
Internet Appendix for

“Time-Varying Margin Requirements

and Optimal Portfolio Choice”

This Appendix describes the implementation of the projection method that I use to solve the

nonlinear differential equations for H(v) stated in Proposition 1. The key idea of the method is

to represent solution as a linear combination of orthogonal polynomials (Judd (1998)). As an

orthogonal basis, I use Chebyshev polynomials of the first kind. Because Chebyshev polynomials

form an orthogonal basis in L2([−1, 1]), the variable v ∈ (0,∞) is rescaled to fit this interval. In

particular, I introduce another variable z that is related to v as

(IA-1) z =
v − v̄

v + v̄
.

Equation (IA-1) defines a continuous and monotonic map of the interval (0,∞) into the interval

(−1, 1) such that the boundary z = −1 corresponds to v = 0 and z approaches 1 as v → ∞.

The middle of the interval z = 0 corresponds to v = v̄. The inverse map is

v = v̄
1 + z

1− z
.

The change in the variables affects the derivatives appearing in the differential equation. The
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derivatives with respect to v and z are related as

∂

∂v
=

(1− z)2

2v̄

∂

∂z
,

∂2

∂v2
=

(1− z)4

4v̄2
∂2

∂z2
− (1− z)3

2v̄2
∂

∂z
.

After applying the transformation (IA-1), the functionH(z) may not be in L2([−1, 1]) because

|H(z)| grows too fast as z → 1. To address this issue, I look for H(z) in the form H(z) =

H0(z) + H̃(z), where H0(z) is a chosen function and H̃(z) ∈ L2([−1, 1]). The function H0(z) is

determined by the asymptotic behavior of H(z) as z → 1 (v → ∞). When volatility is large,

margin requirements are very tight and ω∗(v) = 1. In the case ψ = 1, equation (12) with

ω∗(v) = 1 has a closed-form solution H0(v) = A0 + B0v, where the constants A0 and B0 are

determined by the following equations:

1

2
σ̄2
vB

2
0 −B0

(
ϕv +

Qvλ

v̄

)
+ (1− γ)

(
µS − λQS

v̄
+B0σ̄vρvS − γ

2

)
− βB0

+
λ

v̄

[
(1 +QS)

1−γ exp(B0Qv)− 1
]
= 0,

A0 =
1

β
(B0ϕvv̄ + (1− γ)(r − β + β log(β))).

Thus, it is natural to setH0(z) = A0+B0v̄(1+z)/(1−z), and this choice ensures that H̃(z) → 0 as

z → 1. In the case ψ ̸= 1, equation (9) does not have an analytical solution even when ω∗(v) = 1

and I use the technique developed in Zhou and Zhu (2012) to find an approximation for H0(z),

which also appears to have a linear form.

Plugging H(z) = H0(z) + H̃(z) into equation (12) (or equation (9) when ψ ̸= 1), I obtain a

differential equation for H̃(z), which is solved by the projection method. In particular, I look

for a solution H̃(z) in the following form:

(IA-2) H̃(z) =
N∑
j=0

ajTj(z),

where {Tj(z), j = 0, . . . , N} are Chebyshev polynomials of the first kind and N denotes their

highest order. The projection method prescribes to find the coefficients aj such that H̃(z)
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minimizes the deviation of the left hand side of the differential equation from zero. The deviation

is measured as a sum of squared errors computed at the points of a uniform grid {zl, l = 0, . . . , L},

where L > N . Because the number of the points exceeds the polynomial degree, the solution

to the differential equation exists if the value of the minimized deviation is close to zero. In

the practical implementation of the projection method, I use L = 200 and N = 50. For these

parameters, the error of approximation is typically of order 10−7 and 10−6 in the models without

and with jumps, respectively. Moreover, the results are stable with respect to the polynomial

degree and the number of the points in the grid. This provides additional evidence that the

numerical approximation converges to the exact solution H̃(z).
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