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A Preferences Underlying Efficient Returns

The justification of mean-variance preferences under the expected utility paradigm

was linked to elliptical distributions by Chamberlain (1983) and Owen and Rabinovitch

(1983) in the Markowitz set-up without conditioning information. In that setting, any

family of mean-variance preferences can be chosen to explore the entire efficient mean-

variance frontier. For instance, the fixed-weight returns that maximize ()−(2) (2)
for each real number  lie on the mean-variance frontier and each of these optimal returns

also maximizes  ()− (2)  () for the corresponding real number .
However, this appendix shows that this is not the case when investors design port-

folio strategies with a nontrivial information set. To study this point, let us map the

conditional mean-variance problem (2) into simple criteria based on risk-return trade-offs

that are functions of z. The following mean-variance criteria rationalize CE returns (the

corresponding proof is available upon request):

1. The optimal return (1) that solves the problem

max
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Ferson and Siegel (2001) show that the optimal return of an agent with quadratic

utility  [− (2)2|z] for some positive real number  is a UE return. In our set-up,
from point 2 above and the  of a UE return in (12), the solution of the problem

max
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is equal to a UE return with target  such that
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Nevertheless, as commented in Section III.B, probably the most common conditional

mean-variance preferences in finance theory are

max


 (|z)− 

2
  (|z) (A2)

for some positive real number . The criterion (A2) is often justified by the constant

absolute risk aversion utility  [− exp (−) |z] plus the conditional normality of , but
none of my results requires this particular utility function or conditional normality.

From point 1 above and the  of an RE return in (16), we can easily characterize

the specific subset of CE returns where the solutions of problem (A2) are located. The

corresponding optimal return is the RE return with target  such that

 − (0)

 (S2)
=
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Finally, we can also rationalize PE returns, whose  is shown in (9), by means of the

problem (A1) with first and second conditional moments in terms of  − 0 instead of

. The solution of such a problem is equal to the PE return with target  such that
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B Portfolio Efficiency and Asset Pricing Models

Let us decompose the vector of excess returns r into two vectors r1 and r2. From the

representation of CE returns (5), any CE return from (0 r) is constructed with 0 and a

portfolio of r1 if and only if ϕ has zero entries for r2. This portfolio efficiency hypothesis

is equivalent to zero conditional alphas because we find the equivalent constraints

 (r2|z) =  (r2 r1|z) [  (r1|z)]−1 (r1|z) (B1)

using the partitioned inverse in ϕ. We can also translate the portfolio efficiency hypoth-

esis into Sharpe ratios. Let us use the notation S for the maximum conditional Sharpe

2



ratio from r, S1 for its counterpart with r1, and u2 for the residual

u2 = r2 −  (r2 r1|z) [  (r1|z)]−1 r1

Then we can write

S2 =  (r|z)0 [  (r|z)]−1 (r|z) = S21 + (u2|z)0 [  (u2|z)]−1 (u2|z)  (B2)

Therefore, S2 = S21 if and only if  (u2|z) = 0, which is exactly the portfolio efficiency
condition in terms of alphas (B1).

These are well-known results, extending the portfolio efficiency hypothesis from the

Markowitz framework to conditional moments. Nevertheless, I can still provide the fol-

lowing novel results:

1. The portfolio efficiency hypothesis is the same regardless of our particular interest

in UE, PE, or RE returns because these returns only differ in their choice of  in

(5). For instance, any RE return from (0 r) is constructed with 0 and a portfolio

of r1 if and only if ϕ has zero entries for r2.

2. We can translate the portfolio efficiency hypothesis into unconditional and residual

Sharpe ratios. For the latter, following equations (17) and (B2), we can write

S2 = 
¡S2¢ = S21 +

£
 (u2|z)0 [  (u2|z)]−1 (u2|z)

¤


Thus S2 = S21 if and only if  (u2|z) = 0, the same condition as for S2 = S21. We
can also use equation (10) to develop a similar condition in terms of S . Given this
connection with S and S, we can use the econometric framework of Section IV.A
for testing portfolio efficiency. In the notation of that section, the excess returns 1

and 2 correspond to the excess returns of RE (or PE) returns from r1 and the full

vector r, respectively.

Importantly, we can relate the portfolio efficiency hypothesis to stochastic discount

factors (SDFs). If we define the random variable

∗ =
1

0
(1−  + (|z))   = r

0ϕ 

then ∗ satisfies

 (∗0|z) = 1  (∗r|z) = 0 (B3)
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and hence it is a valid SDF. Under the portfolio efficiency hypothesis, ∗ depends only

on r1.

The results of Gallant, Hansen and Tauchen (1990) show that ∗ is the conditional

projection of any random variable  that satisfies the pricing equations (B3) onto the

conditional span of 0 and r. This suggests that we can also use portfolio efficiency tests

to test asset pricing models with nontraded factors (e.g., aggregate consumption growth

in the consumption CAPM).

To clarify the use of Sharpe ratios in such a context, let us think of an SDF that is

affine in a vector of non-traded factors f and prices the vector of excess returns r, with

fewer factors than returns. That is, there is a vector of risk prices τ depending on z such

that

 = 1− [f− (f |z)]0 τ

satisfies  (r|z) = 0 or, equivalently,

 (r|z) =  (r f |z) τ 

If the asset pricing model holds, the mimicking portfolios

f =  (r f |z) [  (r|z)]−1 r

satisfy

f 0 [  (f|z)]−1 (f|z) = 

and hence the portfolios f provide the same maximum residual Sharpe ratio as the full

vector r. Therefore, we can test the asset pricing model by means of the difference

between the maximum residual Sharpe ratios obtained with f and r. We can also use

unconditional Sharpe ratios in a similar way.

Finally, it is important to clarify that if the vector r1 in the portfolio efficiency hy-

pothesis is a single excess return, then the return 1 = 1 +0 is CE but not necessarily

UE, PE, or RE. In this context, the representation of CE returns (5) becomes

 = 0 +  [ (1|z)   (1|z)] 1

where  can be a function of z. Therefore, the choice  =   (1|z)  (1|z) is
compatible with CE returns and 1 is CE. However, UE, PE, and RE returns require a

particular structure in , as shown in (12), (9), and (16) respectively. These efficiencies
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require the following additional constraints: The return 1 is PE when

 
£
 (1|z) 

¡
21|z

¢¤
= 0 (B4)

it is RE when

  [ (1|z)   (1|z)] = 0 (B5)

and it is UE when

 
£
0 +

¡
21|z

¢
 (1|z)

¤
= 0 (B6)

In each case, the corresponding efficient returns are constructed by fixed-weight portfolios

of 1 and 0.

For instance, when we test the conditional CAPM, the null hypothesis is that the

market portfolio is CE. A different null hypothesis would be that the market portfolio is

UE, PE, or RE itself, not only CE. If investors have preferences such that their optimal

choices are RE returns (see Appendix A) and the safe asset return is in zero net supply,

then the market portfolio must be RE in equilibrium. Equation (B5) characterizes the

additional predictability constraint on the market return that this stronger hypothesis

would require. Equations (B4) and (B6) characterize the cases of the market portfolio

being PE or UE instead.

C The Tangency Portfolio

This appendix studies the connection between mean-variance frontiers with and with-

out a conditionally riskless return 0. The excess returns  and  defined in (20)

have the following important property:  is the unique excess return that satisfies

 (|z) =  (|z) and  is the unique excess return that satisfies ( |z) =  (|z)
for every excess return . In this appendix their counterparts when the safe asset is not

available are denoted r and r, respectively. Similarly, I define  as the return with

minimum  (2|z) and  as the return with minimum   (|z) when the safe asset is
not available. Their counterparts are 0 (1− ) and 0, respectively, when the safe asset

is available.

Using this notation, the CE returns without a safe asset can be represented as

 =  + r =  + r

where  and  are functions of z. The UE returns can be represented as

 =  + r
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the PE returns as

 = ( +0r) +  r

where their associated risk measure is still   (−0) but we cannot invest on the safe

return, and the RE returns as

 =  + r

where  ,  , and  are real numbers. We can also develop the associated beta-pricing

results. The proofs are available upon request.

The CE frontier without a safe asset is a hyperbola in the [
p
  (|z)  (|z)]

space for a particular value of z. Generally, like in the Markowitz set-up, there is a unique

optimal portfolio that is shared by the CE frontier with and without a safe asset, which

is called the tangency portfolio. I characterize this portfolio in the following result (the

corresponding proof is available upon request): If  (|z) 6= 0, then there is a tangency

portfolio between the CE frontiers with and without a safe asset with return

 +
  (|z)

 (|z)−0
r =  +

∙
 (2|z)
 (|z) +0

¸
r  =  −0 (1− r)  (C1)

The UE, PE, and RE frontiers without a safe asset are hyperbolas in their respective

spaces. In contrast with the Markowitz set-up, there is generally no tangency in any of

these frontiers. Peñaranda and Sentana (2016) point out this fact for the UE frontier.

Following (C1) and the previous expressions of efficient returns without a safe asset, we

can characterize the special cases where there are tangencies:

1. The tangency portfolio with return (C1) is RE when

 

∙
  (|z)

 (|z)−0

¸
= 0

In this case, we can span the RE frontier with a safe asset by means of fixed-weight

portfolios in the safe asset and the tangency portfolio.

2. The tangency portfolio with return (C1) is PE when

 

∙
 (2|z)
 (|z)

¸
= 0

In this case, we can span the PE frontier with a safe asset by means of fixed-weight

portfolios in the safe asset and the tangency portfolio.
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3. The tangency portfolio with return (C1) is UE when

 

∙
 (2|z)
 (|z) +0

¸
= 0

Nevertheless, we cannot span the UE frontier with a safe asset by means of fixed-

weight portfolios in the safe asset and the tangency portfolio unless additionally

  (0) = 0. In that case, following Corollary 1, UE and PE returns are equivalent.

Finally, let us interpret these results in the simple case of a single risky asset with

return  and excess return  =  − 0. Then we have  =  = , r = r = 0, and

 = . The CE, RE, PE, and UE frontiers without a safe asset are equal and given by a

single point,  itself. However, these frontiers are different with a safe asset. The return

 is also on the CE frontier with a safe asset, being the tangency portfolio return; but  is

not necessarily on the RE, PE, or UE frontiers with a safe asset. These tangencies require

the conditions stated in points 1-3 above. If we apply these equations to the case of a

single risky asset, then the conditions in points 1, 2, and 3 coincide with the constraints

(B5), (B4), and (B6), respectively, in Appendix B.

D Empirical Application: Additional Results

Annual Returns

The return frequency is another relevant dimension for the differences across UE, PE,

and RE returns. Unfortunately, there are not many observations at low frequencies and

hence the annual computations in this appendix should be interpreted with care.

It is well known that the coefficients of determination 2 in annual predictive regres-

sions are much higher than in monthly regressions, due to the persistence in the predictors.

The data show the following values and patterns. The 2 of the market portfolio clearly

decreases from 0372 in the first period to 0082 in the second one. However, this is not

the case for the other two Fama-French factors, where 2 goes from 0102 to 0231 for

SMB and from 0119 to 0118 for HML.

The intercept and slope of the CE frontier show the following features. The rate of

return of the safe asset has a mean of 5332 and a standard deviation of 3217 in the first

period. Both statistics decrease in the second period to 4183 and 2621, respectively.

These standard deviations are much higher than their annualized monthly counterparts,

due to the high persistence in interest rates. This suggests a larger gap between UE and

PE returns at the annual frequency. When we work with the three Fama-French factors

and their predictive regressions, the maximum conditional Sharpe ratio has a mean of

7



1052 and a standard deviation of 0636 in the first period. Both statistics decrease in the

second period to 0914 and 0415, respectively.

Table D1 is the counterpart of Tables 2 and 3 with annual returns. I do not consider

GARCH effects in the construction of efficient returns and I only report the results for

the three Fama-French factors. The performance gaps are even larger for the extended

investment sets. The statistical significance with asymptotic -values is indicated by the

symbol *, while I use + for bootstrap -values. I compute the -values for two and four

lags in the Newey-West standard errors (the cubic root of the sample size is around three).

The bootstrap experiment resamples individual residuals instead of blocks because we do

not expect strong GARCH effects in annual returns. Table D1 only reports the statistical

significance for two lags, the significance is similar for four lags.

Table D1

Interestingly, Table D1 shows that the performance gap of PE returns with respect

to UE returns can be larger than that with respect to FE returns. The difference in

unconditional Sharpe ratios with respect to UE returns with mean target 6% is 0782 in

the first period and 0352 in the second. The difference with respect to UE returns with

mean target 10% is also high, but only statistically significant for bootstrap -values in

the second period.

RE returns only provide a large and statistically significant performance gap in the

first period with respect to UE returns with mean target 6%. A researcher comparing RE

against FE returns would miss the gains from conditioning information that we find with

PE returns. This suggests that it is good empirical practice to compute the performance

of both PE and RE returns. In the second period the performance gaps of RE returns are

large with respect to FE returns and UE returns with mean target 10% (0462 and 0238,

respectively), albeit only the former is statistically significant with bootstrap -values.

We can conclude that the differences across the subsets of CE returns are stronger

with annual returns. UE returns are clearly different from PE or RE returns even for

small investment set.
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Out-of-Sample Analysis

We may be worried that the in-sample gains from conditioning information cannot be

obtained out-of-sample. To study this issue, I perform an out-of-sample analysis during

the second period (1984—2012) where we find, in-sample, lower market predictability and

higher SMB predictability.

Each month, I use only past data on returns and predictors to estimate the conditional

mean and variance of r, with the same models that are considered in Section IV.C. I use

three rolling windows at each monthly estimation (10, 20, and 30 years of data). With

these estimations, I construct the portfolio weights associated with PE and RE returns

and store the return obtained when the new observation of r is realized. This exercise

provides a time-series for PE and RE returns for the entire second period, and I can then

compute their performance.

I compare the performance of PE and RE returns for each one of the Fama-French

factors against simply holding that factor in Table D2. I also compare the performance

of both efficient returns for the three Fama-French factors and the six and 25 sorted

portfolios against the corresponding equally weighted portfolios. The PE and RE returns

are constructed for a constant and a time-varying conditional variance (denoted C and

V, respectively).

Table D2

Given the low market predictability that we find in-sample during the second period, it

is not surprising that dynamic strategies perform badly for the market, much worse than

simply holding this portfolio. On the other hand, I do not consider estimation risk when

computing the optimal portfolios. Johannes, Korteweg and Polson (2014) find gains from

exploiting market predictability from 1927 to 2007 for a Bayesian investor with constant

relative risk aversion utility.

Dynamic strategies on HML perform better than on the market but are still not better

than simply holding HML. It is more interesting that the in-sample predictability that

we find for SMB is robust to an out-of-sample analysis. Moreover, considering GARCH

effects in the construction of optimal portfolios increases the performance considerably.

The intermediate rolling window (20 years of data) performs better than the other two

windows.

If we jointly consider the three Fama-French factors then we can still find an improve-

ment in PE returns with respect to an equally weighted portfolio. The best outcome

is obtained from the GARCH model for 20 years of data. Obviously, the performance

improvement is not as strong as when we invest on SMB only, since the out-of-sample

predictability of the market and HML is weak.
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Regarding the six and 25 sorted portfolios, dynamic strategies can provide uncondi-

tional Sharpe ratios around one. There is a clear improvement of PE and RE strategies

with respect to equally-weighted portfolios. On the other hand, the Sharpe ratios of the

latter portfolios are not far from holding the market and are lower than the Sharpe ratio

of an equally weighted portfolio for the three Fama-French factors (the factors use short

positions to exploit the size and value effects). Considering GARCH effects is especially

useful with RE returns.

10



References

Chamberlain, G. “A Characterization of the Distributions that Imply Mean-Variance

Utility Functions.” Journal of Economic Theory, 29 (1983), 185—201.

Ferson, W. E., and A. F. Siegel. “The Efficient Use of Conditioning Information in

Portfolios.” Journal of Finance, 56 (2001), 967—982.

Gallant, A. R.; L. P. Hansen; and G. Tauchen. “Using Conditional Moments of Asset

Payoffs to Infer the Volatility of Intertemporal Marginal Rates of Substitution.” Journal

of Econometrics, 45 (1990), 141—179.

Johannes, N.; A. Korteweg; and N. Polson. “Sequential Learning, Predictive Regres-

sions and Optimal Portfolios.” Journal of Finance, 69 (2014), 611—644.

Owen, J., and R. Rabinovitch. “On the Class of Elliptical Distributions and their

Applications to the Theory of Portfolio Choice.” Journal of Finance, 58 (1983), 745—752.

Peñaranda, F., and E. Sentana. “Duality in Mean-Variance Frontiers with Condition-

ing Information.” Journal of Empirical Finance, forthcoming (2016).

11



Table D1

Unconditional and residual Sharpe ratios for annual returns

Unconditional ratio Residual ratio Unconditional ratio Residual ratio

PE and RE 1.024 0.961 0.973 1.137

FE 0.714 0.814 0.637 0.675

PE-FE and RE-FE 0.310 0.148 0.337 0.462

** ***, ++ **, +

UE6 0.242 0.321 0.621 0.679

PE-UE6 and RE-UE6 0.782 0.640 0.352 0.458

***, ++ ***. ++ ***, +++ ***. ++

UE10 0.841 0.911 0.866 0.899

PE-UE10 and RE-UE10 0.183 0.051 0.107 0.238

*** **, ++ **

1954–1983 1984–2012

Note: This table shows Sharpe ratios from the annual excess returns on the investment set given by

the three Fama-French factors. The table reports the unconditional Sharpe ratios of PE, FE, and UE

returns and the residual Sharpe ratios of RE, FE, and UE returns. The UE returns are reported for

mean targets of 6% and 10%. The PE, RE, and UE returns are constructed with a conditional mean of

excess returns given by the predictive regressions and a constant conditional variance. The

differences in Sharpe ratios and their statistical significance with Newey-West standard errors are

also displayed (*, ** and *** indicate significance with asymptotic p-values at 10%, 5%, and 1%,

respectively; +, ++ and +++ indicate significance with bootstrap p-values at 10%, 5%, and 1%,

respectively).
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Table D2

Out-of-sample unconditional and residual Sharpe ratios 1984–2012

Panel A. Unconditional Sharpe ratios

EW PE C PE V PE C PE V PE C PE V

MMR 0.444 0.059 -0.062 0.083 0.081 0.099 0.035

SMB 0.075 0.141 0.242 0.297 0.386 0.080 0.176

HML 0.331 0.109 0.212 0.157 0.313 0.202 0.202

FF3 0.580 0.399 0.418 0.520 0.624 0.328 0.380

FF6 0.482 0.805 0.815 0.929 0.943 0.854 0.870

FF25 0.491 1.028 1.000 1.112 1.006 0.998 0.944

Panel B. Residual Sharpe ratios

EW RE C RE V RE C RE V RE C RE V

MMR 0.445 0.123 -0.030 0.084 0.080 0.116 0.053

SMB 0.076 0.150 0.241 0.278 0.350 0.076 0.179

HML 0.333 0.096 0.207 0.146 0.304 0.194 0.192

FF3 0.584 0.301 0.390 0.337 0.524 0.306 0.375

FF6 0.483 0.645 0.774 0.686 0.823 0.806 0.856

FF25 0.492 0.743 0.905 0.762 0.871 0.799 0.805

10 years 20 years 30 years

Note: This table shows Sharpe ratios from the monthly excess returns on each Fama-French factor

(MMR, SMB, and HML) and three investment sets: the three Fama-French factors (FF3) and the six

and 25 Fama-French portfolios (FF6 and FF25, respectively). Panel A reports the unconditional

Sharpe ratios of PE returns constructed with a constant and a time-varying conditional variance of

excess returns (PE C and PE V, respectively). Panel B reports the residual Sharpe ratios of RE

returns constructed with a constant and a time-varying conditional variance of excess returns (RE C

and RE V, respectively). In both panels, the performance of the corresponding equally-weighted

(EW) portfolio is also displayed. The out-of-sample analysis is based on a monthly re-estimation of

the conditional moments with rolling windows of 10, 20, and 30 years of past data.
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