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Appendix A. The Red Noise Process

Red noise is usually modeled by an AR(1) process:

Xt = c+ ρXt−1 + at, (A-1)

where c = µ(1− ρ), µ is the level about which the autoregressive variable Xt

fluctuates and at is a normally distributed independent random variable with

mean 0 and variance σ2. For the process to be stationary, the autoregressive

coefficient must be inside the unit circle, i.e., |ρ| < 1. For ρ > 0, the process is
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red noise because its energy monotonically decreases as the frequency

increases as opposed to the case of white noise for ρ = 0 with the same energy

at all frequencies. If ρ < 0, the process is violet noise and its energy

monotonically increases as the frequency increases. Figure A-1 plots examples

of these three noise types (Graph A to Graph C). Graph A of Figure A-1 shows

that positive autocorrelation of the red noise process creates long-lasting

swings away from the unconditional mean, which could be misinterpreted as a

regime effect. Autocorrelation functions (ACF) in the second row, for example,

show that red noise is a sticky process and exhibits persistence for several lags.

This pattern also appears in the power density function (PDF) in the third row.

The PDF is decreasing for red noise, increasing for violet noise and almost flat

for white noise (Box and Jenkins, (1970)).

Figure A-1: Representation of Noise Types

The first row plots the time series of three types of noise processes

(Graph A to Graph C). Red noise is in Graph A, white noise is in Graph B, and

violet noise is in Graph C. The second row illustrates the autocorrelation

function (ACF) for each of the noise processes. The third row illustrates the

power spectral density of each of the processes for different normalized

frequencies.
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Appendix B. Details on the MPK and IP4

Techniques

In the classical linear regression, it is well known that OLS yields unbiased

estimates for ρ. However, in the case of autoregressive processes of the type

given in Equation (A-1), the assumptions underlying the Gauss-Markov least

squares theorem are violated. The lagged values of the dependent variable

cannot be fixed in repeated sampling, nor can they be treated as distributed

independently of the error term for all lags. Therefore, OLS estimators in the

autoregressive case are biased.
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Much research has been devoted to estimating the bias. Marriott and

Pope (1954) and Kendall (1954) propose the MPK technique to correct for the

first order term of the bias while Orcutt and Winokur (1969) and Stine and

Shaman (1989) propose the IP4 technique with three additional bias

corrections.

B.1. The MPK Technique Marriott and Pope (1954) and Kendall (1954)

consider the situation where the true mean of the series, µ in Equation (1), is

unknown and give the formula for the expected value of the OLS estimator of ρ:

E(ρ̂) = ρ− 1 + 3ρ

n− 1
+O

(
1

n2

)
(B-1)

Because ρ and E(ρ̂) are unknown, the procedure following Orcutt and

Winokur (1969) is to substitute ρ̂, which is known, for E(ρ̂) and then solve

Equation (B-1) for ρ. Solving for ρ and denoting this corrected estimate of ρ by

ρ̂c yields:

ρ̂c =
(n− 1)ρ̂+ 1

(n− 4)

B.2. The IP4 Technique This technique is due to Orcutt and Winokur

(1969) and Stine and Shaman (1989) and is based on the assumption that the

first approximation of the bias is approximately inversely proportional to the

subsample size n and is always negative. The first-order bias-corrected
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estimate ρ̂c,1 is then:

ρ̂c,1 = ρ̂+
1

n
(B-3)

The procedure consists in substituting ρ̂ for ρ. The residual bias is also

inversely proportional to m and its magnitude is linear in ρ. Thus, additional

corrections of a smaller magnitude give the kth order bias-corrected estimate

ρ̂c,k:

ρ̂c,k = ρ̂c,k−1 +
∣∣∣ρ̂c,k−1

∣∣∣ 1

n
. (B-4)

The IP4 technique uses three additional corrections. Both the IP4 and MPK

methods are compared in a series of Monte Carlo experiments (Rodionov (2004))

and prove to be similar to each other for n ≥ 10. However, for smaller n, the IP4

is shown to be less biased than the MPK and generates more stable estimates.

Appendix C. Statistical Issues

C.1 Stationarity

The prior literature commonly focuses on first differences rather than levels of

credit spreads to circumvent claims of nonstationarity. Our regime detection

technique requires a stable and well-defined mean and variance, yet
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stationarity issues are not a concern in our study. We test the null hypothesis

for the presence of a unit root in the level of the unfiltered (raw data) and

filtered credit spreads (data obtained after prewhitening). The test indicates

that i) we cannot reject the null hypothesis that the unfiltered spreads have a

unit root (except BBB in Panel A), and ii) the filtered spreads are stationary.

Table C-1: Augmented Dickey-Fuller (ADF) Test Statistic for Credit

Spreads

The table reports values of the ADF test for unfiltered and filtered credit

spread levels. Tests are specified with a constant since all series have a nonzero

mean. The maximum lag considered is 12. Panel A to Panel C report results

obtained using the data from Warga, NAIC and TRACE datasets, respectively.

The null hypothesis states that credit spreads have a unit root. Corresponding

critical values are reported separately in each Panel. ***, **, * indicate

significance at the 1%, 5%, and 10% levels, respectively.
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ADF Test for Unfiltered Spreads ADF Test for Filtered Spreads
t−stat p−value t−stat p−value

Panel A : Warga (April 1987 to December 1996)

AA -2.473 0.125 -6.797 0.000***
A -2.561 0.104 -4.938 0.000***
BBB -2.587 0.099* -6.225 0.000***

Critical values: -3.50 (1%), -2.89 (5%), -2.58 (10%)

Panel B : NAIC (January 1994 to December 2004)

AA -1.231 0.660 -10.894 0.000***
A -1.226 0.662 -9.550 0.000***
BBB -1.268 0.643 -3.823 0.003***
BB -1.513 0.524 -3.642 0.005***

Critical values: -3.48 (1%), -2.88 (5%), -2.58 (10%)

Panel C : TRACE (October 2004 to December 2009)

AA -1.258 0.644 -3.928 0.003***
A -1.119 0.703 -3.808 0.005***
BBB -1.069 0.723 -6.001 0.000***
BB -1.662 0.445 -6.742 0.000***

Critical values: -3.54 (1%), -2.91 (5%), -2.59 (10%)

C.2 Analysis of the Residuals

Our test for shifts in the variance treats volatility as an independent and

identically distributed process. Because many financial series show strong

evidence of volatility clustering consistent with autocorrelation in the volatility

process, it is straightforward to test for autocorrelation in the residuals. We use

the Lagrange multiplier test to test the null hypothesis of no autoregressive
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conditional heteroskedasticity effects in the squared residuals and the

portmanteau tests of Ljung and Box (1978) to test the null hypothesis of no

autocorrelation in the residuals and squared residuals. The tests consistently

indicate that i) squared residuals are homoskedastic and uncorrelated, and ii)

residuals are uncorrelated. We rely on the highest confidence level for all cases

except for two cases where we accept the null at the 1% confidence level.

Table C-2: Lagrange Multiplier and Portmanteau Tests for Residuals.

The table reports values of the Lagrange Multiplier ARCH test for

squared residuals and the values of the Ljung-Box test for residuals and

squared residuals of credit spreads. The null hypothesis in the ARCH test

states that squared residuals have no ARCH effects (i.e., homoskedasticity).

The null hypothesis in the Ljung-Box test states that no autocorrelation exists

in the specified series of residuals. The maximum number of lags considered is

12. We only report the results for the first lag. Panel A to Panel C report the

values of the tests obtained using the data from Warga, NAIC and TRACE

datasets, respectively.
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Tests with Squared Residuals Test with Residuals
Ljung-Box Ljung-Box

ARCH stat p−value Q−stat p−value Q−stat p−value

Panel A : Warga (April 1987 to December 1996)

AA 1.202 0.273 17.764 0.603 20.729 0.413
A 1.126 0.289 20.473 0.429 24.765 0.211
BBB 0.790 0.374 8.088 0.991 19.423 0.495

Panel B : NAIC (January 1994 to December 2004)

AA 0.028 0.867 8.682 0.986 11.291 0.938
A 0.309 0.578 29.475 0.079 19.711 0.476
BBB 23.667 0.011 36.142 0.015 28.913 0.089
BB 0.007 0.934 5.792 0.999 14.782 0.789

Panel C : TRACE (October 2004 to December 2009)

AA 0.000 0.991 8.196 0.990 15.642 0.739
A 0.838 0.360 12.496 0.898 21.783 0.352
BBB 0.000 0.998 14.990 0.777 19.174 0.511
BB 0.379 0.538 11.745 0.860 14.758 0.679

C-3 Normality Issues

The critical values derived in Rodionov (2004) are based on an implied

assumption of normality in each of the two populations to be compared. This

translates, in our case, to the requirement that the filtered data in each regime

be approximately normally distributed. In general, we find that the normality

assumption is satisfied by our data. However, even slight deviations from

normality do not represent a serious concern, since the t-test for the equality of

the means across two regimes is fairly robust with respect to the normality

assumption. This means that the power function is little modified by departure
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from normality, especially when the two samples have equal sizes, which is our

case here (Gronow (1953)).

C-4 Handling Outliers

Our tests are also sensitive to outliers. In particular, a large outlier can inflate

the sample variance, thus decreasing the power of the test. Ideally, the weight

for the data value should be chosen such that it is small if that value is

considered an outlier. To reduce the effect of outliers, we use the Huber’s

weight function, which is calculated as:

weight = min (1, h/ [∆/σ]) (C-1)

where h is the Huber parameter and [∆/σ] is the deviation from the expected

mean value of the new regime normalized by the standard deviation averaged

for all consecutive sections of the cut-off length in the series. The weights are

equal to one if [∆/σ] is less than or equal to the value of h. Otherwise, the

weights are inversely proportional to the distance from the expected mean

value of the new regime. Once the timing of the regime shifts is fixed, the mean

values of the regimes are assessed using the following iterative procedure.

First, the arithmetic mean is calculated as the initial estimate of the mean

value of the regime. Then, a weighted mean is calculated with the weights

determined by the distance from that first estimate. The procedure is repeated

one more time with the new estimate of the regime mean. Because we expect

that most shifts occur around recessions, the choice of the Huber parameter

may be critical because most significant peaks in credit spreads around this
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period could be considered outliers. Thus, we repeat the procedure with

different values of h ranging from 1 to 5. Our choice of a Huber parameter of

h = 2 is such that the number of detected shifts remains stable for higher

values of h (see robustness analysis).

Appendix D. Estimation of Credit Spread Curves

To obtain credit spread curves for different ratings and maturities, we use the

extended Nelson-Siegel-Svensson specification (Svensson (1995)):

R(t, T ) = β0t + β1tλ1 + β2t

(
λ1 − exp(− T

τ 1t

)

)
+ β3t

(
λ2 − exp(− T

τ 2t

)

)
+ εt,j, (D-1)

with λi ≡
1−exp(− T

τit
)

T
τit

, i = 1, 2, and εt,j ∼ N(0, σ2). R(t, T ) is the continuously

compounded yield at time t with time to maturity T. β0t is the limit of R(t, T ) as

T goes to infinity and is regarded as the long-term yield. β1t is the limit of the

spread R(t, T )− β0t as T goes to infinity and is regarded as the long- to

short-term spread. β2t and β3t give the curvature of the term structure. τ 1t and

τ 2t measure the yield at which the short-term and medium-term components

decay to zero. Each month t we estimate the parameters vector

Ωt = (β0t, β1t, β2t, β3t, τ 1t, τ 2t)
′ by minimizing the sum of squared bond price

errors over these parameters. We weigh each pricing error by the inverse of the

bond’s duration because long-maturity bond prices are more sensitive to

interest rates:
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Ω̂t = arg min
Ωt

Nt∑
i=1

w2
i

(
PNSit − Pit

)2
, wi =

1/Di∑N
i=1 1/Di

, (D-2)

where Pit is the observed price of the bond i at month t, PNSit the estimated price

of the bond i at month t, Nt is the number of bonds traded at month t, N is the

total number of bonds in the sample, wi the bond’s i weight, and Di the modified

Macaulay duration. The specification of the weights is important because it

consists in overweighting or underweighting some bonds in the minimization

program to account for the heteroskedasticity of the residuals. A small change

in the short-term rate does not really affect the prices of the bond. The variance

of the residuals should be small for a short maturity. Conversely, a small

change in the long-term zero coupon rate will have a larger impact on prices,

suggesting a higher volatility of the residuals.

Appendix E. Summary Statistics

Table E-1: Summary Statistics on Credit Spreads

This table reports summary statistics on 10-year credit spreads for

straight fixed-coupon corporate bonds in the industrial sector. A summary of

different rating classes is reported when the data are available. Panel A reports

Warga quoted data from January 1987 to December 1996, Panel B reports

NAIC transaction data from January 1994 to December 2004, and Panel C

reports TRACE high-frequency transaction data from October 2004 to

December 2009. The benchmark for risk-free rates is the swap curve fitted to

all maturities using the Nelson–Siegel–Svensson algorithm. The spreads are
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given as annualized yields in percentages.

All AA A BBB BB

Panel A : Warga Quoted Data from April 1987 to December 1996

Mean 0.902 0.632 0.835 1.241 -
Median 0.865 0.638 0.839 1.229 -
St. Dev. 0.386 0.229 0.260 0.366 -
5% Quantile 0.358 0.216 0.400 0.632 -
95% Quantile 1.587 0.987 1.241 1.846 -

Panel B : NAIC Transaction Data from January 1994 to December 2004

Mean 2.603 1.852 2.120 2.676 3.766
Median 2.149 1.188 1.462 1.900 2.941
St. Dev. 1.716 1.369 1.342 1.506 1.932
5% Quantile 0.580 0.309 0.634 1.059 1.608
95% Quantile 6.083 4.091 4.378 5.258 7.598

Panel C : TRACE Transaction Data from October 2004 to December 2009

Mean 2.057 0.920 1.241 2.244 3.825
Median 1.419 0.494 0.658 1.427 3.240
St. Dev. 1.873 0.776 0.973 1.551 2.248
5% Quantile 0.345 0.300 0.483 0.958 1.678
95% Quantile 5.875 2.644 3.472 5.566 9.433

Appendix F. Further Details on the Detected
Regimes

F.1 Changing Points in Level Regimes

Table F-1 and Table F-2 summarize the results from our regime detection

procedure for 10-year maturity credit spreads. Specifically, we list the

breakpoint number, the mean and duration of the prior regime, the breakpoint
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date, the mean and duration of the new regime and the sign of the detected

shift. All reported shifts are statistically significant at the 95% confidence level

(α = 5%). These results are obtained with an initial cut-off length m set to its

minimum of six months (m = 6) and a Huber parameter of 2 (h = 2).

Table F-1: Summary Statistics for Changing Points in Level Regimes.

We report the results of the regime shift detection technique applied to

the level of credit spreads with 10 remaining years to maturity. Panel A to

Panel C refer to the data from Warga, NAIC and TRACE datasets, respectively.

The initial cut-off length is 6 months, the Huber parameter is 2, and all

detected regimes are statistically significant at the 95% confidence level or

higher. The sign of the Regime Shift Index (RSI sign) provides the direction of

detected shifts. Regime means are expressed in percentages and regime

lengths in months.
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Shift Mean of Length of Date of Mean of Length of RSI
No. Current Current Shift New New Sign

Regime Regime Point Regime Regime

Panel A : Warga Quoted Data from April 1987 to December 1996

AA 1 0.201 36 Apr-90 0.395 11 +
2 0.395 11 Feb-91 0.542 40 +
3 0.542 40 Jul-94 0.333 30 -

A 1 0.222 34 Feb-90 0.422 12 +
2 0.422 12 Feb-91 0.807 41 +
3 0.807 41 Jul-94 0.511 30 -

BBB 1 0.528 32 Dec-89 1.045 11 +
2 1.045 11 Nov-90 1.683 7 +
3 1.683 8 Jun-91 1.235 37 -
4 1.235 37 Jul-94 0.847 30 -

Panel B : NAIC Transaction Data from January 1994 to December 2004

AA 1 0.874 86 Mar-01 3.795 38 +
2 3.795 38 May-04 2.867 8 -

A 1 2.162 10 Oct-94 1.058 76 -
2 1.058 76 Mar-01 3.935 39 +
3 3.935 39 Jun-04 2.935 7 -

BBB 1 2.993 9 Oct-94 1.513 74 -
2 1.513 74 Dec-00 3.119 9 +
3 3.119 9 Sep-01 4.905 32 +
4 4.905 32 May-04 3.989 4 -
5 3.989 4 Sep-04 2.943 4 -

BB 1 3.747 10 Nov-94 2.491 73 -
2 2.491 73 Dec-00 6.065 9 +
3 6.065 9 Sep-01 7.140 20 +
4 7.140 20 May-03 5.738 16 -
5 5.738 16 Sep-04 3.875 4 -
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Table F-1 (Continued).

Shift Mean of Length of Date of Mean of Length of RSI
No. Current Current Shift New New Sign

Regime Regime Point Regime Regime

Panel C : TRACE Transaction Data from October 2004 to December 2009

AA 1 0.676 38 Dec-07 1.575 12 +
2 1.575 12 Dec-08 2.063 7 +
3 2.063 7 Jul-09 1.504 6 -

A 1 0.976 39 Jan-08 2.187 8 +
2 2.187 8 Sep-08 4.009 9 +
3 4.009 9 Jun-09 2.010 7 -

BBB 1 1.479 38 Dec-07 3.120 10 +
2 3.120 10 Oct-08 5.235 8 +
3 5.235 8 Jun-09 3.477 7 -

BB 1 2.562 35 Sep-07 4.674 13 +
2 4.674 13 Oct-08 8.652 8 +
3 8.652 8 Jun-09 5.741 6 -
4 5.741 6 Dec-09 2.857 1 -
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Figure F-1: Maturity Effects on Credit Spread Regimes.

We plot mean regimes of credit spreads with remaining maturities of 3,

5, and 10 years. The data are from NAIC dataset and cover the period from

January 1994 to December 2004. The X-axis expresses the time in months and

the Y-axis expresses the mean of the regime in percentages. The shaded region

represents the 2001 NBER recession. The initial cut-off length is 6 months and

the Huber parameter is 2. All detected shifts are statistically significant at the

95% confidence level or higher.

F.2 Changing Points in Volatility Regimes

Table F-2: Summary Statistics for Changing Points in Volatility Regimes.

We report the results of the regime shift detection technique applied to

credit spread residuals with 10 years remaining to maturity. Panel A to Panel

C refer to the data from Warga, NAIC and TRACE datasets, respectively. The
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initial cut-off length is 6 months, the Huber parameter is 2, and all detected

regimes are statistically significant at the 95% confidence level or higher. The

sign of the Residual Sum of Squares Index (RSSI sign) provides the direction of

detected shifts. Regime variances are expressed in percentages and regime

lengths in months.

Shift Variance Length of Date of Variance Length of RSSI
No. of Current Current Shift of New New Sign

Regime Regime Point Regime Regime

Panel A : Warga Quoted Data from April 1987 to December 1996

AA 1 0.019 113 Sep-96 0.006 4 -
A 1 0.020 116 Dec-96 0.009 1 -
BBB 1 0.053 13 May-88 0.028 33 -

2 0.028 33 Feb-91 0.215 8 +
3 0.215 8 Aug-91 0.023 63 -

Panel B : NAIC Transaction Data from January 1994 to December 2004

AA 1 0.042 14 Mar-95 0.022 36 -
2 0.022 36 Mar-98 0.077 11 +
3 0.077 11 Feb-99 0.034 24 -
4 0.034 24 Feb-01 0.108 7 +
5 0.108 7 Sep-01 0.049 24 -
6 0.049 24 Sep-03 0.021 16 -

A 1 0.038 29 Jun-96 0.024 20 -
2 0.024 20 Feb-98 0.073 12 +
3 0.073 12 Feb-99 0.041 23 -
4 0.041 23 Jan-01 0.114 8 +
5 0.114 8 Sep-01 0.069 13 -
6 0.069 13 Oct-02 0.029 27 -

BBB 1 0.051 28 May-96 0.039 11 -
2 0.039 11 Apr-97 0.113 22 +
3 0.113 22 Feb-99 0.053 22 -
4 0.053 22 Dec-00 0.145 11 +
5 0.145 11 Nov-01 0.073 18 -
6 0.073 18 May-03 0.048 20 -
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Table F-2 (Continued).

Shift Variance Length of Date of Variance Length of RSSI
No. of Current Current Shift of New New Sign

Regime Regime Point Regime Regime

BB 1 0.151 9 Oct-94 0.092 27 -
2 0.092 27 Jan-97 0.176 26 +
3 0.176 27 Mar-99 0.093 20 -
4 0.093 20 Nov-00 0.271 14 +
5 0.271 14 Jan-02 0.116 16 -
6 0.116 16 May-03 0.176 12 +
7 0.176 12 May-04 0.101 8 -

Panel C : TRACE Transaction Data from October 2004 to December 2009

AA 1 0.017 34 Aug-07 0.056 17 +
2 0.056 17 Jan-09 0.022 12 -

A 1 0.021 37 Nov-07 0.124 13 +
2 0.124 13 Dec-08 0.040 13 -

BBB 1 0.042 35 Sep-07 0.189 16 +
2 0.189 16 Jan-09 0.039 12 -

BB 1 0.112 23 Sep-06 0.172 13 +
2 0.172 13 Oct-07 0.342 15 +
3 0.342 15 Jan-09 0.103 12 -

Appendix G. Causality Tests

We use the Granger causality test to investigate the causal pairwise

relationship between credit spreads, Fed funds rates, and survey data. As this

test is critically dependent on the lag length specification of the VAR, we first

identify the appropriate lag length for each pairwise relation based on

Bayesian Information Criteria (BIC).1

1We also apply the Akaike Final Prediction Error criteria (FPE) and sometimes iden-

tify longer lags. However, when we use the identified lag structure based on BIC or on
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Table G-1: Pair-wise VAR Lag Length Selection.

We use the Bayesian Information Criteria (BIC) to identify the

appropriate lag structure for the pairwise VAR relationship between credit

spreads, Fed funds rates, and survey data. The lag length remains the same for

a different variable ordering. Credit spreads are from Warga, NAIC and

TRACE datasets, respectively.

Warga NAIC TRACE

AA - Fed funds rate 3 2 2

A - Fed funds rate 2 2 3

BBB - Fed funds rate 2 2 2

BB - Fed funds rate - 1 1

AA - Survey 1 2 1

A - Survey 1 1 1

BBB - Survey 1 1 1

BB - Survey - 1 1

Using the lag structure reported in Table G-1, we perform pairwise

causality tests (Table G-2). The results show that at the specified number of

lags, there is some evidence of feedback effects between the Fed funds rate and

credit spreads. However, the causal relation from the Fed funds rate to credit

spreads is stronger for AA, A, and BBB spreads while the causal relation from

credit spreads to the Fed funds rate is stronger for BB spreads. For instance, at

the 1% confidence level, Fed funds rate always Granger-cause AA, A, and BBB

spreads. In three cases out of nine, AA, A, and BBB also Granger-cause the Fed

FPE, we obtain similar results. Thus, we only report the BIC lag structure.
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funds rate. For BB spreads, the causal relation is always unidirectional from

BB spreads to the Fed funds rate.

In the case of the survey, the causal relation appears to be almost always

in one direction from the survey to credit spreads, under the 1% confidence

level (except for AA spreads in the NAIC dataset).

Table G-2: Pair-wise Granger Causality Tests.

We test the null hypothesis for the absence of pairwise Granger causality

between i) Fed funds rates and credit spreads, and ii) survey and credit

spreads. The lags used in the VAR are identified based on Bayesian

Information Criteria. * indicates rejection of the null at the 1% confidence level.

Credit spreads with 10 remaining years to maturity are from Warga, NAIC and

TRACE datasets, respectively.
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Warga NAIC TRACE

Null Hypothesis: F -stat
(p-value)

F -stat
(p-value)

F -stat
(p-value)

FFO does not Granger-cause AA 8.211
(0.00)∗

17.629
(0.00)∗

12.903
(0.00)∗

AA does not Granger-cause FFO 3.701
(0.01)

7.747
(0.00)∗

1.903
(0.16)

FFO does not Granger-cause A 5.287
(0.01)∗

11.205
(0.00)∗

12.673
(0.00)∗

A does not Granger-cause FFO 1.969
(0.14)

8.575
(0.00)∗

1.977
(0.09)

FFO does not Granger-cause BBB 19.928
(0.00)∗

13.006
(0.00)∗

13.441
(0.00)∗

BBB does not Granger-cause FFO 2.169
(0.14)

10.326
(0.00)∗

0.282
(0.75)

FFO does not Granger-cause BB 0.242
(0.62)

0.926
(0.52)

BB does not Granger-cause FFO 27.141
(0.00)∗

4.170
(0.00)∗

Survey does not Granger-cause AA 22.636
(0.00)∗

11.182
(0.00)∗

24.730
(0.00)∗

AA does not Granger-cause Survey 0.149
(0.70)

5.953
(0.00)∗

6.599
(0.01)

Survey does not Granger-cause A 8.994
(0.00)∗

28.435
(0.00)∗

14.663
(0.00)∗

A does not Granger-cause Survey 0.036
(0.00)

4.257
(0.04)

0.311
(0.58)

Survey does not Granger-cause BBB 14.134
(0.00)∗

16.797
(0.00)∗

9.255
(0.00)∗

BBB does not Granger-cause Survey 0.165
(0.68)

3.817
(0.05)

0.222
(0.64)

Survey does not Granger-cause BB 8.746
(0.00)∗

12.588
(0.00)∗

BB does not Granger-cause Survey 2.412
(0.12)

0.347
(0.56)
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Appendix H. Impulse-Response Functions

The impulse responses indicate that an increase by one standard deviation in

the survey instantaneously increases the level factor of credit spreads of all

ratings whereas a decrease by one standard deviation of the Fed funds rate

instantaneously decreases the level factor of credit spreads. These effects last

for several months before fading. On the other hand, a one standard deviation

increase in the level factor of credit spreads does not have an immediate effect

on the survey and the Fed funds rate. During subsequent months, the effect on

the survey is weak and lasts only for one to two months. In the case of the Fed

funds rate, the effect lasts for more months for some ratings.

Figure H-1: Impulse Responses.

The plots show the impulse-response paths for i) the survey to 1%

innovation in the level factor of credit spreads (column 1), ii) the level factor of

credit spreads to 1% innovation in the survey (column 2), iii) the Fed funds rate

to 1% innovation in the level factor of credit spreads (column 3), and iv) the

level factor of credit spreads to 1% innovation in the Fed funds rate (column 4).

Impulse-response functions are based on estimating VARs with Cholesky

decomposition. The ordering of the variables (Survey, Fed funds rate, credit

spreads) is based on results of the Granger causality and is robust to changes in

the ordering. The critical number of lags in the VAR is based on the Likelihood

Ratio test statistic and in most cases is confirmed by the information criteria.

Graph A to Graph C refer to Warga, NAIC and TRACE datasets, respectively.
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Graph A : Warga Dataset from April 1987 to December 1996

Graph B : NAIC Dataset from January 1994 to December 2004
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Figure H-1 (Continued)

Graph C : TRACE Dataset from October 2004 to December 2009

Appendix I. Summary Statistics for Changing

Points in SLO Survey and Fed Funds Rate

Regimes

Table I-1 : Changing Points in SLO Survey and Fed Funds Rate Regimes.

We report results of the regime shift detection technique applied to the

time series of the Senior Officer Opinion Survey (SLO survey) data and the Fed

25



funds rate. Panel A to Panel C report shifts detected over time horizons of

Warga, NAIC and TRACE datasets, respectively. The initial cut-off length is 6

months, the Huber parameter is 2, and all detected regimes are statistically

significant at least at the 95% confidence level. The sign of the Regime Shift

Index (RSI sign) provides the direction of detected shifts. Regime means are

expressed in percentages and regime lengths in months. In Panel A, SLO

Survey data are only available from April 1990.
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Shift Mean of Length of Date of Mean of Length of RSI
No. Current Current Shift New New Sign

Regime Regime Point Regime Regime

Panel A : Data from April 1987 to December 1996

SLO survey 1 45.325 12 Apr-91 4.500 27 -
2 4.500 27 Jul-93 -6.900 42 -

Fed funds rate 1 6.902 13 May-88 8.646 28 +
2 8.646 28 Sep-90 6.029 11 -
3 6.029 11 Aug-91 3.439 33 -
4 3.439 33 May-94 5.483 32 +

Panel B : Data from January 1994 to December 2004

SLO survey 1 -6.900 57 Oct-98 14.914 21 +
2 14.914 21 Jul-00 46.428 21 +
3 46.428 21 Apr-02 14.400 21 -
4 14.400 21 Jan-04 -13.642 12 -

Fed funds rate 1 3.439 4 May-94 5.483 81 +
2 5.483 81 Feb-01 2.349 18 -
3 2.349 18 Aug-02 1.242 26 -
4 1.242 26 Oct-04 3.213 3 +

Panel C : Data from October 2004 to December 2009

SLO survey 1 -13.642 33 Jul-07 19.633 9 +
2 19.633 9 Apr-08 65.200 12 +
3 65.200 12 Apr-09 28.366 9 -

Fed funds rate 1 3.213 12 Oct-05 4.991 24 +
2 4.991 24 Oct-07 2.256 10 -
3 2.256 10 Aug-08 0.175 17 -

Appendix J. The Link Between the Volatility

Factor and Uncertainty

Table J-1 : Regression of the Volatility Factor on Goyal and Welch (2008)

Economic Variables.
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We regress the volatility factor on a set of economic fundamentals from

Goyal and Welch (2008). The variable selection is dictated by the Variance

Inflation Factor (V IF < 10) and the availability of the data. The sample period

ranges from April 1987 to December 2008. The Warga dataset ranges from

April 1987 to December 1996. The NAIC dataset ranges from January 1994 to

December 2004. The TRACE dataset ranges from October 2004 to December

2008. The p−values are in parenthesis.
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Table J-2 : Regression of the Volatility Factor on Ludvigson and Ng

(2009) Macro Factors.

We regress the volatility factor on the eight principal components of

Ludvigson and Ng (2009). The sample period ranges from April 1987 to

December 2009. The Warga dataset ranges from April 1987 to December 1996.

The NAIC dataset ranges from January 1994 to December 2004. The TRACE

dataset ranges from October 2004 to December 2009. The p−values are in

parenthesis.
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Appendix K. Credit Spreads Regimes Using

Aggregate Data

Figure K-1 : Credit Spreads Regimes Using Aggregate Data.

Graph A and Graph B show, respectively, the mean and variance regimes

of credit spreads with 10 years to maturity. The sample period ranges from

April 1987 to December 2009. Data are constructed by combining Warga and

Bloomberg datasets. The X-axis expresses the time in months, the Y-axis

(left-hand side) expresses the mean regime of credit spreads and Fed funds rate

in percentages, and the Z-axis (right-hand side) expresses the mean regime of

the survey in percentages. Shaded regions represent NBER recessions. The

initial cut-off length is 6 months and the Huber parameter is 2. Detected

regimes are statistically significant at the 95% confidence level or higher.
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Graph A: Mean Regimes for the Aggregate Data

Graph B: Volatility Regimes for the Aggregate Data
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