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Abstract

This appendix to “Interest rate risk and the cross section of stock returns” presents supple-

mentary results not included in the paper and technical appendices. Section 1 presents the

comparison with nested models, while Section 2 conducts a comparison with alternative

linear factor models. Section 3 presents some additional results for the benchmark linear

model estimated in the paper. Section 4 presents the results for the non-linear version of

our model, while Section 5 shows the results for alternative monetary asset pricing models.

Sections A to F represent technical appendices.



1 Comparison with nested models

1.1 Nested models

The model stated in equation (9) in the paper represents a rich specification, since it nests

other well known models from the asset pricing literature as special cases. The first special

case is the Epstein and Zin (1991) model with one consumption good, which is obtained

by setting ε = 0 in the benchmark model (that is, there is no role for real balances in the

utility function),

E (Rj,t+1 −Rr,t+1) = γ0 + γc Cov (Rj,t+1,∆ct+1) + γw Cov (Rj,t+1, rw,t+1) , (1)

γc ≡
θ

ψ
=

1− γ
ψ − 1

,

γw ≡ − (θ − 1) =
γψ − 1

ψ − 1
,

with both γ and ψ having the same expressions (as a function of the factor risk prices) as

in equation (11) in the paper.

The second special case of CI-CAPM is the Power utility C-CAPM from Lucas (1978)

and Breeden (1979), which arises as a special case of the benchmark model by imposing

θ = 1 (which means that γ = 1/ψ) and ε = 0:

E (Rj,t+1 −Rr,t+1) = γ0 + γc Cov (Rj,t+1,∆ct+1) , (2)

γc ≡ γ.

The third nested case is the CAPM from Sharpe (1964) and Lintner (1965), which is

obtained by imposing that ψ → +∞ and ε = 0 in the benchmark model:

E (Rj,t+1 −Rr,t+1) = γ0 + γw Cov (Rj,t+1, rw,t+1) , (3)

γw ≡ γ.

To obtain the CAPM pricing equation, notice that ψ → +∞ implies that γc → 0 and also

that θ → 1− γ, which in turn leads to γw → γ.

In all the above expected return-covariance equations an intercept is included, although
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strictly speaking this intercept should be equal to zero if there exists a real risk-free rate,

as is assumed in the derivation of the Euler equation for real returns.

1.2 Empirical results

The derivations above show that the CI-CAPM can be perceived as a generalization of the

Epstein and Zin (1991) model, and consequently, a generalization of either the standard C-

CAPM or the CAPM. Therefore, it should be relevant to compare the pricing performance

of each of these three models against the CI-CAPM. More specifically, we want to assess

further whether monetary/interest risk is crucial to drive the explanatory power of the

benchmark model, as suggested by the results presented in the paper. This comparison

is also relevant due to the extensive previous evidence showing that both the standard

C-CAPM and the CAPM do not perform well in explaining the cross-section of equity

portfolio returns, and more specifically, the returns of the 25 size/BM portfolios, giving

rise to the so-called size and value anomalies (Fama and French (1992)). On the other hand,

it is well known that the C-CAPM with power utility is not able to price the excess market

return (equity premium puzzle) at reasonable preference parameters. Furthermore, not

surprisingly, there is evidence that the Epstein–Zin model cannot explain the cross-section

of stock returns (e.g., Gomes, Kogan, and Yogo (2009)).

The estimation and evaluation results from first-stage GMM, for the Epstein–Zin, C-

CAPM and CAPM are provided in Table 1, when the equity portfolios are SBM25 (Panel

A) and SLTR25 (Panel B). Rows 1 to 3 present the results for the benchmark models,

estimated without an intercept, while rows 4 to 6 present the results for the unrestricted

models. To save space, in this subsection we only report the asymptotic t-statistics for the

point estimates and asymptotic p-values for the χ2 statistic. In the case of the benchmark

models, the results clearly show that none of the three models performs well in explaining

the excess returns of the 25 size-BM portfolios, producing negative estimates for the OLS

R2, which means that the three models perform worse than a model with only a constant

factor. When one includes the intercept, the estimates for the coefficient of determination

become positive, but the fit is still modest (below 24%). Furthermore, in the estimation of

the unrestricted models the intercepts are economically large (between 1.5% and 2.7% per

quarter), thus showing that all three models are misspecified, that is, there are relevant
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missing risk factors. Moreover, the intercept estimates are significant at the 5% and 1%

levels for the C-CAPM and CAPM, respectively, while in the case of the Epstein–Zin model

the point estimate for the intercept is significant at the 10% level.

Regarding the test with SLTR25, as in the test over SBM25, the R2 estimates are

either negative (C-CAPM and CAPM) or around zero (Epstein–Zin model). When the

intercept is included in the estimation of the three models the explanatory ratios become

positive, but at quite modest levels (below 15%). Moreover, the point estimates for the

zero-beta excess return are above 1% per quarter in all three models, although they are

only marginally significant (10% level).

Overall, the results from Table 1 show that the baseline CI-CAPM clearly outperforms

the Epstein–Zin, C-CAPM, and CAPM models in pricing stock returns, and therefore,

the restrictions associated with these last three models (as special cases of the benchmark

model) are not confirmed by the data. These results are not surprising given the previous

extensive evidence that both the CAPM or the baseline C-CAPM are not successful in

explaining either the equity premium or the cross-section of stock returns (Mehra and

Prescott (1985), Mankiw and Shapiro (1986), Breeden, Gibbons, and Litzenberger (1989),

Fama and French (1992, 1993), Lettau and Ludvigson (2001), Parker and Julliard (2005),

Yogo (2006), Jagannathan and Wang (2007), among others). Second, the interest risk

factor is a crucial factor in driving the explanatory power of the consumption-interest

CAPM for the excess returns of the SBM25 and SLTR25 portfolios in addition to the

equity premium.

2 Comparison to alternative factor models

2.1 Alternative macro models

The findings in Section 4 in the paper show that the CI-CAPM performs relatively well in

pricing the 25 size/BM portfolios in addition to the excess market return. Other macroeco-

nomic asset pricing models, which represent extensions of the standard C-CAPM, have also

been able to explain the returns of the 25 size/BM portfolios. In this subsection, we pro-

vide a brief comparison against these models. We focus the analysis on consumption-based
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models.1 The criteria for choosing alternative models to compare with is that these models

have been tested in the cross-section of stock returns with an expected return-covariance

(beta) representation.

Among the alternative models, the conditional C-CAPM from Lettau and Ludvigson

(2001) was one of the first consumption-based models to price the SBM25 portfolios. In

their paper, the conditioning variable that accounts for the time-varying consumption risk

price is a cointegration function of log consumption, log financial wealth, and log labor

income, denoted as cay. The model’s expected return-covariance representation can be

defined as

E (Rj,t+1 −Rr,t+1) = γ0 + γcay Cov (Rj,t+1, cayt) + γcay,c Cov (Rj,t+1,∆ct+1cayt) +

γc Cov (Rj,t+1,∆ct+1) , (4)

where ∆ct+1cayt denotes the scaled factor resulting from the interaction between current

consumption growth and the lagged conditioning variable, cayt.

A more recent conditional version of the C-CAPM, also tested with the SBM25 portfo-

lio returns, is the model proposed by Lustig and Van Nieuwerburgh (2005). In this model,

the conditioning variable is the housing collateral ratio, my, defined as the ratio of col-

lateralizable housing wealth (home mortgages) to non-collateralizable human wealth. The

corresponding pricing equation can be represented as

E (Rj,t+1 −Rr,t+1) = γ0 + γmy Cov (Rj,t+1,myt) + γmy,c Cov (Rj,t+1,∆ct+1myt) +

γc Cov (Rj,t+1,∆ct+1) . (5)

The third macroeconomic model for which we compare the performance of the CI-

CAPM is the three-factor model presented in Yogo (2006). Similarly to the CI-CAPM, the

model from Yogo is based on Epstein–Zin intertemporal preferences. The risk factors are

log non-durable consumption growth, the log market return, and log durable consumption

1There is a growing literature that takes a production-based approach to equilibrium asset pricing. For
example, Balvers and Huang (2007) and Belo (2010) derive and test production-based asset pricing models
in the cross-section of stock returns.
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growth (∆d):

E (Rj,t+1 −Rr,t+1) = γ0 + γc Cov (Rj,t+1,∆ct+1) + γd Cov (Rj,t+1,∆dt+1) +

γw Cov (Rj,t+1, rw,t+1) . (6)

The fourth model analyzed is the linear version of the model with lead consumption

growth from Parker and Julliard (2005),

E (Rj,t+1 −Rr,t+1) = γ0 + γc Cov (Rj,t+1,∆ct,t+s) , (7)

where ∆ct,t+s = ct+s − ct =
∑s

j=1 ∆ct+j denotes the cumulative log consumption growth

over s periods in the future.2

In Table 2, we present the evaluation measures for the alternative macroeconomic factor

models tested on the SBM25 portfolios reported in the original studies. The R2 estimates

vary between 66% (Parker and Julliard (2005)) and 94% (Yogo (2006)), implying that

these models underperform relative to the CI-CAPM, with the exception of the durable

consumption model. On the other hand, both Lettau and Ludvigson (2001) and Yogo

(2006) pass the χ2 test, while the model from Parker and Julliard (2005) is rejected. Over-

all, these results suggest that the CI-CAPM compares favorably to these four alternative

macro models in explaining the risk premia of the 25 size/BM portfolios.

2.2 Comparison to the Fama and French (1993) model

For completeness, we also compare the CI-CAPM against the Fama and French (1993)

three-factor model, which represents a benchmark in the empirical asset pricing literature,

with the results presented in Table 3. To save space, we only report the global fit measures

since we are mainly concerned about comparing the overall explanatory power of the Fama-

French model against the CI-CAPM, and not in conducting a detailed analysis of the

respective risk price estimates. Thus, we compute R2
OLS , MAE, and the χ2 statistic, all

associated with first stage GMM; and R2
WLS from second-stage GMM. The point estimate

2Aı̈t-Sahalia, Parker, and Yogo (2004), Jagannathan and Wang (2007), and Savov (2011) also test
extensions of the baseline C-CAPM with the SBM25 portfolios. We do not make a comparison against
these models since their tests rely on annual data, whereas the tests of the CI-CAPM are based on quarterly
data.
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for the intercept (γ0) in the first-stage estimation is also presented. In the test with the

SBM25 portfolios, the model’s fit is quite large with a R2
OLS estimate around 74% and a

R2
WLS estimate around 56%. In the case of the unrestricted model, the explanatory ratio

increases only marginally to 79%. However, the intercept is both economically (3.7% per

quarter) and statistically (1% level) significant, suggesting misspecification of the model.

When the equity portfolios are SLTR25, the OLS explanatory ratio is the same as in

the test with SBM25 (74%), while the R2
WLS estimate is slightly higher (69%). Thus, in

the tests with either set of equity portfolios the model’s explanatory power is very close

to the fit obtained for the CI-CAPM. The large explanatory power of the Fama-French

model in the test with SBM25 is not totally surprising given that this three-factor model

was specifically designed to price the size/BM portfolios, that is, the size (SMB) and value

(HML) factors are mechanic transformations of the original size and BM test portfolios.3

What is more remarkable is that the CI-CAPM has an explanatory power that is very

similar, and in some cases exceeds, to that of the Fama-French model.

Furthermore, the comparison with the Fama–French model is not subject to the crit-

icisms pointed out in Lewellen, Nagel, and Shanken (2010), in the sense that obtaining

a good fit for the SBM25 portfolios might represent a spurious result. First, we add to

the menu of test assets the excess market return, imposing a bigger hurdle to the model

than just pricing the 25 portfolios alone. Second, the model’s explanatory power remains

large in the second-stage GMM, with WLS coefficient of determination estimates above

50%. Third, we conduct a bootstrap simulation in order to compute more robust empirical

p-values for both the t-stats on the risk prices and J-test, which basically reinforce the

evidence from the asymptotic statistics. Fourth, the high explanatory power of the model

does not come at the cost of very implausible estimates for the structural preference param-

eters in the model, that is, the implied preference parameters are economically reasonable

in most cases (except the high estimates of risk aversion that are a consequence of the

consumption data, as discussed in the paper). Fifth, we use an alternative set of equity

portfolios (SLTR25), and the explanatory power of the model remains relatively high.

3Cochrane (2005) justifies the three-factor model as an APT model.
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3 Additional results

In this section, we provide some additional results associated with the test of the CI-CAPM.

Specifically, we present a bootstrap-based inference for the explanatory ratios in the model;

we estimate an augmented version of the CI-CAPM; estimate the model by using forward

consumption growth rates; estimate the CI-CAPM on alternative sets of equity portfolios;

and estimate the model in expected return-beta representation.

3.1 Empirical distribution for R2

Following Lewellen, Nagel, and Shanken (2010), we estimate an empirical distribution of

the OLS/WLS coefficients of determination. We employ the bootstrap algorithm used in

the paper, and described in detail in Appendix D below (to produce empirical p-values

for the factor risk prices) in order to obtain 95% confidence intervals for both R2
OLS and

R2
WLS. In this simulation, portfolio risk premia and risk factor realizations are simulated

independently, without imposing the model’s restrictions. The objective is to answer the

following question: Under the assumption that the CI-CAPM does not hold and that the

factors are useless, how likely is that one will obtain the kind of large fit found in the data?

Untabulated results show that the 95% confidence interval associated with R2
OLS in the

test with SBM25 is [−0.97, 0.20] in both versions of the model. In the test with SLTR25,

the corresponding estimates are [−1.26, 0.16] and [−1.27, 0.16] in the versions with TB and

FED, respectively. Thus, it turns out that the R2
OLS point estimates from the CI-CAPM

reported in the paper are well above the upper bounds in these confidence intervals in all

four cases, suggesting that the fit of the model in driving equity risk premia is not spurious,

or in other words, is statistically significant.

Regarding the WLS coefficient of determination, the confidence intervals in the test with

SBM25 are [−0.89, 0.22] and [−0.86, 0.22] in the versions with TB and FED, respectively.

The corresponding estimates in the test with SLTR25 are [−1.05, 0.20] and [−1.02, 0.21],

respectively. As in the case of R2
OLS, the point estimates for R2

WLS reported in the paper

are well above the upper bound in these intervals. Thus, the large explanatory ratios of the

CI-CAPM over a mean-variance efficient combination of the original portfolios reported in

Section 4 in the paper, do not seem to be spurious.
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3.2 Alternative comparison to Yogo (2006)

We conduct an alternative comparison to the Yogo (2006) model. As noted in Section

2 above, both the CI-CAPM and Yogo’s model are three-factor linear models based on

Epstein–Zin intertemporal preferences, and two of the risk factors are common in both

models—the log non-durable consumption growth and the log equity market return. The

third factor in Yogo is the log durable consumption growth, whereas in the CI-CAPM

the third factor is the log interest growth (log growth in the opportunity cost of money).

Both factors are key to the explanatory power of either model. We estimate the following

augmented four-factor model for the 1963:III–2007:IV period:4

E (Rj,t+1 −Rr,t+1) = γ0 + γc Cov (Rj,t+1,∆ct+1) + γd Cov (Rj,t+1,∆dt+1)

+γf Cov (Rj,t+1,∆ft+1) + γw Cov (Rj,t+1, rw,t+1) . (8)

The goal in estimating (8) is two-fold. First, we want to assess whether the key factor in

the CI-CAPM (∆ft+1) is still a priced factor in the presence of the durable consumption

growth factor, ∆dt+1. Second, we want to assess whether ∆dt+1 adds explanatory power

to the CI-CAPM by producing a significant increase in the R2
OLS estimates.

The estimation results for the augmented model are displayed in Table 4. We can

see that for both sets of portfolios (SBM25 and SLTR25), the interest factor risk price is

consistently negative, while the risk price estimates for durable consumption alternate in

sign. Moreover, the interest risk factor is priced in the cross-section of stock returns (5%

or 1% levels), while the risk price estimates for the durable consumption factor are highly

insignificant. In terms of global fit, the OLS R2 estimates (around 60-70%) are slightly

below the corresponding estimates for the CI-CAPM presented in the paper. This decline

in fit should be related with the slightly shorter sample used, but it also suggests that the

durable consumption factor does not add relevant explanatory power to our three-factor

model in terms of pricing the cross-section of average returns jointly with the market equity

premium. It looks like the type of risks measured by ∆dt+1 are captured by the interest

4The data on the growth rate of the stock of consumption of durable goods are obtained from Motohiro
Yogo’s webpage, and corresponds to the measure used in Gomes, Kogan, and Yogo (2009). The quarterly
stock of durables is related with the real expenditure on durable goods by an accumulation equation (see
equation (1) in Gomes, Kogan, and Yogo (2009)), and using a constant depreciation rate within each year.
Due to data availability, the model is estimated for the 1963:III–2007:IV period.
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rate factor.

3.3 Using forward consumption growth

Following Parker and Julliard (2005), we estimate the CI-CAPM by using the forward

growth rate in the consumption of non-durables and services. Specifically, stock returns are

aligned with the log consumption growth measured over the following four quarters. The

estimation results are displayed in Table 5. The fit of the model decreases in comparison

to the benchmark test, however, the explanatory power remains significant: the R2
OLS

estimates are about 66% for both versions of the interest rate factor in the test with

SBM25. When the portfolios are SLTR25 the explanatory ratios vary between 46% (TB)

and 57% (FED).

The estimates for the interest factor risk price are similar to the corresponding estimates

in the benchmark test, and are statistically significant in all cases. On the other hand,

the estimates for the consumption risk price are significantly smaller than in the test

using the usual definition of consumption growth, and are statistically significant in all

cases. Consequently, the implied estimates for RRA are significantly smaller than in the

benchmark test, varying between 108 (TB) and 110 (FED) in the estimation with SBM25,

while in the test with SLTR25 the corresponding range is between 77 (TB) and 79 (FED).

The estimates for ψ vary between 3% and 5%, while the estimates for ε are now in the 8%–

10% interval. Thus, by using forward consumption growth of non-durables and services,

we obtain more plausible implied preference parameter estimates, especially for the risk

aversion coefficient.

3.4 Alternative equity portfolios

We estimate the CI-CAPM for 10 portfolios sorted on size plus 10 portfolios sorted on

BM (S10+BM10). The use of the 20 portfolios is a response to the fact that some of the

portfolios within SBM25 (especially, the extreme small-growth portfolio) are difficult to

price for most asset pricing models in the literature, and tend to influence the overall fit

of a given model when tested on these portfolios.

Table 6 (Panel A) presents the estimation results when the equity portfolios are S10+BM10.

We can see that the model’s overall fit, as measured by R2
OLS , is slightly higher in com-
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parison to the test with SBM25, when the model is estimated with FED (86%). In the

case of TB (77%), the fit is only marginally smaller than in the test with SBM25. These

results show that in the version with FED it is slightly easier to explain the returns of the

20 portfolios in comparison to SBM25, which might be related with the difficulty of pricing

the extreme small-growth portfolio (SBM11) that tends to be the most problematic return

to be priced within that class of portfolios. Nevertheless, the discrepancy is low, since the

two sets of portfolios are, obviously, strongly correlated. As a comparison, the fit of the

Fama and French (1993) model when estimated on the 20 portfolios is only marginally

higher than the CI-CAPM (version with FED) with a cross-sectional R2 of 92%.

The point estimates for the risk price associated with the growth in the opportunity cost

of money have lower magnitudes (almost half) than in the test with SBM25. Nevertheless,

these point estimates are statistically significant at the 5% and 10% levels when the interest

rate proxies are TB and FED, respectively. The point estimates for the consumption risk

price are somewhat lower than the corresponding estimates in the test with SBM25, but

only in the version based on TB there is statistical significance (10% level). On the other

hand, the estimates for γw are largely insignificant as in the test with SBM25.

The implied (raw) point estimates for ψ, γ, and ε are 0.00, 181, and 0.04, respectively, in

the version with TB, while in the version with FED these estimates are 0.01, 192, and 0.03,

respectively. Thus, these estimates are not very different from the corresponding estimates

in the test with SBM25, in the cases of ψ and ε, while there is a decline in the magnitude

of γ. In sum, the estimation results for the test with S10+BM10 are qualitatively similar

to the results obtained in the test with SBM25.

We use additional portfolios as test assets in order to address the criticism from

Lewellen, Nagel, and Shanken (2010) that the size/BM portfolios have a strong embedded

factor structure. We use decile portfolios sorted on asset growth (AG10); total accruals

(TA10); and on the Ohlson (1980) O-score measure of financial distress (OS10). These

three portfolio sorts are used by Chen, Novy-Marx, and Zhang (2011) to test alternative

multifactor models. The portfolio return data are available from Long Chen. We test the

CI-CAPM on the additional portfolio sorts jointly with the size deciles and the aggregate

equity premium, that is, each empirical test has a total of 21 test assets. Due to data

availability on the portfolio returns, the sample used in these three additional empirical
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tests is 1972:II to 2008.III.

When the test portfolios are S10+OS10 (Panel B in Table 6) the explanatory ratio is

51% in the version with TB, while in the version with FED the fit is significantly lower

(15%). Moreover, the CI-CAPM is not rejected by the χ2 statistic when the interest rate

proxy is TB (p-value of 77%). The point estimates for γf vary between -7.25 (FED) and

-11.76 (TB), and both estimates are significant at the 5% level. In the test with S10+TA10

(Panel C), the fit is similar in the two versions of the CI-CAPM (around 55%), and the

model is not rejected in the version with TB (p-value of 16%). The point estimates for the

interest factor risk price are around -5, and are significant at the 5% level. When the test

portfolios are S10+AG10 (Panel D), the explanatory ratio is slightly above 30% in both

versions of the model, and the χ2 statistic points to non-rejection of the model in both

cases (p-value of 14%). The point estimates for γf are around -6, being significant at the

1% (version with TB) or 5% level (FED).

As a comparison, the R2
OLS estimates associated with the Fama and French (1993)

model are 5%, 10%, and 63% in the tests with S10+OS10, S10+TA10, and S10+AG10, re-

spectively. Thus, the CI-CAPM clearly outperforms the Fama-French model in explaining

the accruals and financial distress anomalies, while underperforming in pricing the asset

growth anomaly. Overall, these results show that our three-factor model works relatively

well in pricing these alternative equity portfolios, and in all cases, the interest rate factor

is priced.

Our last empirical test uses five industry portfolios (IND5) employed by Gomes, Kogan,

and Yogo (2009) to test a non-linear version of the macro model with durable consumption

from Yogo (2006). The quarterly return data on IND5 are available from Motohiro Yogo’s

webpage. As above, we combine the industry portfolios with the size deciles and the market

return, for a total of 16 test assets. The results, presented in Table 6, Panel E, show that

the CI-CAPM performs well in pricing the dispersion in returns among the 16 portfolios,

with explanatory ratios varying between 63% (version based on FED) and 67% (TB), while

the average pricing error is 0.20% per quarter in both versions of the model. In comparison

to the benchmark tests based on SBM25 and SLTR25, the risk price estimates associated

with the interest rate factor have smaller magnitudes, and are statistically significant only

in the version based on TB (10% level), which should be related with some degree of
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multicollinearity in the estimation.

To put these results in perspective, we estimate the linear three-factor model from

Yogo (2006) on the same set of portfolios. Untabulated results show that the model with

durable consumption has a similar fit to the CI-CAPM, with an OLS R2 estimate of 69%

and an average pricing error of 0.18% per quarter. However, the point estimate for the risk

price associated with non-durable consumption is implausibly negative. Thus, our model

compares favorably with the three-factor model from Yogo (2006) in pricing the industry

portfolios jointly with the size portfolios and the aggregate equity premium.

3.5 Beta representation

We estimate the CI-CAPM in expected return-beta form by using the time-series/cross-

sectional regression approach used in Brennan, Wang, and Xia (2004) and Cochrane (2005),

among others. In the first step, we conduct time-series regressions to estimate the factor

loadings for each portfolio,

Rj,t+1 −Rf,t+1 = δj + βj,c∆ct+1 + βj,f∆ft+1 + βj,wrw,t+1 + εj,t, (9)

where the coefficients βj stand for the factor loadings. In the second step, we conduct an

OLS cross-sectional regression of average excess returns on the factor loadings to obtain

estimates for the factor (beta) risk prices (λ):

Rj −Rf = λcβj,c + λfβj,f + λwβj,w + αj . (10)

To compute the t-statistics associated with the risk prices we use the Shanken (1992)

standard errors, which correct for the estimation error in the betas. The beta representation

produces the same fit as the covariance representation, the only difference being the fact

that the multiple regression betas account for the correlation among the different factors.

The estimation results are presented in Table 7. As expected, the coefficient of deter-

mination and MAE estimates are the same as in the test of the covariance representation

shown in the paper. The estimates for λf are negative in all four cases, and these estimates

are significant at the 5% or 1% levels. On the other hand, the estimates for λc are not sta-

tistically significant, while the estimates for the market risk price are positive in all cases,
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being significant (at the 5% level) in the test with SLTR25. Therefore, the results from

the beta representation of the CI-CAPM are similar to the results from the benchmark

test and show once more the importance of the interest rate factor in driving the fit of the

model.

4 Euler equations

In this section, we estimate the Euler equations for excess stock returns associated with

our macroeconomic asset pricing model:5

Et

(Ct+1

Ct

)1−γ−θ
 Rf,t+2−1

Rf,t+2

Rf,t+1−1
Rf,t+1

ε(γ−1)

Rθ−1w,t+1(Rj,t+1 −Rr,t+1)

 = 0. (11)

The objective of this exercise is to assess whether the estimates of the preference pa-

rameters, γ, ψ, ε, are significantly different from the implied estimates associated with the

linear model estimated in Section 4 in the paper. Since the linear version of our model

relies on a first-order Taylor approximation of the original model, in principle, the two

versions can deliver different estimates of the structural preference parameters.

4.1 Econometric framework

We estimate the monetary model by a two-step GMM procedure, where the weighting

matrix in the first-stage estimation is associated with the Hansen and Jagannathan (1997)

distance,6

WHJ =

(
1

T

T∑
t=1

Re
tR

e′
t

)−1
, (12)

where Re
t is the vector of portfolio excess returns at time t. Therefore, portfolios with

a larger second moment in returns are given less weight in the estimation. This method

allows us to compare the results across different models (as in the GMM estimation with

the identity matrix) since they do not rely on the estimation of the spectral density matrix,

5We exclude the time-discount factor term, δθ, from the SDF since it is not identifiable when the Euler
equation is estimated only with excess returns. From an econometric point of view, this may also lead to
a more efficient estimation of the remaining preference parameters in the model.

6The Hansen and Jagannathan (1997) metric has been employed in asset pricing tests by Jagannathan
and Wang (1996), Hodrick and Zhang (2001), and Jacobs and Wang (2004), among others.
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S (as it is the case with efficient GMM). Moreover, the standard errors of the parameter

estimates are lower than those in the estimation with equal-weighted moment conditions.

However, as in the second-stage estimation, the results associated with WHJ are more

difficult to interpret than the results with equal-weighted moments, since they often involve

large negative and positive weights on the different moment conditions (portfolio pricing

errors). Furthermore, often the second moments matrix of returns is near singular with the

resulting difficulties in its inversion, similarly to the second-stage GMM estimation (see

Cochrane (2005) for further discussion on this issue).

The Hansen-Jagannathan (HJ) distance is equal to

HJ =
(
α̂′WHJ α̂

) 1
2 , (13)

where α̂ is the vector of Euler equation errors. This metric can be interpreted as the

minimum distance between a given candidate SDF and the set of all true SDFs. HJ also

measures the magnitude of mispricing of a given model, and thus, can be used to compare

the explanatory power of alternative asset pricing models.

The set of moment conditions correspond to the Euler equations associated with excess

returns. By exploiting the linearity of conditional expectations and by using the law of

total expectations, the Euler equations for excess returns can be rewritten as

0 = E
(
Qt+1R

e
t+1 ⊗ zt

)
, (14)

where zt is a vector of state variables or instruments known at time t; 0 is a vector of zeros;

and ⊗ denotes the Kronecker product. Given the large number of test assets (26), and the

inherent problems of applying non-linear GMM to a large number of moment conditions,

the only instrument is a constant, zt = 1. Thus, in each estimation we have a total of 26

orthogonality conditions and three parameters to estimate, leading to 23 overidentifying

conditions.

Following Brav, Constantinidies, and Geczy (2002) and Constantinides and Ghosh

(2011), in order to estimate our macro model we use a three-dimensional parameter grid

search approach. In this method, for each specified vector of values for the parameters,

(γ, ψ, ε), we evaluate the GMM objective function, g′TWgT (with gT representing the
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vector of stacked moments, and W the weighting matrix), and choose the parameter values

that minimize the objective function. The range of values for γ is (2, 2.5, ..., 400); for ψ it

is (0.05, 0.1, ..., 5), and for ε the interval is (0.05, 0.1, ..., 1). Notice that with this approach

we are constraining the signs of the parameters, but we are not constraining in any way

the respective magnitudes. For example, we can have large estimates of γ (as high as 400,

the well-known equity premium puzzle from Mehra and Prescott (1985)), or we can also

have implausible high estimates for the share of money in the utility function, ε (as high

as one).

In the second-stage estimation, we compute the asymptotic test of overidentifying re-

strictions (J-test) to test the null hypothesis that the orthogonality conditions associated

with the Euler equations are satisfied, which is distributed as χ2(23) (see equation (15)

in the paper). As in the estimation of the linear model in Section 4 in the paper, we use

asymptotic heteroskedasticity-robust standard errors to compute the individual t-statistics

associated with the structural parameters and the covariance matrix of the residuals from

the moment conditions.7

4.2 Empirical results

The estimation results for the model in equation (11) when the test portfolios are SBM25,

are displayed in Table 8. In the first-stage estimation (Panel A), the estimates for γ vary

between 70 (version with TB) and 78.50 (FED), while both ψ and ε are estimated at 0.05

in both versions of the model. All these estimates are significant at the 5% or 1% levels.

The estimates for the HJ distance are 0.45 and 0.43 in the versions with TB and FED,

respectively, thus, showing that the version based on FED has marginally better fit. In the

second-stage estimation (Panel B), the point estimates for γ are somewhat higher than in

the estimation with first-stage GMM: 97.50 and 104.50 in the versions with TB and FED,

respectively. On the other hand, both ψ and ε are estimated at 0.05, and all six point

estimates are significant at the 1% level. Both versions of the model are rejected by the

J-test, which might be related with a problematic inversion of the covariance matrix of the

pricing errors.

The estimation results for the test with the SLTR25 portfolios are shown in Table 9,

7Since we are constraining the signs of the structural parameters, we use one-sided t-statistics.
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which is identical to Table 8. The first-stage estimates for γ (around 60) are slightly lower

than the corresponding estimates in the test with SBM25. Moreover, the estimates for

both ψ and ε are the same as in the test with SBM25 (0.05), and all these estimates are

significant at the 5% or 1% levels. The HJ distance is estimated at 0.48 and 0.46 in the

versions with TB and FED, respectively, which shows a slightly lower fit than in the test

with SBM25. In the second-stage estimation, the estimates for γ increase to 85.50 (TB)

and 89.50 (FED), while the estimates for both ψ and ε remain at 0.05. As in the test with

SBM25, all the second-stage estimates are significant at the 1% level.

When we compare the parameter estimates above with the implied estimates presented

in Table 4 in the paper, we can see that the estimates for both ψ and ε are relatively

similar in both the linear and non-linear specifications of the model. On the other hand,

the estimates for γ from the non-linear model are significantly smaller (and hence, more

plausible) than the corresponding implied estimates from the linear model estimated in

Section 4 in the paper.

In recent related work, by estimating the Euler equations associated with a mone-

tary model based on money real balances with 30 portfolios sorted on book-to-market,

short-term past returns, and long-term past returns, Gu and Huang (2012) obtain larger

magnitudes for the estimates of the risk aversion parameter (121 and 277) and the share of

money in the utility function (0.27 and 0.80). These larger (and less economically plausi-

ble) estimates should be related with the fact that real balances growth (the key risk factor

in their SDF) has greater measurement error and is less correlated with equity returns than

the interest rate factor in our model. It is not surprising that a specification based on a

price (interest rate) yields more plausible parameter estimates than a specification based

on a quantity (money). However, we should note that the estimates in both models are

not totally comparable since our first-stage GMM estimation is based on the (inverse of

the) second-moment matrix of returns, while Gu and Huang (2012) use the identity ma-

trix. Moreover, they use instruments in one of the alternative estimations of the Euler

equations, while in our case the only instrument is the constant.
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5 Alternative monetary models

This section presents two alternative monetary models, which rely on different mechanisms

of introducing money in the economy.

5.1 The models

As an alternative to the money-in-the-utility Function (MIUF) approach we can use the

cash-in-advance (CIA) approach, as in Clower (1967), in which the consumer needs to hold

cash to be able to consume. In this case, the CIA constraint will bind at equilibrium since

money has an opportunity cost: the consumer should not hold any useless money and incur

an opportunity cost, unless such cash is strictly required for consumption. Since the CIA

constraint is binding, consumption is equal to real balances and therefore we can substitute

one for another. Therefore, with a simple CIA constraint it follows that the marginal utility

of consumption (the pricing kernel) will be driven either by consumption or real balances,

in addition to another factor, linked to the opportunity cost of money holdings. However,

in the CIA specification we do not have any additional parameter relative to the standard

real consumption model without money frictions.

We can reformulate our monetary model to have money through a CIA constraint

instead of the MIUF specification. More precisely, the representative consumer program is

now given by

max
Ct,Mt,{ωj,t}Nj=1

Ut =

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
U1−γ
t+1

)] 1
θ

} θ
1−γ

(15)

s.t. Wt+1 = Rw,t+1

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

)
,

Rw,t+1 =

N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1,

Ct ≤Mt,

where the last equation corresponds to the CIA constraint.

As shown in Appendix E below, by assuming that the CIA constraint is binding the
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Euler equation for excess returns is given by

0 = Et

δθ (Ct+1

Ct

)1−γ−θ
1 +

Rf,t+2−1
Rf,t+2

1 +
Rf,t+1−1
Rf,t+1

−θ Rθ−1w,t+1 (Rj,t+1 −Rr,t+1)

 . (16)

This model is denoted as model 1. We can see that the SDF in this economy is qualitatively

equivalent to the SDF in our benchmark model: the presence of money brings a new factor,

which is the growth rate in the real cost of one unit of the consumption good. When the

investor consumes one unit of the consumption good, it costs him one (since it is the

numéraire), but due to the CIA constraint he has to hold a corresponding amount of

money with opportunity cost given by
Rf,t+1−1
Rf,t+1

. Hence the total cost of one unit of the

consumption good is 1 +
Rf,t+1−1
Rf,t+1

. However, as noted above, despite the presence of the

interest rate factor, the parameters in the model are the same as in the standard Epstein-Zin

model without money frictions, the RRA parameter (γ) and the elasticity of intertemporal

substitution (ψ).

The representation (16) is based on the standing assumption in the literature that

the CIA constraint is binding, meaning that C = M . In particular, because there is no

additional parameter in the model, we cannot have as a nested case the standard Epstein-

Zin model, since it is obtained by setting M = 0 (and thus C = 0), which does not make

sense.

An alternative, and perhaps less restrictive, way to introduce money based on a trans-

action story is the approach adopted by Feenstra (1986), Marshall (1992), and Balvers and

Huang (2009). The representative agent problem is now given by

max
Ct,Mt,{ωj,t}Nj=1

Ut =

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
U1−γ
t+1

)] 1
θ

} θ
1−γ

(17)

s.t. Wt+1 = Rw,t+1

(
Wt − Ct − T (Ct,Mt)−

Rf,t+1 − 1

Rf,t+1
Mt

)
,

Rw,t+1 =
N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1.

The function T (·) is the real transaction cost associated with real consumption. In

this framework, money saves transaction costs while allowing the agent to trade off these
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transaction costs relative to the opportunity cost of money.

The usual assumptions for T (·) are as follows (the index denotes the variable relative

to which the derivative is taken): T > 0, TC > 0, TM < 0, TCC ≤ 0 and TMM ≥ 0.

While these conditions are necessary from an economic standpoint (the first two) and for

achieving an optimal solution (the last two), there is no consensus so far as to the sign of

the cross derivative. However, Feenstra (1986) suggests that this cross derivative should

be negative.

The above conditions on the properties of T are enough in Balvers and Huang (2009)

to obtain a factor representation of risky asset excess returns. However, if one wants to

derive the Euler equation for asset returns and relate it to the properties of T , one has

to add an assumption that will guaranty that the solution to the consumer’s problem will

be scale invariant at the optimum. For this purpose, we write the transaction cost as a

function of the consumption to real balances ratio. Thus, the dynamic problem becomes,

max
Ct,Mt,{ωj,t}Nj=1

Ut =

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
U1−γ
t+1

)] 1
θ

} θ
1−γ

(18)

s.t. Wt+1 = Rw,t+1

[
Wt − Ct

(
1 + τ

(
Ct
Mt

))
−
Rf,t+1 − 1

Rf,t+1
Mt

]
Rw,t+1 =

N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1,

where we assume that τ > 0, τC > 0, τM < 0, τCC ≤ 0, τMM ≥ 0 and τCM < 0. τ has now

the dimension of a percentage.

As shown in Appendix F below, the Euler equation for excess returns in such a setting

is as follows,

0 = Et

[
δθ
(

1 +MCt+1

1 +MCt

)−θ (Ct+1

Ct

)1−γ−θ
Rθ−1w,t+1 (Rj,t+1 −Rr,t+1)

]
, (19)

where

MCt ≡
∂

∂Ct

(
Ctτ

(
Ct
Mt

))
= τ

(
Ct
Mt

)
+
Ct
Mt

τ ′
(
Ct
Mt

)
. (20)

Once again, the presence of money brings an additional factor related to the opportunity

cost of money holdings.

The previous results are amenable for an empirical investigation to the extent that one
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puts some structure on the transaction cost function. We assume the following specification

(see Baumol (1952), Tobin (1956), and Feenstra (1986)):

τ

(
Ct
Mt

)
= a

(
Ct
Mt

)b
, a > 0, 0 < b < 1. (21)

The condition on the parameter b guaranties that the second derivative of the transaction

cost function relative to consumption is negative. As in Balvers and Huang (2009), the

cross derivative is negative. By using the transaction function above, and substituting the

money demand equation, the Euler equations becomes:

0 = Et

δθ
1 + a

1
1+b b

−b
1+b (1 + b)

[
Rf,t+2−1
Rf,t+2

] b
1+b

1 + a
1

1+b b
−b
1+b (1 + b)

[
Rf,t+1−1
Rf,t+1

] b
1+b


−θ (

Ct+1

Ct

)1−γ−θ
Rθ−1w,t+1 (Rj,t+1 −Rr,t+1)

 .
(22)

This model is labeled model 2.

5.2 Empirical results

Similarly to the case of our (non-linear) benchmark model in the last section, we estimate

the two models above by a two-step GMM procedure, where the weighting matrix in the

first-stage estimation is associated with the Hansen and Jagannathan (1997) distance. We

use the same grid search intervals for γ and ψ as in the last section. In the case of parameter

b in model 2, the range of values is (0.05, 0.1, ..., 1). The parameter a is calibrated at 0.5.8

We estimate both models 1 and 2 by using both proxies for the short-term interest rate (TB

and FED) in the construction of the interest growth factor, as in our benchmark model.

To save space, we estimate models 1 and 2 only for the 25 size-BM portfolios.

The results for model 1 are presented in Table 10 below. We can see that the first-

stage estimates for γ are only marginally below the corresponding estimates from the

benchmark model in the previous section. On the other hand, ψ is estimated at 0.05, as in

the benchmark model. The HJ distance is around 0.48 in both versions of model 1, which

is slightly above the magnitude of mispricing in the benchmark model. In the second-stage

estimation, the point estimates for the risk aversion parameter are slightly below 100, while

8The estimation results of model 2 are very similar if we fix a at 1 or 1.5.
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ψ is estimated at 0.05. As in the benchmark model, model 1 is rejected by the J-test.

The results for model 2 are displayed in Table 11. The estimates for γ are very close

to those in model 1, while ψ continues to be estimated at 0.05. On the other hand, the

estimates for b are 0.05 in both versions of the model, but these estimates are strongly

insignificant as indicated by the very low t-statistics. The magnitude of mispricing, as

indicated by the HJ distance, is very similar to the estimates obtained for model 1. Thus,

these results show that model 2 does not improve model 1 in terms of pricing the size-BM

portfolios. In the second-stage estimation, the point estimates for γ increase to values

around 100, while the estimates for the other two parameters are the same as in the first-

stage estimation. In particular, the estimates for b continue to be highly non-significant.

Thus, the highly imprecise estimates for b do not provide support for model 2.

Overall, these results show that these two alternative monetary models perform worse

than our benchmark model estimated in the last section, as indicated by the higher values

for the HJ distance. Moreover, some of the parameter estimates are not statistically

significant.
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A Derivation of the Euler equation

The investor’s intertemporal problem is given by

max
Ct,Mt,{ωj,t}Nj=1

Ut =

{
(1− δ)

(
C1−ε
t M ε

t

) 1−γ
θ + δ

[
Et

(
U1−γ
t+1

)] 1
θ

} θ
1−γ

(A.1)

s.t. Wt+1 = Rw,t+1

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

)
, (A.2)

Rw,t+1 =
N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1, (A.3)

θ ≡ (1− γ)ψ

ψ − 1
.

This problem can be represented in a dynamic programming setting as

J (Wt) ≡ max
Ct,Mt,{ωj,t}Nj=1

{
(1− δ)

(
C1−ε
t M ε

t

) 1−γ
θ + δ

[
Et

(
J (Wt+1)

1−γ
)] 1

θ

} θ
1−γ

(A.4)

s.t. Wt+1 = Rw,t+1

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

)
, (A.5)

Rw,t+1 =
N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1. (A.6)

The first-order conditions relative to Ct and Mt are given respectively by

(1− ε)C
1−γ
θ

(1−ε)−1
t M

ε 1−γ
θ

t =
δ

1− δ

[
Et

(
J (Wt+1)

1−γ
)] 1

θ
−1

Et
[
J (Wt+1)

−γ JW (Wt+1)Rw,t+1

]
,

(A.7)

and

εC
1−γ
θ

(1−ε)
t M

ε 1−γ
θ
−1

t

Rf,t+1

Rf,t+1 − 1
=

δ

1− δ

[
Et

(
J (Wt+1)

1−γ
)] 1

θ
−1

Et
[
J (Wt+1)

−γ JW (Wt+1)Rw,t+1

]
.

(A.8)

By combining the two first-order conditions we obtain the standard portfolio balance

relationship:

Ct =
1− ε
ε

Rf,t+1 − 1

Rf,t+1
Mt. (A.9)

This equation postulates that the flow of services of real balances holdings—as measured by

the total opportunity cost of money holdings—is equal to the consumption flow. Similarly

to Epstein and Zin (1991), let’s assume that the value function is proportional to wealth
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in the following way:

J (Wt) = φtWt. (A.10)

By substituting (A.10) in (A.7), using both the law of iterated expectations and the

intertemporal budget constraint (A.5), and rearranging, we have:

C
1−γ
θ

(1−ε)−1
t M

ε 1−γ
θ

t =
δ

1− δ
1

1− ε

[
Et

(
J (Wt+1)

1−γ
)] 1

θ

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

)−1
.

(A.11)

Moreover, the value function in (A.4) can be rearranged, leading to

J (Wt)
1−γ
θ − (1− δ)

(
C1−ε
t M ε

t

) 1−γ
θ = δ

[
Et

(
J (Wt+1)

1−γ
)] 1

θ
. (A.12)

By substituting (A.12) in (A.11), and after some tedious algebra, we obtain the explicit

functional form for the value function,

J (Wt) = (1− δ)
θ

1−γ (1− ε)
θ

1−γ

(
Ct
Wt

)1− θ
1−γ
(
Mt

Ct

)ε
Wt = φtWt, (A.13)

φt ≡ (1− δ)
θ

1−γ (1− ε)
θ

1−γ

(
Ct
Wt

)1− θ
1−γ
(
Mt

Ct

)ε
,

thus confirming the previous guess. By substituting (A.13) in (A.11), we derive the Euler

equation for the return on the market portfolio:

1 = Et

δθ (Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ) Wt+1

Wt − Ct −
Rf,t+1−1
Rf,t+1

Mt

θ
⇔

1 = Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
R
θ

w,t+1

]
. (A.14)

If the return on total wealth is rewritten as Rw,t+1 =
∑N

j=1 ωj,t (Rj,t+1 −Rr,t+1) +

Rr,t+1, the first-order condition with respect to ωj,t is given by

Et
[
J (Wt+1)

−γ JW (Wt+1) (Rj,t+1 −Rr,t+1)
]

= 0, (A.15)
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and by using (A.5), (A.13), and the definition of θ, leads to

Et

[
C

(1−γ)(1−ε)−θ
t+1 M

ε(1−γ)
t+1 W θ−1

t+1 (Rj,t+1 −Rr,t+1)
]

= 0⇔

Et

[
C

(1−γ)(1−ε)−θ
t+1 M

ε(1−γ)
t+1 Rθ−1w,t+1 (Rj,t+1 −Rr,t+1)

]
= 0. (A.16)

By multiplying both terms of Equation (A.16) by δθC
−(1−γ)(1−ε)+θ
t M

−ε(1−γ)
t ωj,t and

summing over N returns, leads to

Et

δθ (Ct+1

Ct

)(1−γ)(1−ε)−θ (
Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1

N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1)

 = 0. (A.17)

If we notice that
∑N

j=1 ωj,t (Rj,t+1 −Rr,t+1) = Rw,t+1 −Rr,t+1, it follows that

Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθw,t+1

]
=

= Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1Rr,t+1

]
⇔

Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθw,t+1

]
=

= Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1

]
Rr,t+1, (A.18)

where the last equality comes from the assumption that Rr,t+1 is risk-free. By substituting

(A.14) into (A.18), we have the following Euler equation for the real interest rate:

1 = Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1

]
Rr,t+1. (A.19)

Moreover, by rearranging Equation (A.17), and using Equation (A.19), we have the
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Euler equation for an arbitrary risky return, Rj,t+1:

N∑
j=1

ωj,t Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1 (Rj,t+1 −Rr,t+1)

]
= 0⇔

Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1 (Rj,t+1 −Rr,t+1)

]
= 0⇔

Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1Rj,t+1

]
=

= Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1Rr,t+1

]
⇔

Et

[
δθ
(
Ct+1

Ct

)(1−γ)(1−ε)−θ (Mt+1

Mt

)ε(1−γ)
Rθ−1w,t+1Rj,t+1

]
= 1. (A.20)

Finally, we can use the portfolio balance relationship (A.9) to obtain the representations

of the SDF with the nominal interest rate growth as a factor:

Et

δθ (Ct+1

Ct

)1−γ−θ
 Rf,t+2−1

Rf,t+2

Rf,t+1−1
Rf,t+1

ε(γ−1)

Rθ−1w,t+1Rj,t+1

 = 1, (A.21)

Et

δθ (Ct+1

Ct

)1−γ−θ
 Rf,t+2−1

Rf,t+2

Rf,t+1−1
Rf,t+1

ε(γ−1)

Rθ−1w,t+1

Rr,t+1 = 1. (A.22)

B Intertemporal budget constraint

The intertemporal budget constraint (A.5) can be rewritten in a more intuitive way. By

combining Equations (A.5) and (A.6), we have,

Wt+1 =

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

) N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1

 , (B.23)

which can be rearranged as follows:

Wt+1 =
N∑
j=1

ωj,t

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

)
(Rj,t+1 −Rr,t+1)+(Wt − Ct)Rr,t+1−Mt

Rf,t+1 − 1

Rf,t+1
Rr,t+1.

(B.24)
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By noting that Rr,t+1 =
Rf,t+1

1+πt+1
, where πt+1 is the inflation rate, leads to

Wt+1 =
N∑
j=1

ωj,t

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

)
(Rj,t+1 −Rr,t+1)+(Wt − Ct −Mt)Rr,t+1+

Mt

1 + πt+1
.

(B.25)

Finally, by defining the absolute demands, ajt ≡ ωj,t
(
Wt − Ct −

Rf,t+1−1
Rf,t+1

Mt

)
, it follows:

Wt+1 =
N∑
j=1

ajtRj,t+1 +

Wt − Ct −Mt −
N∑
j=1

ajt

Rr,t+1 +
Mt

1 + πt+1
. (B.26)

C GMM formulas

The GMM system contains N + 3 moment conditions, with the first N sample moments

corresponding to the pricing errors for each of the N test returns:

gT (b) ≡

1

T

T∑
t=0



(Rj,t+1 −Rr,t+1)− γ0 − γcRj,t+1 (∆ct+1 − µc)− γfRj,t+1 (∆ft+1 − µf )−

γwRj,t+1 (rw,t+1 − µw)

∆ct+1 − µc

∆ft+1 − µf

rw,t+1 − µw

= 0,

i = 1, ..., N, (C.27)

where (µc, µf , µw) denote the means of (∆ct+1,∆ft+1, rw,t+1). The last three moment

conditions in system (C.27) allow us to estimate the factor means. Thus, the estimated

covariance risk prices from the first N moments account for the estimation error in the

factors’ means, as in Cochrane (2005) (Chapter 13), Yogo (2006), and Maio (2012).9 We

use one-sided p-values for the tests of individual significance of the risk prices since the

respective signs are constrained by theory, as stressed in Section 2 in the paper.

Following Cochrane (2005) and Maio and Santa-Clara (2012), the weighting matrix

9In the case of the benchmark specification that does not include a constant term, the GMM system is
obtained by setting γ0 = 0.
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associated with the GMM system (C.27) is given by

W =

W∗ 0

0 IK

 , (C.28)

where W∗ (N ×N) is the weighting matrix associated with the first N moments; 0 denotes

a conformable matrix of zeros; and IK denotes a K-dimensional identity matrix. In this

specification, W∗ is the weighting matrix for the first N moment conditions (corresponding

to the N pricing errors), while IK is the weighting matrix associated with the last K

orthogonality conditions that identify the factor means.

In the first-step GMM (OLS cross-sectional regression) W∗ corresponds to the identity

matrix, W∗ = IN , and in the second-step GMM (GLS cross-sectional regression), W∗ is

the inverse of the first (N ×N) block of the spectral density matrix, W∗ = S−1N .10

The parameter estimates, b̂, have variance formulas given by

Var(b̂) =
1

T
(d′Wd)−1d′WŜWd(d′Wd)−1, (C.29)

where d ≡ ∂gT (b)
∂b′ represents the matrix of moments’ sensitivities to the parameters, and Ŝ is

an estimator for the spectral density matrix, S, derived under the heteroskedasticity-robust

standard errors (White (1980)), that is, no lags of the moment functions are considered in

the computation of Ŝ.

The variance–covariance matrix for the moments from first-stage GMM is given by

Var
(
gT (b̂)

)
=

1

T

(
IN+K−d(d′Wd)−1d′W

)
Ŝ
(
IN+K−Wd(d′Wd)−1d′

)
, (C.30)

where both IN+K and W denote an identity matrix of N +K dimension. The first (N,N)

block of (C.30) denotes the covariance matrix of the pricing errors.

In computing the asymptotic standard errors of the preference parameter estimates,

θ̂ ≡
(
ψ̂, γ̂, ε̂

)′
, we use the delta method:

Var(θ̂) =
∂θ̂

∂b̂′
Var(b̂)

∂θ̂

∂b̂
, (C.31)

10Notice that the GLS cross-sectional regression does not correspond to a fully efficient GMM estimation,
since in this case, the weighting matrix would be the inverse of the full spectral density matrix, S−1.
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where b̂ ≡ (γ̂c, γ̂f , γ̂w)′ denotes the vector of risk price estimates. The matrix of derivatives,

∂θ̂

∂b̂′
, is given by

∂θ̂

∂b̂′
≡


∂ψ̂
∂γ̂c

∂ψ̂
∂γ̂f

∂ψ̂
∂γ̂w

∂γ̂
∂γ̂c

∂γ̂
∂γ̂f

∂γ̂
∂γ̂w

∂ε̂
∂γ̂c

∂ε̂
∂γ̂f

∂ε̂
∂γ̂w

 =


γ̂w−1
γ̂2c

0 − 1
γ̂c

1 0 1

γ̂f
(1−γ̂w−γ̂c)2

1
1−γ̂w−γ̂c

γ̂f
(1−γ̂w−γ̂c)2

 . (C.32)

D Bootstrap simulation

The asymptotic theory embedded in the GMM robust standard errors might suffer from

several problems in the current application. More specifically, the small sample size in

the time-series (181 observations) can imply that the asymptotic approximation is not

valid. This might be especially relevant in the second stage GMM, since the inverse of the

spectral density matrix is poorly behaved when the number of moments is high relative

to the number of observations. On the other hand, the moment functions might not be

distributed as a martingale difference sequence (MDS) as it is assumed in the standard

GMM theory used in this paper. In both cases, the asymptotic p-vales associated with

the t-statistics and J-test statistics will not be close to the true p-values. To account for

this problem, we conduct a bootstrap simulation to produce more robust (empirical) p-

values for the tests of individual significance of the parameters and also for the J-test. The

bootstrap simulation consists of 10,000 replications, and in each replication, the portfolio

return data and the factors are simulated independently, without imposing the asset pricing

model’s restrictions, that is, the data are simulated under the hypothesis that the model

is not true.

The bootstrap algorithm used in this paper consists of the following steps:

1. The model is estimated by first-stage GMM, and we save the consumption, interest

growth and market return risk prices, (γ̂c, γ̂f , γ̂w); the χ2-statistic; and the implied

estimates for the preference parameters, (ψ̂, γ̂, ε̂). We repeat the same procedure for

second-stage GMM.

2. In each replication m = 1, ..., 10, 000, we construct a pseudo-sample of excess returns
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and real returns for each asset (of size T ) by drawing with replacement,

{(Rj,t+1 −Rr,t+1)
m, t = smj1, s

m
j2, ..., s

m
jT }, j = 1, ..., N,

{Rmj,t+1}, t = smj1, s
m
j2, ..., s

m
jT }, j = 1, ..., N,

where the time indices smj1, s
m
j2, ..., s

m
jT are created randomly from the original time

sequence 1, ..., T . Notice that both the excess return and real return of a given asset

have the same time index.

3. For each replication m = 1, ..., 10, 000, we also construct an independent pseudo-

sample of the factors,

{∆cmt+1, t = rm1 , r
m
2 , ..., r

m
T },

{∆fmt+1, t = pm1 , p
m
2 , ..., p

m
T },

{rmw,t+1, t = qm1 , q
m
2 , ..., q

m
T },

where the time sequences (rm1 , r
m
2 , ..., r

m
T ), (pm1 , p

m
2 , ..., p

m
T ), and (qm1 , q

m
2 , ..., q

m
T ), are

mutually independent and also independent from smj1, s
m
j2, ..., s

m
jT .

4. In each replication, we estimate the CI-CAPM by first-stage GMM, but using the

artificial data rather than the original data. The moment conditions are given by

gT (b) ≡

1

T

T∑
t=0



(Rj,t+1 −Rr,t+1)
m − γmc Rmj,t+1

(
∆cmt+1 − µc

)
− γmf Rmj,t+1

(
∆fmt+1 − µf

)
−

γmw R
m
j,t+1

(
rmw,t+1 − µw

)
∆cmt+1 − µmc

∆fmt+1 − µmf
rmw,t+1 − µmw

= 0.

We estimate the individual factor risk prices, (γ̂mc , γ̂
m
f , γ̂

m
w ); the χ2-statistic, χ2m;

and the implied preference parameter estimates, (ψ̂m, γ̂m, ε̂m). In result, we have

empirical distributions of the factor risk prices; χ2 statistic; and preference parameter

estimates. We repeat the procedure for second-stage GMM.
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5. The empirical p-values associated with the risk prices (for a one-sided test) are com-

puted as

p(γc) = [#{γ̂mc ≥ γ̂c}]/10, 000,

p(γf ) = [#{γ̂mf ≤ γ̂f}]/10, 000,

p(γw) = [#{γ̂mw ≥ γ̂w}]/10, 000,

and the empirical p-value associated with the structural estimates are given by

p(γ) = [#{γ̂m ≥ γ̂}]/10, 000,

p(ψ) = [#{ψ̂m ≥ ψ̂}]/10, 000,

p(ε) = [#{ε̂m ≥ ε̂}]/10, 000.

The empirical p-value for the χ2-statistic is computed as

p(χ2) = [#{χ2m ≥ χ2}]/10, 000.

We accept H0 if p > α, and reject otherwise, where α is the nominal significance

level. We repeat the procedure for second-stage GMM.

E Derivation of model 1

The representative consumer intertemporal problem is given by

max
Ct,Mt,{ωj,t}Nj=1

Ut =

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
U1−γ
t+1

)] 1
θ

} θ
1−γ

(E.33)

s.t. Wt+1 = Rw,t+1

(
Wt − Ct −

Rf,t+1 − 1

Rf,t+1
Mt

)
,

Rw,t+1 =
N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1,

Ct ≤Mt.

It is understood that one of the risky assets is an asset which pays as dividend the
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lump sum transfer of the exogenous change in nominal money supply from the monetary

authority to the consumers. This approach has been used by others (see Tristani (2009)),

and it eases considerably the derivations. As is standard in the literature, we assume that

the cash in advance constraint is binding. It is not rational for a utility maximizer to hold

money and incur an opportunity cost if this cash is not for acquiring consumption goods.

Relaxing this assumption and introducing a Lagrange multiplier for the cash in advance

constraint will simply not be tractable, unless one puts more structure on the economy

(dynamics of exogenous processes) and uses approximations. In fact, the enormous liter-

ature on DSGE (Dynamic Stochastic General Equilibrium) models used by central banks

for conducting monetary policy rely on the MIUF setting (see Fernández-Villaverde (2010)

for a review on this literature).

This problem can be represented in a dynamic programming setting as

J (Wt) ≡ max
Ct,{ωj,t}Nj=1

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
J (Wt+1)

1−γ
)] 1

θ

} θ
1−γ

(E.34)

s.t. Wt+1 = Rw,t+1

[
Wt − Ct

(
1 +

Rf,t+1 − 1

Rf,t+1

)]
,

Rw,t+1 =
N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1.

The first order conditions relative to Ct is given by

(1− δ)C
1−γ
θ
−1

t = δ
[
Et

(
J (Wt+1)

1−γ
)] 1

θ
−1

Et

[
J (Wt+1)

−γ JW (Wt+1)Rw,t+1

(
1 +

Rf,t+1 − 1

Rf,t+1

)]
.

(E.35)

Similarly to Epstein and Zin (1991), let’s assume that the value function is proportional

to wealth:

J (Wt) = φtWt. (E.36)

By substituting (E.36) in (E.35), using the intertemporal budget constraint and the lin-

earity of conditional expectations, and rearranging, we have:

0 = (1− δ)C
1−γ
θ
−1

t − δ
[
Et

(
φ1−γt+1W

1−γ
t+1

)] 1
θ

1 +
Rf,t+1−1
Rf,t+1

Wt − Ct
(

1 +
Rf,t+1−1
Rf,t+1

) . (E.37)
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Moreover, the value function in (E.34) can be rearranged, leading to

φ
1−γ
θ

t W
1−γ
θ

t − (1− δ)C
1−γ
θ

t = δ
[
Et

(
φ1−γt+1W

1−γ
t+1

)] 1
θ
. (E.38)

By substituting (E.38) in (E.37), and after some tedious algebra, we obtain the explicit

functional form for the value function,

φt =

(
1 +

Rf,t+1 − 1

Rf,t+1

)− θ
1−γ

(1− δ)
θ

1−γ

(
Ct
Wt

)1− θ
1−γ

, (E.39)

thus confirming the previous guess. By substituting (E.39) in (E.37), we derive the Euler

equation for the return on the market portfolio:

1 = Et

δθ
1 +

Rf,t+2−1
Rf,t+2

1 +
Rf,t+1−1
Rf,t+1

−θ (Ct+1

Ct

)1−γ−θ
Rθw,t+1

 . (E.40)

By performing similar steps as in Appendix A above, the Euler equation for an arbitrary

risky return, Rj,t+1, is given by

1 = Et

δθ
1 +

Rf,t+2−1
Rf,t+2

1 +
Rf,t+1−1
Rf,t+1

−θ (Ct+1

Ct

)1−γ−θ
Rθ−1w,t+1Rj,t+1

 . (E.41)

F Derivation of model 2

The representative consumer intertemporal problem is given by

max
Ct,Mt,{ωj,t}Nj=1

Ut =

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
U1−γ
t+1

)] 1
θ

} θ
1−γ

(F.42)

s.t. Wt+1 = Rw,t+1

(
Wt − Ct − T (Ct,Mt)−

Rf,t+1 − 1

Rf,t+1
Mt

)
,

Rw,t+1 =

N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1.

It is again understood that one of the risky assets is an asset which pays as dividend the

lump sum transfer of the exogenous change in nominal money supply from the monetary

authority to the consumers.
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The function T (·) is the real transaction cost of real consumption. The usual assump-

tion for T (·) are that: T > 0, TC > 0, TM < 0, TCC ≤ 0, and TMM ≥ 0.

In order for the solution to be scale invariant we define the transaction cost function

as a function of the consumption to real balances ratio. Hence we rewrite the problem as

follows,

max
Ct,Mt,{ωj,t}Nj=1

Ut =

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
U1−γ
t+1

)] 1
θ

} θ
1−γ

(F.43)

s.t. Wt+1 = Rw,t+1

[
Wt − Ct

(
1 + τ

(
Ct
Mt

))
−
Rf,t+1 − 1

Rf,t+1
Mt

]
,

Rw,t+1 =

N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1,

where we assume that τ > 0, τ ′(·) > 0, and τ ′′(·) < 0. This problem can be represented in

a dynamic programming setting as

J (Wt) ≡ max
Ct,Mt,{ωj,t}Nj=1

{
(1− δ)C

1−γ
θ

t + δ
[
Et

(
J (Wt+1)

1−γ
)] 1

θ

} θ
1−γ

(F.44)

s.t. Wt+1 = Rw,t+1

[
Wt − Ct

(
1 + τ

(
Ct
Mt

))
−
Rf,t+1 − 1

Rf,t+1
Mt

]
Rw,t+1 =

N∑
j=1

ωj,t (Rj,t+1 −Rr,t+1) +Rr,t+1.

The first-order conditions relative to consumption, Ct, and real balances holdings, Mt,

are given by

0 = (1− δ)C
1−γ
θ
−1

t (F.45)

−δ
[
Et

(
J (Wt+1)

1−γ
)] 1

θ
−1

Et

[
J (Wt+1)

−γ JW (Wt+1)Rw,t+1

(
1 + τ

(
Ct
Mt

)
+
Ct
Mt

τ ′
(
Ct
Mt

))]
0 = Et

[
J (Wt+1)

−γ JW (Wt+1)Rw,t+1

(
C2
t

M2
t

τ ′
(
Ct
Mt

)
−
Rf,t+1 − 1

Rf,t+1

)]
(F.46)

From (F.45) and (F.46) we have,

C2
t

M2
t

τ ′
(
Ct
Mt

)
=
Rf,t+1 − 1

Rf,t+1
, (F.47)

which simply states that the marginal transaction cost savings from money holdings has
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to be equal to the respective opportunity cost.

As in Appendix E above, we assume that the value function is proportional to wealth,

J (Wt) = φtWt, (F.48)

and by substituting (F.48) in (F.45) and rearranging, we have:

0 = (1− δ)C
1−γ
θ
−1

t (F.49)

−δ
[
Et

(
φ1−γt+1W

1−γ
t+1

)] 1
θ

1 + τ
(
Ct
Mt

)
+ Ct

Mt
τ ′
(
Ct
Mt

)
Wt − Ct

(
1 + τ

(
Ct
Mt

))
− Rf,t+1−1

Rf,t+1
Mt

.

Moreover, the value function in (F.44) can be rearranged, leading to

J(Wt)− (1− δ)C
1−γ
θ

t = δ
[
Et

(
φ1−γt+1W

1−γ
t+1

)] 1
θ
. (F.50)

By substituting (F.50) in (F.49), and after some tedious algebra, we obtain the explicit

functional form for the value function,

φt =

C−1t Wt −
(

1 + τ
(
Ct
Mt

))
− Rf,t+1−1

Rf,t+1
C−1t Mt

1 + τ
(
Ct
Mt

)
+ Ct

Mt
τ ′
(
Ct
Mt

) + 1


θ

1−γ

(1− δ)
θ

1−γ
Ct
Wt

, (F.51)

thus confirming the previous guess. By substituting (F.51) in (F.49), we derive the Euler

equation for the return on the market portfolio:

1 = Et

δθ
 1 + τ

(
Ct
Mt

)
+ Ct

Mt
τ ′
(
Ct
Mt

)
1 + τ

(
Ct+1

Mt+1

)
+ Ct+1

Mt+1
τ ′
(
Ct+1

Mt+1

)
θ

C1−γ−θ
t+1

C1−γ−θ
t

Rθw,t+1

 . (F.52)

Following the same approach as in the previous appendix, the Euler equation for an arbi-

trary risky return, Rj,t+1, is given by

1 = Et

δθ
 1 + τ

(
Ct
Mt

)
+ Ct

Mt
τ ′
(
Ct
Mt

)
1 + τ

(
Ct+1

Mt+1

)
+ Ct+1

Mt+1
τ ′
(
Ct+1

Mt+1

)
θ

C1−γ−θ
t+1

C1−γ−θ
t

Rθ−1w,t+1Rj,t+1

 . (F.53)
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Table 1: Epstein–Zin model

This table reports the estimation and evaluation results for the following model:

E (Rj,t+1 −Rr,t+1) = γ0 + γc Cov (Rj,t+1,∆ct+1) + γw Cov (Rj,t+1, rw,t+1) .

The test assets consist of the value-weighted market return and equity portfolios. The equity

portfolios are the 25 size/book-to-market portfolios (Panel A) and 25 size/long term return reversal

portfolios (Panel B). The estimation procedure is first-stage GMM with equally weighted errors.

In everything else this table is identical to Table 2 in the paper.
Row γ0 γc γw χ2 R2

OLS MAE(%)
Panel A (SBM25)

1 240.51 34.40 −0.18 0.66
(1.71) (0.10)

2 2.60 60.86 −0.42 0.72
(2.69) (0.00)

3 258.50 −0.20 31.52 −0.18 0.66
(1.85) (−0.09) (0.14)

4 0.015 71.61 52.95 0.04 0.61
(1.77) (0.73) (0.00)

5 0.027 −0.71 57.25 0.02 0.65
(2.99) (−0.46) (0.00)

6 0.026 243.88 −3.25 32.84 0.23 0.55
(1 .55 ) (2.21) (−1 .42 ) (0.08)

Panel B (SLTR25)
1 273.14 25.08 −0.12 0.56

(1.83) (0.46)
2 2.86 57.64 −0.01 0.53

(2.96) (0.00)
3 63.93 2.20 48.48 0.00 0.52

(0.60) (1.25) (0.00)
4 0.014 113.55 43.69 0.13 0.49

(1 .37 ) (1.28) (0.01)
5 0.012 1.38 56.31 0.06 0.52

(1 .44 ) (0.89) (0.00)
6 0.019 185.39 −1.45 33.74 0.14 0.48

(1 .44 ) (1.78) (−0.61) (0.07)
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Table 2: Alternative macroeconomic factor models

This table reports the evaluation results for alternative macroeconomic factor models. The factor

models are the conditional C-CAPM from Lettau and Ludvigson (2001) (LL2001); the conditional

C-CAPM from Lustig and Van Nieuwerburgh (2005) (LVN2005); the model with durable consump-

tion from Yogo (2006) (Y2006); and the consumption-CAPM with lead consumption growth from

Parker and Julliard (2005) (PJ2005). The test assets consist of the 25 size/book-to-market port-

folios. The column χ2 indicates whether the model passes the χ2 test. The column R2
OLS denotes

the OLS cross-sectional R2. All the values are obtained from the original studies.
Model Sample R2

OLS Pass χ2 test
LL2001 1963.III–1998.III 0.70 yes

LVN2005 1952.I–2002.IV 0.68 not reported
Y2006 1951.I–2001.IV 0.94 yes
PJ2005 1963.III–1999.IV 0.66 no

Table 3: Fama–French three factor model

This table reports the estimation and evaluation results for the Fama and French (1993) model.

The test assets consist of the value-weighted market return and equity portfolios. The portfolios are

the 25 size/book-to-market portfolios (Panel A) and the 25 size/long term return reversal portfolios

(Panel B). In row 1 (2) the models are estimated without (with) an intercept. The column labeled

γ0 show the point estimates for the intercept in the estimation with first-stage GMM. Below the

intercept estimates are reported the asymptotic GMM robust t-statistics (in parenthesis). The

column J presents the levels (first line) and associated asymptotic p-values (second line) for the χ2

statistic. The column R2
OLS denotes the OLS cross-sectional R2. The column R2

WLS represents the

WLS cross-sectional R2. MAE(%) denotes the average absolute pricing error from first-stage GMM.

The sample is 1963:III–2008:III. Italic, underlined, and bold numbers denote statistical significance

at the 10%, 5%, and 1% levels, respectively.
γ0 R2

OLS MAE(%) J R2
WLS

Panel A (SBM25)
1 0.74 0.28 49.14 0.56

(0.00)
2 0.037 0.79 0.25 42.35

(3.18) (0.01)
Panel B (SLTR25)

1 0.74 0.23 61.43 0.69
(0.00)

2 0.011 0.76 0.24 56.23
(0.95) (0.00)
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Table 4: Augmented factor model

This table reports the estimation and evaluation results for the following model:

E (Rj,t+1 −Rr,t+1) = γc Cov (Rj,t+1,∆ct+1)+γd Cov (Rj,t+1,∆dt+1)+γf Cov (Rj,t+1,∆ft+1)+γw Cov (Rj,t+1, rw,t+1) .

The test assets consist of the value-weighted market return and equity portfolio returns. The

portfolios are the 25 size/book-to-market portfolios (Panel A) and the 25 size/long term return

reversal portfolios (Panel B). The estimation procedure is first-stage GMM with equally weighted

errors. The interest rate proxies used to compute the interest growth factor are the three-month

Treasury bill rate (TB) and the Fed funds rate (FED). The first line associated with each row

presents the covariance risk price estimates and the second line reports the asymptotic GMM

robust t-statistics (in parenthesis). The column χ2 presents the levels (first line) and associated

asymptotic p-values (second line) for the χ2 statistic. The column R2
OLS denotes the OLS cross-

sectional R2. MAE(%) denotes the average absolute pricing error. The sample is 1963:III–2007:IV.

Italic, underlined, and bold numbers denote statistical significance at the 10%, 5%, and 1% levels,

respectively.
Row γc γd γf γw χ2 R2

OLS MAE(%)
Panel A (SBM25)

TB 236.06 102.00 −11.79 −1.01 19.84 0.69 0.28
(1.65) (0.50) (−2.16) (−0.39) (0.59)

FED 312.99 −5.04 −10.27 −3.23 22.81 0.65 0.35
(2.25) (−0.02) (−2.99) (−1.24) (0.41)

Panel B (SLTR25)
TB 384.30 −115.58 −8.81 −1.15 18.30 0.58 0.29

(1.84) (−0.57) (−2.79) (−0.41) (0.69)
FED 335.08 −73.17 −7.37 −2.17 23.37 0.63 0.28

(1 .63 ) (−0.41) (−2.31) (−0.75) (0.38)
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Table 5: CI-CAPM: future consumption growth

This table reports the estimation and evaluation results for the following model:

E (Rj,t+1 −Rr,t+1) = γc Cov (Rj,t+1,∆ct+4) + γf Cov (Rj,t+1,∆ft+1) + γw Cov (Rj,t+1, rw,t+1) .

The test assets consist of the value-weighted market return and equity portfolio returns. The

portfolios are the 25 size/book-to-market portfolios (Panel A) and the 25 size/long term return

reversal portfolios (Panel B). Consumption growth is measured over the next four quarters. The

estimation procedure is first-stage GMM with equally weighted errors. The interest rate proxies

used to compute the interest growth factor are the three-month Treasury bill rate (TB) and the

Fed funds rate (FED). The first line associated with each row presents the covariance risk price

estimates and the second line reports the asymptotic GMM robust t-statistics (in parenthesis). The

column χ2 presents the levels (first line) and associated asymptotic p-values (second line) for the

χ2 statistic. The column R2
OLS denotes the OLS cross-sectional R2. MAE(%) denotes the average

absolute pricing error. The sample is 1963:III–2008:III. Italic, underlined, and bold numbers denote

statistical significance at the 10%, 5%, and 1% levels, respectively.
Row γc γf γw χ2 R2

OLS MAE(%)
Panel A (SBM25)

TB 111.52 −11.18 −3.09 13.67 0.65 0.34
(2.69) (−1 .58 ) (−0.89) (0.94)

FED 115.26 −9.95 −5.11 15.37 0.66 0.35
(2.25) (−2.23) (−1 .33 ) (0.88)

Panel B (SLTR25)
TB 77.89 −6.35 −1.04 29.81 0.46 0.32

(2.23) (−2.18) (−0.46) (0.15)
FED 81.38 −6.13 −2.40 28.09 0.57 0.28

(2.02) (−2.33) (−0.92) (0.21)
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Table 6: CI-CAPM: alternative portfolios

This table reports the estimation and evaluation results for the following model:

E (Rj,t+1 −Rr,t+1) = γc Cov (Rj,t+1,∆ct+1) + γf Cov (Rj,t+1,∆ft+1) + γw Cov (Rj,t+1, rw,t+1) .

The test assets consist of the value-weighted market return and equity portfolios. The equity

portfolios are 10 size plus 10 book-to-market portfolios (Panel A); 10 size portfolios plus 10 portfolios

sorted on the O-score measure of financial distress (Panel B); 10 size plus 10 portfolios sorted on

total accruals (Panel C); 10 size plus 10 asset growth portfolios (Panel D); and 10 size plus 5 industry

portfolios (Panel E). The estimation procedure is first-stage GMM with equally weighted errors.

The interest rate proxies used to compute the interest growth factor are the three-month Treasury

bill rate (TB) and the Fed funds rate (FED). The first line associated with each row presents

the covariance risk price estimates and the second line reports the asymptotic GMM robust t-

statistics (in parenthesis). The column χ2 presents the levels (first line) and associated asymptotic

p-values (second line) for the χ2 statistic. The column R2
OLS denotes the OLS cross-sectional R2.

MAE(%) denotes the average absolute pricing error. In Panel A, the sample is 1963:III–2008:III,

in Panels B to D the sample is 1972:II–2008:III, and in Panel E the sample is 1963:III–2007:IV.

Italic, underlined, and bold numbers denote statistical significance at the 10%, 5%, and 1% levels,

respectively.
Row γc γf γw χ2 R2

OLS MAE(%)
Panel A (S10+BM10)

TB 180.51 −7.23 0.73 16.52 0.77 0.17
(1 .54 ) (−2.06) (0.42) (0.56)

FED 192.77 −6.41 −0.77 18.27 0.86 0.14
(1.24) (−1 .51 ) (−0.42) (0.44)

Panel B (S10+OS10)
TB 202.85 −11.76 1.42 13.33 0.51 0.34

(1.00) (−1.71) (0.57) (0.77)
FED 122.21 −7.25 −0.22 30.53 0.15 0.43

(0.79) (−1.65) (−0.12) (0.03)
Panel C (S10+TA10)

TB 91.78 −5.49 1.99 23.81 0.55 0.21
(1 .31 ) (−1.88) (1 .34 ) (0.16)

FED 85.69 −4.72 0.78 29.46 0.54 0.20
(1.18) (−1.79) (0.59) (0.04)

Panel D (S10+AG10)
TB 154.64 −6.89 1.52 24.52 0.35 0.30

(1 .32 ) (−2.58) (0.79) (0.14)
FED 238.58 −6.25 −0.91 24.43 0.33 0.28

(1 .39 ) (−1.73) (−0.39) (0.14)
Panel E (S10+IND5)

TB 168.01 −5.16 0.48 22.09 0.67 0.20
(0.86) (−1 .28 ) (0.22) (0.05)

FED 119.07 −3.26 0.45 26.74 0.63 0.20
(0.68) (−0.91) (0.18) (0.01)
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Table 7: CI-CAPM: beta representation

This table reports the estimation and evaluation results for the following model:

E (Rj,t+1 −Rr,t+1) = λcβj,c + λfβj,f + λwβj,w.

The test assets consist of the value-weighted market return and equity portfolio returns. The

portfolios are the 25 size/book-to-market portfolios (Panel A) and the 25 size/long term return

reversal portfolios (Panel B). The estimation procedure is the time-series/cross-sectional regressions

approach. The interest rate proxies used to compute the interest growth factor are the three-

month Treasury bill rate (TB) and the Fed funds rate (FED). The first line associated with each

row presents the beta risk price estimates and the the second line reports the t-statistics based

on Shanken standard errors (in parenthesis). The column χ2 presents the levels (first line) and

associated asymptotic p-values (second line) for the χ2 statistic. The column R2
OLS denotes the OLS

cross-sectional R2. MAE(%) denotes the average absolute pricing error. The sample is 1963:III–

2008:III. Italic, underlined, and bold numbers denote statistical significance at the 10%, 5%, and

1% levels, respectively.
Row λc λf λw χ2 R2

OLS MAE(%)
Panel A (SBM25)

TB 0.12 −27.30 1.09 14.34 0.84 0.23
(0.39) (−2.17) (1 .34 ) (0.92)

FED 0.23 −22.01 0.87 16.63 0.75 0.29
(0.77) (−2.19) (1.08) (0.83)

Panel B (SLTR25)
TB 0.18 −12.50 1.52 39.15 0.64 0.26

(0.60) (−2.46) (2.21) (0.02)
FED 0.28 −12.02 1.32 32.39 0.67 0.26

(0.78) (−2.29) (1.92) (0.09)
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Table 8: Euler equations: SBM25

This table reports the estimation and evaluation results for the following model:

E

(Ct+1

Ct

)1−γ−θ
 Rf,t+2−1

Rf,t+2

Rf,t+1−1

Rf,t+1

ε(γ−1)

Rθ−1
w,t+1(Rj,t+1 −Rr,t+1)

 = 0.

The test assets consist of the value-weighted market return and the 25 size/book-to-market port-

folios. The estimation procedure is by two-step GMM with the Hansen and Jagannathan (1997)

weighting matrix in the first-stage estimation. The interest rate proxies used to compute the inter-

est growth factor are the three-month Treasury bill rate (TB) and the Fed funds rate (FED). The

first line associated with each row presents the parameter estimates and the second line reports

the asymptotic GMM robust t-statistics (in parenthesis). The column χ2 presents the level (first

line) and associated p-value (in parenthesis) for the J-test. HJ denotes the Hansen-Jagannathan

distance. The sample is 1963:III–2008:III. Italic, underlined, and bold numbers denote statistical

significance at the 10%, 5%, and 1% levels, respectively.
γ ψ ε χ2 HJ
Panel A (First-stage)

TB 70 0.05 0.05 0.448
(2.67) (3.07) (2.27)

FED 78.50 0.05 0.05 0.429
(2.58) (3.06) (2.76)

Panel B (Second-stage)
TB 97.50 0.05 0.05 58.72

(3.53) (4.34) (3.48) (0.00)
FED 104.50 0.05 0.05 57.47

(3.49) (4.52) (3.90) (0.00)
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Table 9: Euler equations: SLTR25

This table reports the estimation and evaluation results for the following model:

E

(Ct+1

Ct

)1−γ−θ
 Rf,t+2−1

Rf,t+2

Rf,t+1−1

Rf,t+1

ε(γ−1)

Rθ−1
w,t+1(Rj,t+1 −Rr,t+1)

 = 0.

The test assets consist of the value-weighted market return and the 25 size/long term return reversal

portfolios. The estimation procedure is by two-step GMM with the Hansen and Jagannathan (1997)

weighting matrix in the first-stage estimation. The interest rate proxies used to compute the interest

growth factor are the three-month Treasury bill rate (TB) and the Fed funds rate (FED). The

first line associated with each row presents the parameter estimates and the second line reports

the asymptotic GMM robust t-statistics (in parenthesis). The column χ2 presents the level (first

line) and associated p-value (in parenthesis) for the J-test. HJ denotes the Hansen-Jagannathan

distance. The sample is 1963:III–2008:III. Italic, underlined, and bold numbers denote statistical

significance at the 10%, 5%, and 1% levels, respectively.
γ ψ ε χ2 HJ
Panel A (First-stage)

TB 60 0.05 0.05 0.476
(2.46) (2.67) (1.86)

FED 62.50 0.05 0.05 0.462
(2.46) (2.47) (2.07)

Panel B (Second-stage)
TB 85.50 0.05 0.05 62.28

(3.05) (3.73) (3.11) (0.00)
FED 89.50 0.05 0.05 54.00

(3.05) (3.77) (3.37) (0.00)

Table 10: Euler equations: Model 1

This table reports the estimation and evaluation results for the following model:

E

(Ct+1

Ct

)1−γ−θ
1 +

Rf,t+2−1

Rf,t+2

1 +
Rf,t+1−1

Rf,t+1

−θ Rθ−1
w,t+1(Rj,t+1 −Rr,t+1)

 = 0.

The test assets consist of the value-weighted market return and the 25 size/book-to-market port-

folios. The estimation procedure is by two-step GMM with the Hansen and Jagannathan (1997)

weighting matrix in the first-stage estimation. The interest rate proxies used to compute the inter-

est growth factor are the three-month Treasury bill rate (TB) and the Fed funds rate (FED). The

first line associated with each row presents the parameter estimates and the second line reports

the asymptotic GMM robust t-statistics (in parenthesis). The column χ2 presents the level (first

line) and associated p-value (in parenthesis) for the J-test. HJ denotes the Hansen-Jagannathan

distance. The sample is 1963:III–2008:III. Italic, underlined, and bold numbers denote statistical

significance at the 10%, 5%, and 1% levels, respectively.
γ ψ χ2 HJ

Panel A (First-stage)
TB 69 0.05 0.476

(2.59) (3.09)
FED 68 0.05 0.478

(2.57) (3.06)
Panel B (Second-stage)

TB 99.50 0.05 61.47
(4.34) (4.28) (0.00)

FED 98 0.05 61.63
(4.31) (4.23) (0.00)
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Table 11: Euler equations: Model 2

This table reports the estimation and evaluation results for the following model:

E

(Ct+1

Ct

)1−γ−θ
1 + a

1
1+b b

−b
1+b (1 + b)

[
Rf,t+2−1

Rf,t+2

] b
1+b

1 + a
1

1+b b
−b
1+b (1 + b)

[
Rf,t+1−1

Rf,t+1

] b
1+b


−θ

Rθ−1
w,t+1(Rj,t+1 −Rr,t+1)

 = 0.

The test assets consist of the value-weighted market return and the 25 size/book-to-market port-

folios. The estimation procedure is by two-step GMM with the Hansen and Jagannathan (1997)

weighting matrix in the first-stage estimation. The interest rate proxies used to compute the inter-

est growth factor are the three-month Treasury bill rate (TB) and the Fed funds rate (FED). The

first line associated with each row presents the parameter estimates and the second line reports

the asymptotic GMM robust t-statistics (in parenthesis). The column χ2 presents the level (first

line) and associated p-value (in parenthesis) for the J-test. HJ denotes the Hansen-Jagannathan

distance. The sample is 1963:III–2008:III. Italic, underlined, and bold numbers denote statistical

significance at the 10%, 5%, and 1% levels, respectively.
γ ψ b χ2 HJ
Panel A (First-stage)

TB 69.5 0.05 0.05 0.476
(2.72) (3.09) (0.05)

FED 69 0.05 0.05 0.477
(2.87) (3.02) (0.06)

Panel B (Second-stage)
TB 100 0.05 0.05 61.44

(4.14) (4.29) (0.09) (0.00)
FED 99 0.05 0.05 61.49

(3.96) (4.23) (0.10) (0.00)
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