocks in the aforementioned data sets. The risk aversion coefficient is estimated to

be positive and highly significant for all stock samples considered in the paper: A = 6.42

with the t-statistic of 8.04 for the first dataset containing 738 stocks (largest 500 stocks as of

the end of each month from January 1990 to December 2010); A = 6.80 with the t-statistic

of 8.70 for the second dataset containing largest 500 stocks as of the end of December 2010;

and A = 6.02 with the t-statistic of 6.79 for the last dataset containing 318 stocks with

non-missing monthly return observations for the period 1990-2010. Confirming our findings

from equity portfolios, the results from individual stocks imply a positive and significant

relation between expected return and market risk. Similarly, consistent with our earlier

findings from equity portfolios, the uncertainty aversion coefficient is also estimated to be

positive and highly significant for all data sets: B = 0.0043 with the t-statistic of 3.61 for the

first dataset, B = 0.0044 with the t-statistic of 3.67 for the second dataset, and B = 0.0046

with the t-statistic of 3.52 for the last dataset. These results indicate a significantly positive

market price of uncertainty for large stocks trading in the U.S. stock market.

of -30% is assigned.

14



D.6 Controlling for Market Illiquidity and Default Risk

Elevated variance risk premia during economic recessions and market downturns often corre-

spond to the periods in which market illiquidity and default risk are both higher. Thus, it is

natural to think that the conditional covariances of equity portfolios with market illiquidity

and credit risk factors are positively linked to expected returns. In this section, we test

whether the covariances with V RP shock
t+1 could be picking up covariances with illiquidity

and default risk.

Following Amihud (2002), we measure market illiquidity in a month as the average daily

ratio of the absolute market return to the dollar trading volume within the month:

ILLIQt =
1

n

n∑
d=1

|Rm,d|
V OLDm

where Rm,d and V OLDm,d are, respectively, the daily return and daily dollar trading volume

for the S&P 500 index on day d, and n is the number of trading days in month t.

First, we generate the DCC-based conditional covariances of portfolio returns with market

illiquidity and then estimate the common slope coefficients (A, B1, B2) from the following

panel regressions:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆ILLIQt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆ILLIQt+1) + εm,t+1

where Covt (Ri,t+1,∆ILLIQt+1) and Covt (Rm,t+1,∆ILLIQt+1) are the time-t expected con-

ditional covariance between the change in market illiquidity and the excess return on portfolio

i and market portfolio m, respectively.

Table VII, Panel A, presents the common slope coefficients and their t-statistics estimated

using the monthly excess returns on the market portfolio and the 10 size, book-to-market,

and industry portfolios. The slope on Covt (Ri,t+1,∆ILLIQt+1) is found to be positive but

statistically insignificant for all equity portfolios considered in the paper. A notable point
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in Table VII is that the slopes on Covt (Ri,t+1, Rm,t+1) and Covt

(
Ri,t+1, V RP

shock
t+1

)
remain

positive and highly significant after controlling for the covariances of equity portfolios with

market illiquidity.

Next, we test whether the variance risk premium is proxying for default or credit risk.

We use the TED spread as an indicator of credit risk and the perceived health of the banking

system. The TED spread is the difference between the interest rates on interbank loans and

short-term U.S. government debt (T-bills). TED is an acronym formed from T-Bill and ED,

the ticker symbol for the Eurodollar futures contract.8 The size of the spread is usually

denominated in basis points (bps). For example, if the T-bill rate is 5.10% and ED trades at

5.50%, the TED spread is 40 bps. The TED spread fluctuates over time but generally has

remained within the range of 10 and 50 bps (0.1% and 0.5%) except in times of financial crisis.

A rising TED spread often presages a downturn in the U.S. stock market, as it indicates that

liquidity is being withdrawn. The TED spread is an indicator of perceived credit risk in the

general economy. This is because T-bills are considered risk-free while LIBOR reflects the

credit risk of lending to commercial banks. When the TED spread increases, that is a sign

that lenders believe the risk of default on interbank loans (also known as counterparty risk)

is increasing. Interbank lenders therefore demand a higher rate of interest, or accept lower

returns on safe investments such as T-bills. When the risk of bank defaults is considered to

be decreasing, the TED spread decreases.

We first estimate the DCC-based conditional covariances of portfolio returns with the

TED spread and then estimate the common slope coefficients from the following SUR re-

8Initially, the TED spread was the difference between the interest rates for three-month U.S. Treasuries
contracts and the three-month Eurodollars contract as represented by the London Interbank Offered Rate
(LIBOR). However, since the Chicago Mercantile Exchange dropped T-bill futures, the TED spread is now
calculated as the difference between the three-month T-bill interest rate and three-month LIBOR.
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gressions:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

where Covt (Ri,t+1,∆TEDt+1) and Covt (Rm,t+1,∆TEDt+1) are the time-t expected condi-

tional covariance between the changes in TED spread and the excess returns on portfolio i

and market portfolio m, respectively.

Table VII, Panel A, shows the common slope coefficients and their t-statistics estimated

using the monthly excess returns on the market portfolio and the size, book-to-market, and

industry portfolios. The slope on Covt (Ri,t+1,∆TEDt+1) is found to be positive for the size

and book-to-market portfolios, and negative for the industry portfolios. Aside from yielding

an inconsistent predictive relation with future returns, the slopes on the conditional covari-

ances with the change in TED spread are statistically insignificant for all equity portfolios.

Similar to our earlier findings, the slopes on the conditional covariances with the market

risk and uncertainty factors remain positive and highly significant after controlling for the

covariances with default risk.

Finally, we investigate the significance of risk and uncertainty coefficients after controlling

for liquidity and credit spread simultaneously:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆ILLIQt+1) +B3 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆ILLIQt+1) +B3 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

As shown in Panel A of Table VII, for the extended specification above, the common

slope coefficient, B2 on Covt (Ri,t+1,∆ILLIQt+1) is estimated to be positive and marginally

significant for the book-to-market and industry portfolios, whereas B2 is insignificant for

the size portfolios. The covariances of equity portfolios with the change in TED spread do
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not predict future returns as B3 is insignificant for all equity portfolios. Controlling for the

market illiquidity and credit risk does not affect our main findings: the market risk-return

and uncertainty-return coefficients (A and B1) are both positive and highly significant for

all equity portfolios. Equity portfolios that are highly correlated with V RP shock
t+1 carry a

significant premium relative to portfolios that are uncorrelated or minimally correlated with

V RP shock
t+1 .

We have so far provided evidence from the individual equity portfolios (10 size, 10 book-

to-market, and 10 industry portfolios). We now investigate whether our main findings remain

intact if we use a joint estimation with all test assets simultaneously (total of 30 portfolios).

Panel B of Table VII reports the parameter estimates and the t-statistics that are adjusted

for heteroskedasticity and autocorrelation for each series and the cross-correlations among

the error terms. As shown in the first row of Panel B, the risk aversion coefficient is estimated

to be positive and highly significant for the pooled dataset: A = 2.31 with the t-statistic

of 2.64, implying a positive and significant relation between expected return and market

risk. Similar to our earlier findings, the uncertainty aversion coefficient is also estimated to

be positive and highly significant for the joint estimation: B = 0.0053 with the t-statistic

of 3.72. These results indicate a significantly positive market price of uncertainty when all

portfolios are combined together. Equity portfolios with higher sensitivity to increases in

VRP are expected to generate higher returns next period.

The last three rows in Panel B of Table VII provide evidence for a positive and marginally

significant relation between Covt (Ri,t+1,∆ILLIQt+1) and future returns, indicating that the

conditional covariances of equity portfolios with the market illiquidity are positively linked to

expected returns. However, the insignificant relation between Covt (Rm,t+1,∆TEDt+1) and

portfolio returns remains intact for the joint estimation as well. A notable point in Panel B

is that controlling for the market illiquidity and default risk individually and simultaneously

does not influence the significant predictive power of the conditional covariances of portfolio

returns with the market risk and VRP factors.
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D.7 Relative Performance of the Conditional Asset Pricing Model
with Risk and Uncertainty

We now assess the relative performance of the newly proposed model in predicting the cross-

section of expected returns on equity portfolios. Specifically, we test whether the conditional

asset pricing model with the market and uncertainty factors outperforms the conditional

CAPM with the market factor in terms of statistical fit. The goodness of fit of an asset

pricing model describes how well it fits a set of realized return observations. Measures of

goodness of fit typically summarize the discrepancy between observed values and the values

expected under the model in question. Hence, we focus on the cross-section of realized

average returns on equity portfolios (as a benchmark) and the portfolios’ expected returns

implied by the two competing models.

Using equation (23), we compute the expected excess return on equity portfolios based on

the estimated prices of risk and uncertainty (A,B) and the sample averages of the conditional

covariance measures, Covt (Ri,t+1, Rm,t+1) and Covt

(
Ri,t+1, V RP

shock
t+1

)
:

Et [Ri,t+1] = αi + A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
. (A27)

Table VIII of the online appendix presents the realized monthly average excess returns

on the size, book-to-market, and industry portfolios and the cross-section of expected excess

returns generated by the Conditional CAPM and the two-factor conditional asset pricing

models. Clearly the newly proposed model with risk and uncertainty provides much more

accurate estimates of expected returns on the size, book-to-market, and industry portfolios.

Especially for the size and industry portfolios, expected returns implied by the two-factor

model with the market and VRP factors are almost identical to the realized average returns.

The last row in Table VIII reports the Mean Absolute Percentage Errors (MAPE) for the

two competing models:

MAPE =
|Realized− Expected|

Expected
, (A28)

where “Realized” is the realized monthly average excess return on each equity portfolio and

“Expected” is the expected excess return implied by equation (A27). For the conditional
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CAPM with the market factor, MAPE equals 5.20% for the size portfolios, 5.37% for the

book-to-market portfolios, and 6.32% for the industry portfolios. Accounting for the variance

risk premium improves the cross-sectional fitting significantly: MAPE reduces to 0.61% for

the size portfolios, 1.66% for the book-to-market portfolios, and 0.55% for the industry

portfolios.

Figure 1 of the internet appendix provides a visual depiction of the realized and expected

returns for the size, book-to-market, and industry portfolios. It is clear that the two-factor

model with uncertainty nails down the realized returns of the size, book-to-market, and

industrial portfolios, while the conditional CAPM systematically over-predicts these portfolio

returns. Overall, the results indicate superior performance of the conditional asset pricing

model introduced in the paper.
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Table II Results from the Generalized Conditional Covariance

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel
regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where the conditional variance of the market and the conditional covariances are estimated with the general-
ized conditional covariance (GCC) specification of Bali (2008). The parameters in the panel regression and
their t-statistics are estimated using monthly excess returns on the market portfolio and the pooled datasets
of ten decile size, book-to-market, momentum, and industry portfolios (total of 40 equity portfolios) for the
sample period from January 1990 to December 2012. The t-statistics are adjusted for heteroskedasticity and
autocorrelation for each series and cross-correlations among the portfolios. Table show the common slope
coefficients (A and B), the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 ,
and the Wald2 statistics from testing the equality of Alphas for high-return and low-return portfolios (Small
vs. Big; Value vs. Growth; Winner vs. Loser; and HiTec vs. Telcm). The p-values of Wald1 and Wald2

statistics are given in square brackets.

A 2.8562

(4.78)

B 0.0026

(4.50)

Size Wald1 9.22

[51.11%]

Small vs. Big Wald2 0.88

[34.85%]

Book-to-Market Wald1 4.46

[92.43%]

Value vs. Growth Wald2 0.78

[37.60%]

Momentum Wald1 19.67

[3.25%]

Winner vs. Loser Wald2 5.35

[2.07%]

Industry Wald1 11.39

[32.80%]

HiTec vs. Telcm Wald2 0.33

[56.38%]
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Table III Results from Asymmetric GARCH Model

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where the conditional variance and covariances are estimated using the asymmetric GARCH model of Glosten, Jagannathan,
and Runkle (1993). The parameters and their t-statistics are estimated using the monthly excess returns on the market
portfolio and the ten decile size, book-to-market, and industry portfolios for the sample period from January 1990 to December
2010. The alphas (αi) are reported for each equity portfolio and the t-statistics are presented in parentheses. The t-statistics
are adjusted for heteroskedasticity and autocorrelation for each series and cross-correlations among the portfolios. The last
four rows, respectively, show the common slope coefficients (A and B), the Wald1 statistics from testing the joint hypothesis
H0 : α1 = α2 = ...αm = 0 , and the Wald2 statistics from testing the equality of Alphas for high-return and low-return
portfolios (Small vs. Big; Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in
square brackets.

Size αi, αm BM αi, αm Industry αi, αm

Small 0.0052 Growth 0.0035 NoDur 0.0051

(1.23) (0.87) (1.94)

2 0.0037 2 0.0047 Durbl 0.0028

(0.85) (1.35) (0.57)

3 0.0040 3 0.0052 Manuf 0.0055

(0.99) (1.55) (1.61)

4 0.0030 4 0.0064 Enrgy 0.0064

(0.75) (1.85) (1.85)

5 0.0038 5 0.0056 HiTec 0.0029

(0.97) (1.71) (0.52)

6 0.0037 6 0.0050 Telcm 0.0004

(1.05) (1.48) (0.11)

7 0.0041 7 0.0057 Shops 0.0036

(1.19) (1.76) (1.04)

8 0.0034 8 0.0058 Hlth 0.0043

(0.97) (1.74) (1.37)

9 0.0036 9 0.0066 Utils 0.0042

(1.11) (1.92) (1.58)

Big 0.0012 Value 0.0081 Other 0.0030

(0.38) (1.88) (0.81)

Market 0.0018 Market 0.0033 Market 0.0028

(0.57) (1.20) (0.82)

A 3.2927 A 2.5303 A 3.5369

(3.11) (2.62) (2.58)

B 0.0054 B 0.0060 B 0.0075

(3.12) (2.68) (3.30)

Wald1 16.91 Wald1 7.89 Wald1 14.41

[0.11] [0.72] [0.21]

Wald2 1.48 Wald2 1.99 Wald2 0.46

[0.22] [0.16] [0.50]

26



T
a
b
le

IV
R

e
su

lt
s

fr
o
m

L
a
rg

e
r

C
ro

ss
-S

e
ct

io
n

o
f

In
d
u
st

ry
P

o
rt

fo
li
o
s

T
h

is
ta

b
le

p
re

se
n
ts

th
e

co
m

m
on

sl
op

e
es

ti
m

at
es

(A
,
B

)
fr

o
m

th
e

fo
ll

ow
in

g
p

a
n

el
re

g
re

ss
io

n
:

R
i,
t+

1
=

α
i
+
A
·C
ov

t
(R

i,
t+

1
,R

m
,t
+
1
)

+
B
·C
ov

t

( R
i,
t+

1
,V
R
P

sh
o
ck

t+
1

) +
ε i

,t
+
1

R
m

,t
+
1

=
α
m

+
A
·V

a
r t

(R
m

,t
+
1
)

+
B
·C
ov

t

( R
m

,t
+
1
,V
R
P

sh
o
ck

t+
1

) +
ε m

,t
+
1

w
h

er
e
C
ov

t
(R

i,
t+

1
,R

m
,t
+
1
)

is
th

e
ti

m
e-
t

ex
p

ec
te

d
co

n
d

it
io

n
a
l

co
va

ri
a
n

ce
b

et
w

ee
n

th
e

ex
ce

ss
re

tu
rn

o
n

p
o
rt

fo
li

o
i

(R
i,
t+

1
)

a
n

d
th

e
ex

ce
ss

re
tu

rn
o
n

th
e

m
ar

ke
t

p
or

tf
ol

io
(R

m
,t
+
1

),
C
ov

t

( R
i,
t+

1
,V
R
P

sh
o
ck

t+
1

) is
th

e
ti

m
e-
t

ex
p

ec
te

d
co

n
d

it
io

n
a
l

co
va

ri
a
n

ce
b

et
w

ee
n

th
e

ex
ce

ss
re

tu
rn

o
n

p
o
rt

fo
li

o
i

a
n

d

th
e

sh
o
ck

to
th

e
va

ri
an

ce
ri

sk
p

re
m

ia
(V
R
P

sh
o
ck

t+
1

),
C
ov

t

( R
m

,t
+
1
,V
R
P

sh
o
ck

t+
1

) is
th

e
ti

m
e-
t

ex
p

ec
te

d
co

n
d

it
io

n
al

co
va

ri
a
n

ce
b

et
w

ee
n

th
e

ex
ce

ss
re

tu
rn

on
th

e
m

ar
k
et

p
or

tf
ol

io
m

an
d
V
R
P

sh
o
ck

t+
1

,
an

d
V
a
r t

(R
m

,t
+
1
)

is
th

e
ti

m
e-
t

ex
p

ec
te

d
co

n
d

it
io

n
a
l

va
ri

a
n

ce
o
f

ex
ce

ss
re

tu
rn

s
o
n

th
e

m
a
rk

et
p

o
rt

fo
li

o
.

T
h

e
p

ar
am

et
er

s
an

d
th

ei
r
t-

st
at

is
ti

cs
ar

e
es

ti
m

a
te

d
u

si
n

g
th

e
m

o
n
th

ly
ex

ce
ss

re
tu

rn
s

o
n

th
e

m
a
rk

et
p

o
rt

fo
li

o
a
n

d
th

e
1
7
,

3
0
,

3
8
,

4
8
,

a
n

d
4
9

in
d

u
st

ry
p

or
tf

ol
io

s
fo

r
th

e
sa

m
p

le
p

er
io

d
fr

om
J
an

u
ar

y
1
9
9
0

to
D

ec
em

b
er

2
0
1
0
.

T
h

e
a
lp

h
a
s

(α
i)

a
re

re
p

o
rt

ed
fo

r
ea

ch
eq

u
it

y
p

o
rt

fo
li

o
a
n

d
th

e
t-

st
a
ti

st
ic

s
ar

e
p

re
se

n
te

d
in

p
ar

en
th

es
es

.
T

h
e
t-

st
at

is
ti

cs
ar

e
a
d

ju
st

ed
fo

r
h

et
er

o
sk

ed
a
st

ic
it

y
a
n

d
a
u

to
co

rr
el

a
ti

o
n

fo
r

ea
ch

se
ri

es
a
n

d
cr

o
ss

-c
o
rr

el
a
ti

o
n

s
a
m

o
n

g
th

e
p

or
tf

ol
io

s.
T

h
e

la
st

fo
u

r
ro

w
s,

re
sp

ec
ti

v
el

y,
sh

ow
th

e
co

m
m

o
n

sl
o
p

e
co

effi
ci

en
ts

(A
a
n

d
B

),
th

e
W

a
ld

1
st

a
ti

st
ic

s
fr

o
m

te
st

in
g

th
e

jo
in

t
h
y
p

o
th

es
is

H
0

:
α
1

=
α
2

=
..
.α

m
=

0
,

an
d

th
e

W
al

d
2

st
at

is
ti

cs
fr

o
m

te
st

in
g

th
e

eq
u

a
li

ty
o
f

A
lp

h
a
s

fo
r

h
ig

h
-r

et
u

rn
a
n

d
lo

w
-r

et
u

rn
p

o
rt

fo
li

o
s

(S
m

a
ll

v
s.

B
ig

;
V

al
u

e
v
s.

G
ro

w
th

;
an

d
H

iT
ec

v
s.

T
el

cm
).

T
h

e
p
-v

a
lu

es
o
f

W
a
ld

1
a
n

d
W

a
ld

2
st

a
ti

st
ic

s
a
re

g
iv

en
in

sq
u

a
re

b
ra

ck
et

s.

17
-i

n
d

u
st

ry
p

or
tf

ol
io

s
30

-i
n

d
u

st
ry

p
o
rt

fo
li

o
s

3
8
-i

n
d

u
st

ry
p

o
rt

fo
li

o
s

4
8
-i

n
d

u
st

ry
p

o
rt

fo
li

os
4
9
-i

n
d

u
st

ry
p

o
rt

fo
li

o
s

A
2.

63
99

A
2
.1

9
7
5

A
2
.2

9
8
8

A
2
.3

2
7
1

A
2
.7

8
4
0

(2
.3

1)
(2

.5
2
)

(2
.4

7
)

(2
.9

7
)

(3
.3

4
)

B
0.

00
41

B
0
.0

0
3
6

B
0
.0

0
3
5

B
0
.0

0
4
1

B
0
.0

0
4
1

(2
.4

4)
(2

.9
8
)

(2
.4

5
)

(3
.4

7
)

(4
.2

1
)

W
al

d
1

16
.4

1
W

al
d
1

3
5
.1

1
W

a
ld

1
3
0
.8

9
W

a
ld

1
5
7
.2

0
W

a
ld

1
5
2
.0

4

[0
.5

6]
[0

.2
8
]

[0
.7

5
]

[0
.2

0
]

[0
.3

9
]

W
al

d
2

0.
58

W
al

d
2

0
.0

6
W

a
ld

2
0
.3

2
W

a
ld

2
0
.5

3
W

a
ld

2
0
.1

3

[0
.4

4]
[0

.8
0
]

[0
.5

7
]

[0
.4

7
]

[0
.7

2
]

27



Table V Controlling for Macroeconomic Variables

This table presents the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ λ ·Xt + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ λ ·Xt + εm,t+1

where Xt denotes a vector of lagged control variables; default spread (DEF), term spread (TERM), relative
T-bill rate (RREL), aggregate dividend yield (DIV), inflation rate (INF), growth rate of industrial production
(IP), and unemployment rate (UNEMP). The common slope coefficients (A, B, and λ) and their t-statistics
are estimated using the monthly excess returns on the market portfolio and the ten size, book-to-market,
and industry portfolios for the sample period January 1990 to December 2010. The t-statistics are adjusted
for heteroskedasticity and autocorrelation for each series and cross-correlations among the portfolios. The
last two rows the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 , and the
Wald2 statistics from testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big;
Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in square
brackets.

Size Book-to-Market Industry

A 4.2630 2.5763 4.0421

(3.32) (2.40) (2.74)

B 0.0057 0.0051 0.0066

(2.85) (2.25) (2.96)

λDEF -0.3804 -0.0739 0.6243

(-0.50) (-0.09) (1.02)

λTERM -0.1964 -0.5366 -0.5405

(-0.64) (-1.69) (-2.17)

λRREL 0.2330 0.1834 0.0104

(0.68) (0.52) (0.04)

λDIV 0.0489 0.0228 0.0314

(1.33) (0.60) (1.05)

λINF 0.0270 0.7158 -0.1862

(0.04) (0.93) (-0.31)

λIP 0.7433 0.8689 1.1941

(1.77) (2.01) (3.51)

λUNEMP 0.0031 0.0047 0.0026

(1.13) (1.61) (1.15)

Wald1 16.96 7.97 14.78

[0.11] [0.72] [0.19]

Wald2 1.46 1.63 0.67

[0.23] [0.20] [0.41]
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Table VI Results from Individual Stocks

This table presents the common slope estimates (A, B) from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on

portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt

(
Ri,t+1, V RP

shock
t+1

)
is the

time-t expected conditional covariance between the excess return on portfolio i and the shock to the variance

risk premia V RP shock
t+1 , Covt

(
Rm,t+1, V RP

shock
t+1

)
is the time-t expected conditional covariance between

the excess return on the market portfolio m and the V RP shock
t+1 , and V art (Rm,t+1) is the time-t expected

conditional variance of excess returns on the market portfolio. The parameters and their t-statistics are
estimated using the monthly excess returns on the market portfolio and the largest 500 stocks trading at
NYSE, AMEX, and NASDAQ, and 318 stocks in the S&P 500 index for the sample period from January
1990 to December 2010. First, the largest 500 firms is determined based on their end-of-month market cap
as of the end of each month from January 1990 to December 2010. Due to the fact that the list of 500
firms changes over time as a result of changes in firms’ market capitalizations, there are 738 unique firms
in our first dataset. In our second dataset, the largest 500 firms is determined based on their market cap
at the end of December 2010. Our last dataset contains stocks in the S&P 500 index. Since the stock
composition of the S&P 500 index changes through time, we rely on the most recent sample. We also restrict
our S&P 500 sample to 318 stocks with non-missing monthly return observations for the period January 1990
– December 2010. The t-statistics are adjusted for heteroskedasticity and autocorrelation for each series and
cross-correlations among the portfolios.

Largest 500 Stocks Largest 500 Stocks Largest 500 Stocks

end-of-month as of December 2010 S&P 500 Index

A 6.4237 A 6.8014 A 6.0243

(8.04) (8.70) (6.79)

B 0.0043 B 0.0044 B 0.0046

(3.61) (3.67) (3.52)
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Table VII Controlling for Market Illiquidity and Default Risk

This table presents the common slope estimates (A, B1, B2, B3) from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆ILLIQt+1) +B3 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆ILLIQt+1) +B3 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on

portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt

(
Ri,t+1, V RP

shock
t+1

)
is the

time-t expected conditional covariance between the excess return on portfolio i and the shock to the variance

risk premia (V RP shock
t+1 ), Covt (Ri,t+1,∆ILLIQt+1) is the time-t expected conditional covariance between

the excess return on portfolio i and the change in market illiquidity (∆ILLIQt+1), Covt (Ri,t+1,∆TEDt+1)
is the time-t expected conditional covariance between the excess return on portfolio i and the change in
TED spread (∆TEDt+1), and V art (Rm,t+1) is the time-t expected conditional variance of excess returns
on the market portfolio. In Panel A, the parameters and their t-statistics are estimated using the monthly
excess returns on the market portfolio and the 10 decile size, book-to-market, and industry portfolios for
the sample period from January 1990 to December 2010. In Panel B, the results are generated using a
joint estimation with all test assets simultaneously (total of 30 portfolios). The t-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and the cross-correlations among the portfolios.

Panel A. Results from 10 Equity Portfolios

10 Equity Portfolios A B1 B2 B3

Size 6.2227 0.0069 1.2423

(2.47) (3.07) (1.29)

Size 3.6465 0.0052 0.6372

(2.84) (2.09) (0.91)

Size 5.7826 0.0057 0.4347 1.1582

(2.48) (2.12) (0.69) (1.17)

Book-to-Market 5.3065 0.0062 2.2003

(2.66) (2.65) (1.34)

Book-to-Market 2.5695 0.0056 0.3148

(2.24) (2.37) (0.54)

Book-to-Market 6.4767 0.0079 2.8237 0.3247

(2.13) (2.90) (1.69) (0.61)

Industry 7.8266 0.0080 2.5677

(2.35) (3.16) (1.52)

Industry 3.1868 0.0071 -0.7625

(2.17) (2.88) (-1.11)

Industry 9.2805 0.0102 3.5064 -1.0014

(2.69) (3.49) (1.99) (-1.43)30



Table VII (continued)

Panel B. Results from 30 Equity Portfolios

A B1 B2 B3

2.3110 0.0053

(2.64) (3.72)

3.2552 0.0060 0.6796

(2.82) (4.03) (1.94)

2.1153 0.0055 -0.0477

(2.41) (3.49) (-0.11)

3.0967 0.0062 0.6497 -0.0844

(2.72) (3.78) (1.95) (-0.20)
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Table VIII Relative Performance of the Two-Factor Model with VRP

This table presents the realized monthly average excess returns on the size, book-to-market, and industry portfolios and
the cross-section of expected excess returns generated by the conditional CAPM with the market factor and the two-factor
conditional asset pricing model with the market and VRP factors. The last row reports the Mean Absolute Percentage Errors
(MAPE) for the two competing models.

Realized Return Benchmark Two-Factor Model with VRP Conditional CAPM

Size Average Excess Returns Expected Excess Returns Expected Excess Returns

Small 0.8464% 0.8461% 0.8742%

2 0.7737% 0.7677% 0.8110%

3 0.7690% 0.7647% 0.8093%

4 0.6632% 0.6637% 0.7032%

5 0.7525% 0.7550% 0.7943%

6 0.7055% 0.7025% 0.7406%

7 0.7409% 0.7379% 0.7749%

8 0.6837% 0.6810% 0.7221%

9 0.6670% 0.6643% 0.7000%

Big 0.4479% 0.4598% 0.4789%

MAPE 0.61% 5.20%

Realized Return Benchmark Two-Factor Model with VRP Conditional CAPM

Book-to-Market Average Excess Returns Expected Excess Returns Expected Excess Returns

Growth 0.5286% 0.5327% 0.5645%

2 0.5614% 0.5658% 0.5961%

3 0.6140% 0.6039% 0.6488%

4 0.6752% 0.6559% 0.6960%

5 0.6119% 0.6017% 0.6423%

6 0.5439% 0.5547% 0.5803%

7 0.6014% 0.5979% 0.6360%

8 0.5885% 0.5956% 0.6233%

9 0.6827% 0.6666% 0.7133%

Value 0.8221% 0.7994% 0.8564%

MAPE 1.66% 5.37%

Realized Return Benchmark Two-Factor Model with VRP Conditional CAPM

Industry Average Excess Returns Expected Excess Returns Expected Excess Returns

Telcm 0.2727% 0.2747% 0.3280%

Utils 0.4712% 0.4727% 0.4965%

Other 0.4965% 0.4910% 0.5366%

Durbl 0.5313% 0.5315% 0.5513%

Shops 0.5954% 0.5912% 0.6247%

Hlth 0.6138% 0.6088% 0.6478%

NoDur 0.6110% 0.6152% 0.6534%

Manuf 0.7172% 0.7206% 0.7474%

Enrgy 0.7606% 0.7643% 0.7824%

HiTec 0.8358% 0.8350% 0.8466%

MAPE 0.55% 6.32%
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Figure 1 Relative Performance of the Conditional ICAPM with Uncertainty

This figure plots the realized monthly average excess returns on the size (top panel), book-to-market (middle

panel), and industry portfolios (bottom panel) and the cross-section of expected excess returns generated

by the Conditional CAPM with the market factor and the Conditional ICAPM with the market and VRP

factors. The results indicate superior performance of the conditional asset pricing model introduced in the

paper.

33


