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A Data sources, data collection and data cleaning

A.1 The Labor Productivity dataset

The Labor Productivity data comes from three different sources Fig. 1 shows the times
series (only the slopes are comparable, except for the Source Book data in which all
series are expressed in person-hours per pound of aircraft).

Searle (1945). We extracted the data from Tables 1, 2, 3, 6 and 7. Victory and Cargo
vessels are indices constructed from multiple models. A summary of the products we
have information about is in the table below.

Product Start date End date T Total prod.
Liberty Ships Dec-41 Dec-44 37 2458
Victory Ships Feb-44 Dec-44 11 199
Cargo Vessels Apr-43 Dec-44 21 160
Tankers Vessels Jun-43 Dec-44 19 308
Destroyer Escort Apr-43 Nov-44 20 351

Table 1: Ships data extracted from Searle (1945)

The Source Book. The report that provided Alchian with the data used in his study
is available in the form of a digitized PDF1. To create this dataset, we transcribed Ta-
bles 3 and 4 in this report, Source Book of World War II Basic Data - Airframe Industry,
Volume 1: Direct Man-Hours - Progress Curves (Dayton, OH: Army Air Forces, Air Ma-
teriel Command, January 1950) (Army Air Forces 1947) The Source Book presented sig-
nificant transcription challenges. Some of the digits were illegible or had been clearly
switched during the transcription process with digits similar in appearance, like an 8
for a 0. Luckily, Tables 3 and 4 represent the same data – person-hours per airframe
pound and cumulative production – about the same models of airplanes. Table 3 or-
ganizes this data principally by manufacturer and plant, while Table 4 organizes it
by airplane model. Therefore, the two tables could be compared to one another to
corroborate interpretations of certain entries that were hard to read or seemed clearly
wrong in one table or another. In the rare cases where it was impossible to tran-
scribe the data faithfully after consulting both tables, we dropped the observations.
In one case, the Consolidated Vultee San Diego B-24 August 1943 value for person-
hours was changed from a clear 0.07 to a much more plausible 0.77 (the series read
. . .0.88,0.84,0.84,0.07,0.67,0.65,0.65 . . . ).

The file gives value of cumulative production, from which we deduce production
as the difference in cumulative production. In one case, the B-17 from Seattle, cu-
mulative production was available at the earliest date, January 1940. The series reads

1https://apps.dtic.mil/dtic/tr/fulltext/u2/a800199.pd
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45,49,54, . . . . Clearly, 45 was not the monthly production in January (see Mishina
(1999)), so we just assumed that production in January was the same as in February, 4
units.

Finally, there is a page from Table 3 missing in the available PDF (page 42). Un-
fortunately, because of the organization of the PDF, it is impossible to know what data
about which manufacturers was on this missing page.
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Figure 1: Time series of labor productivity from all included sources.

Table 2 shows some examples of aircraft-plant pairs from this source. We have cho-
sen the examples to show that some plants produced multiple aircrafts, some aircraft
were produced by multiple plants, and the total number of units produced and time
span of production varied widely.

Ford Archival Records. The Ford Motor Company’s archives are held in a dedicated
research center, The Benson Ford Research Center in Dearborn, MI. In the Charles
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Product Start date End date T Total prod.
B-17, Douglas, Long Beach Oct-42 Jul-45 34 3666
B-17, Lockheed, Burbank Jun-42 Jul-45 38 2750
C-69, Lockheed, Burbank May-44 Sep-45 17 16
A-20, Douglas, Tulsa Oct-44 Jun-45 9 1085
SB2A, Brewster, Johnsville and L.I.C. Jan-43 May-44 17 302
R-5, Sikorsky, Bridgeport Jan-45 Aug-45 8 11

Table 2: Examples of data extracted from the “Source Book”

La Croix papers, there is a copy of a publication called Record of War Effort: Con-
tributions of the Ford Motor Company in the Development of Production for Victory
(Detroit, MI: Ford Motor Company, n.d. 2 vol.). Volume 2 describes the monthly
person-hours-per-unit requirements for what appears to be all of the products Ford
produced throughout World War II. As this seems to have been an internal publi-
cation, there are no sources for this data beyond the implication that they are from
extensive internal auditing and record keeping during the war. Table 3 summarizes
the data extracted for Ford’s archives.

A.2 The OMPUS-USMH dataset

This section presents detailed information about the two principal components of an
original data set we assembled for this research: the Official Munitions Production of
the United States and United States Munitions Handbook.

The PDF of the Official Munitions Production of the United States (OMPUS) is easily
available2, and contains data on production volume. This document is a Special Re-
lease, edited in 1947, covering each month from July 1940 (“the beginning of the war
program”) through August 1945 (“the last month of actual fighting against Japan”).
Footnotes often make references to data being only a partial coverage, often because
data from some component agencies was not available. In a few cases (experimental
aircraft), we also have data from January to June 1940. This source was easy to read.
We omitted Canadian data, and products with only one or two values of production.
For ships, we took the value in displacement tons instead of units. For a few products,
some of the data was available as aggregate for typically 6 months or a year. In these
cases we attributed to each month a pro rata value.

The United States Munitions Handbook (USMH) is a formerly classified publication
that was located in the Policy Documentation File (Record Group 179, Stack Group
570) by one of us (D.G.) on a research trip to the National Archives in College Park, MD
in April 2015. The transcription from photographs of the document did not present
any significant challenges. We note here that for airplanes, the cost data often appears
to refer to particular plants, whereas the reference OMPUS production is product-
level.

The USMH contains data on “early” and “late” cost for many products. These
products are named, and a reference to the OMPUS is provided in the form a page

2http://cgsc.contentdm.oclc.org/cdm/ref/collection/p4013coll8/id/3332
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Product Start date End date T Total prod.
Universal Carrier GAU Mar-43 May-45 27 13893
Cargo Truck - OTBA Jul-43 Oct-44 16 2218
CG-13A - Glider (42Places) - GBG Jan-44 Dec-44 12 87
MX Engine Assembly Sep-44 Jul-45 11 2378
Aircraft Generators – GAL P-1 and R-1 Dec-42 Jul-45 32 87390
British Engine – GAE Jun-42 May-43 12 17593
British Axel – GAE Jun-42 May-43 12 17639
Bomb Service GTBB Apr-43 Sep-43 6 50
Bomb Service GTBC Sep-43 Oct-44 14 4701
Cargo Truck - GTB (Less Winch) Jun-42 Mar-43 10 5007
Stake Truck – G8T Mar-43 Mar-44 13 7198
Cargo Truck - G8T Sep-42 May-45 33 70420
Tank Engine GAA Jul-42 Aug-45 38 21478
Turbo Supercharger - B2 and B22 Aug-42 Oct-44 27 52281
Bomb Service GTBS Nov-42 Jul-44 21 4679
MX Field Assembly Sep-44 Aug-45 12 2579
Jeep GP and GPW Feb-41 Jul-45 54 283664
Tractor Truck G8T Dec-43 Jan-44 2 314
Armored Car M-8 - GAK Mar-43 May-45 27 8524
Cargo Truck - GTB (With Winch) Jul-42 Mar-43 9 995
Tank Engine GAF Nov-42 Sep-44 23 3908
Tank Engine GAN Aug-43 Dec-44 17 380
Armored Car M-20 GBK May-43 Jun-45 26 3773

Table 3: Data extracted from Ford’s archives

and column number. This provided an uncontroversial match for the vast majority of
products, although in some cases the USMH seems to refer to more models than the
OMPUS. In a few cases, the match using the page and column number was erroneous,
and we used names instead. In a few other cases, product detail was higher in the
USMH than in the OMPUS, so that different cost changes were attributed to the same
production time series. We did not transcribe these cases.

One specific issue with the matched OMPUS-USMH data is that the USMH does
not provide a very clear definition of the cost data (“Standard Dollar Weight”). The
Foreword to the USMH states: “The cost figures shown for the separate items are the
standard costs which were used in computation of the War Production Board (WPB)
index of war production and the Production Statement. They are included in this re-
port to provide the reader with a proper perspective on the magnitude and relative sig-
nificance of the items involved. Both an “early” and a “late” cost are shown wherever
possible, comparison of the two costs oftentimes provides a clue to the tremendous
advances in manufacturing techniques which took place in some munitions areas, en-
abling costs to be cut sharply even during a period of generally rising prices.” In short,
we think the Standard Dollar Weight represents a nominal dollar amount reported to
understand product-level inflation over the course of the war. However, it could be
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that this is already deflated, so we chose not to deflate the data further in our main
text analysis. We note that production in World War II was conducted in a climate
of price controls and the rationing of materials and labor (Evans 1982). Despite this
inflation was 5% in 1941, 10% in 1942 and averaged 6% annually for the remainder
of the war (U.S. Bureau of Economic Analysis 2017).
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Figure 2: Distribution of the “early” month, “late” month, and number of months in between.

A second issue with the dataset is that we had to modify the dates with which the
“early” and “late” costs are associated. While the dates of the early and late costs
are reported for each product in the USMH, these dates are always the same in each
product category. However, in the explanatory notes (e.g. USMH p.104, explanatory
notes for Ordnance and Automotive Vehicles), an important clarification is that “the
cost of the item as of the last month of production has been shown as the final cost,
while for items produced after 1942, the dollar value shown for the earliest month of
production has been listed as the original cost”. Therefore, every time we found that a
product was not yet in production at the date of early cost, we corrected the date of the
early cost as the month in which production started. Every time we found a product
for which production had stopped before the date of the late cost, we corrected the
date of the late cost as the month in which production stopped3. Fig. 2 shows the
distribution of the corrected Early and Late dates, as well their difference. For a large
number of products we have a start date in August 1942 and an end date in August
1945, 36 months later.

Fig. 3 shows the USMH-OMPUS data (only the slopes are comparable, and “unit”
costs may refer to units, pairs, thousands, or millions of units depending on the prod-
uct).

3For 46 Ordnance items (OMPUS ref. 177/2 to 188/7) the Early date reported was the implausible
April 1945, but the explanatory notes report that “The August 1942 cost was used as the original
production cost for both Army and Navy items” so we edited this subset accordingly. For 341 products,
the late date was September 1945 but our production data stops in August 1945, so we assumed that
the Late cost was for August. For 2 products, production starts on the month of the “Late” date, so we
removed them.
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Figure 3: Experience curves constructed by matching USMH and OMPUS.

A.3 The Contract Prices dataset

We collected the Contract Prices data from Crawford & Cook (1952) (tables PR-2, PR-3
and PR-20), who compiled the estimated value of procurement from various sources,
using a sample of products. “For many groups the sample covered more than 90
percent of the total values”.

The production index was computed as follows: “Quantities of the sample items
delivered each month were multiplied by a weighted unit cost for the item to de-
rive the dollar value of the sample. The unit cost figure for each item was based on
the contract or purchase price plus allowances for overhead, the cost of Government-
furnished equipment and materiel and any other costs incurred in connection with
the item by the War Department.” Most importantly, these time series represent phys-
ical volume, not the product of physical volume and prices. The relevant excerpt from
Crawford & Cook (1952) is footnote a on p. 20 “Data were computed from physi-
cal quantities delivered and standard dollar weights which for most items were unit
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costs as of 1945. The figures therefore reflect physical volume rather than cost to the
Government; they do not take into consideration price changes or contract renegoti-
ations.” The explanatory notes on p.86 further state that “The series was designed to
show relative magnitudes and trends in the physical volume of procurement deliver-
ies” Fig. 4 shows the data on production, clearly exhibiting a plateauing in 1943-44
and decrease in 1945.
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Figure 4: Estimated monthly rates of output between July 1st 1940 and July 31st 1945, total
and by main category, in millions of standard dollar weights. Source: Crawford & Cook (1952).

The monthly data starts in January 1942 for all series. However, for the War depart-
ment, the AAF and the aggregated ASF, quarterly data on production was available for
the previous 6 quarters (1940Q3-1941Q4). Because this information is useful for con-
structing experience, we used it as follows. For these three series, we constructed
monthly data for July 1940-December 1941 by attributing equally to each month the
quarterly production data. For the subservices, we computed the share of each subser-
vice in the ASF total for the first 6 months of 1942, and used these shares to calculate
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monthly production for the period July 1940-December 1941. Note that since price
data starts in January 1942, these assumptions are only useful for plotting Fig. 4, and
do not change our regression results. Similarly, the production data was not available
for the last four months for AAF. We computed the ratio of AAF to ASF in the previous
6 months (March to August 1945), and used this to estimate the values for AAF, and
thus for the Total War department as well, for September-December 1945.

The indices of contract price changes were computed as follows: “The items in-
cluded in these indices cover approximately 50 percent of the total value of War
Department procurement. They were selected to be representative of all principal
kinds of items purchased. The basic data employed were the contract prices for each
company supplying the item on the selected list. All successive prices in additional
contracts or revisions of existing contracts were recorded after necessary adjustments
were made for specification changes. The price data for all companies supplying a
given item were used to compute an index for that item after appropriate weights had
been assigned on the basis of relative importance in terms of physical volume”.

The explanatory notes also mention that “Individual item indices were combined
into group indices and, in turn, into technical service indices. These composites were
combined into a master Army Service Forces (ASF) Index, and a similar composite in-
dex on Army Air Forces (AAF) items was added to the Army Service Forces composite
to provide a War Department index. The indexes do not cover any items produced in
government-owned contractor operated plants, or, with the exception of the AAF in-
dex, items procured through cost-plus-a-fixed-fee contracts since such purchases were
to a degree noncompetitive and the contract terms were often such as to cause the
prices to be, incomparable with those of procurement through ordinary commercial
channels.” Fig. 5 shows the price indices for contract for various wartime agencies,
indicating an important decrease for almost every department, the exception being
the Quartermaster.

B Estimating prior experience

Estimating relevant prior experience for each of the product categories included in
our datasets was one of the greatest challenges we faced in writing this paper. In
order to create these estimates, we made a couple of assumptions about prior experi-
ence. First, we assumed that Americans gained most of their experience in producing
military-specific products (guns, munitions, etc.) during World War I. Therefore, we
were able to use the extensive statistical and primary sources available about WWI
output to create these estimates. Second, where a technology had both military and
civilian applications, we aggregated the WWI military output and rarer estimates of
civilian output, where possible. For civilian production, two sources were essential:
the Historical Statistics of the United States and history of science and technology books
about specific products such as radios and airplanes.

The OMPUS data is far more granular than the contract price data. Therefore, after
estimating initial experience for products included in the OMPUS data (Section B.1),
we present a crosswalk that aggregates the OMPUS-level estimates and matched them
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Figure 5: Quarterly Index of Contract Price Changes: 1942 - 1945 for War Department and
Component Agencies (October 1942 = 100). Source: Crawford & Cook (1952).

to the categories in the contract price data (Section B.2).

Main categ. Subcateg. ζ N War Dep.
Aircraft Bomber 0.21 15 Air Force
Aircraft Fighter 0.21 12 Air Force
Aircraft Reconnaissance (inc. Photographic) 0.21 1 Air Force
Aircraft Transport 0.21 8 Air Force
Aircraft Trainer 0.21 4 Air Force
Aircraft Communication 0.21 3 Air Force
Aircraft Special Purpose Aircraft 0.21 0 Air Force
Aircraft Gliders 0.21 0 Air Force
Aircraft Airships, Barrage Balloons, and Special De-

vices
0.21 0 Air Force

Aircraft Aircraft Engines 0.21 21 Air Force
Aircraft Aircraft Propellers 0.21 12 Air Force
Ships Combatant 1.21 7 Ships
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Ships Landing vessels 0.05 5 Ships
Ships Patrol 0.75 3 Ships
Ships Mine Craft 0.81 1 Ships
Ships Transports 0.05 0 Ships
Ships Dry Cargo 0.05 0 Ships
Ships Tankers 0.05 0 Ships
Ships Tender and Repair Vessels 0.05 1 Ships
Ships District Craft 0.05 1 Ships
Ships Other 0.05 3 Ships
Ships Maritime Commission Nonmilitary Vessels

Delivered to the Armed Forces
0.05 0 Ships

Ships Army Tugs and Barges 0.05 0 Ships
Ordnance Field Artillery 0.39 12 Ordnance
Ordnance Spare Canon, Tubes, and Recoil Mechanisms

for Field, Tank, and Self-Propelled Artillery
0.40 0 Ordnance

Ordnance Tank Guns and Howitzers 0.40 0 Ordnance
Ordnance Self-Propelled Guns and Howitzers 0.40 6 Ordnance
Ordnance Aircraft and Army Antiaircraft Guns 0.40 8 Ordnance
Ordnance Army Rocket Launchers 0.40 6 Ordnance
Ordnance Mortars 0.40 4 Ordnance
Ordnance Naval Surface Fire (Guns and Small Arms) 0.40 4 Ordnance
Ordnance Naval Antiaircraft and Dual-purpose (Guns

and Small Arms)
0.40 6 Ordnance

Ordnance Naval Rocket Launchers 0.40 0 Ordnance
Ordnance Small Arms 0.40 18 Ordnance
Ordnance Misc. Army Weapons and Ordnance Mat. 0.40 10 Quartermaster
Ordnance Misc. Navy Weapons and Ordnance Mat. 0.40 0 Ordnance
Ordnance Fire Control (excl. radar) 0.40 14 Ordnance
Ordnance Artillery and Tank Gun 0.35 61 Ordnance
Ordnance Aircraft (Ammunition) 0.35 7 Ordnance
Ordnance Army Antiaircraft 0.35 6 Ordnance
Ordnance Mortar Shells 0.35 13 Chemical
Ordnance Army Rockets 0.35 6 Ordnance
Ordnance Army Practice and Drill (All Types) 0.35 3 Ordnance
Ordnance Naval Surface Fire (Ammunition and Bombs) 0.35 8 Ordnance
Ordnance Naval Antiaircraft and Dual-purpose (Am-

munition and Bombs)
0.35 4 Ordnance

Ordnance Navy Rockets 0.35 0 Ordnance
Ordnance Small Arms Ammunition 0.35 15 Ordnance
Ordnance Land Mines 0.10 0 Ordnance
Ordnance Grenades 0.10 0 Ordnance
Ordnance Pyrotechnics 0.10 0 Chemical
Ordnance Explosives 0.10 0 Ordnance
Ordnance Propellants : Smokeless Powder 0.10 0 Ordnance
Ordnance Torpedos 0.10 1 Ordnance
Ordnance Naval Mines 0.10 1 Ordnance
Ordnance Depth Charges 0.10 1 Ordnance
Ordnance Aircraft Bombs 0.00 31 Ordnance
Ordnance Combat Vehicles (Tanks) 0.01 6 Ordnance
Ordnance Motor Carriages for Self-propelled Guns 1.00 1 Ordnance
Ordnance Heavy-heavy Trucks 1.99 17 Ordnance
Ordnance Light-heavy Trucks 1.99 10 Ordnance
Ordnance Medium trucks 1.99 5 Ordnance
Ordnance Light Trucks 1.99 3 Ordnance

12



Ordnance Trailers, Semitrailers, and Motorcycles 1.99 2 Ordnance
Ordnance Remanufactured Automotive Vehicles 1.99 0 Ordnance
Ordnance Tractors 1.99 8 Ordnance
Comm. Army (Radio) 0.04 5 Signal
Comm. Navy (Radio) 0.04 0 Signal
Comm. Ship and Ship-and-Shore (Radio) 0.04 0 Signal
Comm. Ground (Radio) 0.04 7 Signal
Comm. Army (Radar) 0.00 4 Signal
Comm. Navy (Radar) 0.00 0 Signal
Comm. Ship and Ship-and-Shore (Radar) 0.00 0 Signal
Comm. Ground (Radar) 0.00 3 Signal
Comm. Underwater Sound Equipment 0.00 0 Signal
Comm. Wire Communication and Misc. Equipment 0.10 4 Signal
Other Petroleum Products: Aviation Gasoline 0.20 0 Air Force
Other Machinery 1.00 27 Engineers
Other Railroad Equipment 1.00 1 Transportation
Other Clothing 1.00 50 Quartermaster
Other Medical Supplies and Subsistence Rations 0.10 0 Medical
Other Misc. Equipment and Supplies 0.50 28 Quartermaster

Table 4: Estimated prior experience for OMPUS-USMH data. Main and Subcategory are the
main section and finest available subsection of the OMPUS table of contents (ToC); N is the
number of products; War Department is from our hand-made crosswalk. Horizontal lines
delineate the higher-level ToC categories discussed in the text. Note that product types for
which we have no data matched with USMH (N = 0) are also reported.

B.1 Estimates of prior experience for the OMPUS-USMH data

This appendix provides an explanation for how we arrived at an estimate of prior ex-
perience for each category of product in Table 4. The total wartime production for each
category was taken from the summary table “Production of Selected Munitions Items”
in War Production Board (1945). As discussed in Section Data in the main text, the
OMPUS dataset disaggregates many products into their component parts. The aggre-
gate table in War Production Board (1945) sums these components into larger product
categories and then industry-level categories. We have used this table in lieu of sum-
ming the OMPUS ourselves to avoid mismatching components of the same finished
product. This appendix explains how we gathered numbers about prior production
and wartime production to calculate the prior experience factor ζis presented in table
4.

Aircraft. Aircraft were not a novelty in World War II, but the scale and methods of
manufacture changed significantly during the war. Furthermore, significant changes
were made to their design. Much of this change was linked to improvements in en-
gines and propellers, which are a separate category in the OMPUS dataset and are
discussed below. However, the United States did have prior experience in manufac-
turing aircraft – major firms like Boeing and Curtiss (now Curtiss-Wright) were both
founded in 1916. Therefore, we estimated this prior experience by finding the number
of individual civil and military airplanes produced in the United States before 1940.
Consulting Pattillo (1998) and Lorell (2003), we were able to determine that 62,401
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aircraft were produced in the United States before World War II. Many of these aircraft
were produced for World War I and for the postal service, which used planes to trans-
port mail over long distances. According to the War Production Board (1945), 296,429
aircraft were produced during World War II. We thus applied a value of ζi = 0.211 to
all types of aircraft.

Aircraft Engines and Propellers. As mentioned, the OMPUS often disaggregates
products into their components. Therefore, it provides cost and production informa-
tion not only for airframes and completed airplanes, but also separate information for
airplane engines and propellers. If we assume that each aircraft built prior and during
the war used two engines and two propellers, the estimate of ζi remains the same as
for aircrafts, ζi = 0.21. We note that it may be an overestimate, because unlike for the
construction of airframes and other components, there were design changes made to
aircraft engines during the war that made prior manufacturing experience less rele-
vant than it was to other areas of aviation. For example, automotive firms with no
prior aviation manufacturing experience were asked to adapt the Rolls Royce Merlin
piston engine for mass production (Hyde 2013). Other firms, notably Pratt & Whitney,
had extensive experience manufacturing piston engines (the type of engine used in the
majority of WWII planes) for aircraft. However, the most commonly used types of en-
gines in World War II like the Pratt & Whitney R-2800, were only designed in 1937
and flown for the first time in 1940. (Connors 2010). Other commonly used engines,
like the Wright R-3350 used for the famous B-29 bomber, were developed around the
same time (LeMay & Yenne 1988). Therefore, while engines were not totally novel at
the outbreak of war, they were not fully mature products; furthermore, new designs
and changes for mass production were common (White 1995).

Ships. There were two principal categories of ships produced in WWII: transport
vessels created for the Maritime Commission and warships made for the Navy.

The Liberty Ships created for the Maritime Commission have been much stud-
ied (Thornton & Thompson 2001, Thompson 2001, 2007, 2012). The War Production
Board (1945) table states that 53 million deadweight tons of cargo ships were manu-
factured in WWII. As Thompson documented, there was little pre-war experience in
the manufacture of transport ships. 2.7 million deadweight tons of cargo ships were
made during the First World War (Ayres 1919). We used ζi = 2.7/53 ≈ 0.05 for all
ships except combatant ships.

We used several different sources for the warships. The first was George (n.d.),
which showed that the U.S. had 297 warships at the end of World War 1. The second
were the naval treaties agreed upon by the Great Powers during the 1920s and 30s
4. In addition, we used Roosevelt’s 1938 “Message to Congress Making Recommen-
dations for Defense” 5 to work out the number of larger ships built after the treaties
lapsed, which showed the numbers of larger ships produced between World War I and
World War II. The third was the Dictionary of American Naval Fighting Ships 6, which

4These were the Washington Treaty and the First and Second Treaties of London
5https://www.mtholyoke.edu/acad/intrel/interwar/fdr11.htm
6https://www.hazegray.org/danfs/
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showed the number of smaller ships and submarines the US produced from the end
of World War 1 to the end of 1942. The fourth was the US Navy’s Naval Heritage and
History Command’s record of the size of the US Navy over time 7, which showed the
number of each class of ship produced over the course of World War II. Combatant
ships are battleships, carriers, escort carriers, cruisers, destroyers, frigates (or ’escort
destroyers’ as they were called at that time), and submarines. From the sources, we
calculated that 889 combatant ships were produced before the war, and 733 during the
war. Hence, we used ζi = 889/733 ≈ 1.21 for combatant ships. From the final source,
we calculated the number of landing vessels, patrol boats, and mine craft produced
before and after the war. There were 121 landing vessels produced before the war,
and 2426 produced during the war. Hence, we used ζi = 121/2426 ≈ 0.05 for land-
ing vessels. There were 515 patrol boats produced before the war, and 689 produced
during the war. Hence, we used ζi = 515/689 ≈ 0.75 for patrol boats. There were 263
minelayers and minesweepers produced before the war, and 323 produced during the
war. Hence, we used ζi = 263/323 ≈ 0.81 for mine warfare.

Guns and Small Arms. While the production of planes continued for civilian con-
sumption during peacetime in the interwar period, the production of weaponry like
guns and small arms slowed significantly between the wars. As stated in Herman
(2012), the U.S. army shrunk to being only the 18th largest army in the world before
World War II. We exploit this fact to use weapons produced during World War I as our
proxy for prior experience manufacturing guns, small arms, ammunition and bombs.

Drawing on information from Broadberry & Harrison (2005) and primary source
material from Ayres (1919), we were able to estimate the production of a variety of ar-
tillery and guns during World War I. For example, there were 3,077 complete units of
artillery equipment manufactured, 226,557 machine guns, 3.43 million rifles and 1.7
million pistols and revolvers. The respective numbers for each of these categories pro-
duced during World War II were 7,803 artillery units (ζ ≈ 0.39), 2.68 million machine
guns (ζ ≈ 0.08), 6.5 million rifles (ζ ≈ 0.53) and 2.74 million pistols and revolvers
(ζ ≈ 0.621). Based these ratios, and for simplicity, we assume ζi = 0.4 for all items in
this category.

Ammunition and General Purpose Bombs. The numbers of ammunition and gen-
eral purpose bombs produced in World War I were available from the same sources.
In World War I 20.3 million artillery rounds were produced and 3.5 billion rounds of
ammunition for rifles, revolvers and other small arms. In World War II these numbers
were 33.5 million (ζ ≈ 0.61) and 41.5 billion (ζ ≈ 0.08) respectively. We used ζ ≈ 0.35
in these categories.

It is slightly harder to match numbers for conventional bombs. However, we know
that 132 million pounds of “high explosives” – an essential component for all bombs –
were produced during World War I. While it is hard to do a clear match of this explo-
sive component to the reported weight of bombs in the War Production Board (1945)

7https://www.history.navy.mil/research/histories/ship-histories/

us-ship-force-levels.html
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table, the closest category reported – “Aircraft bombs (Army and Navy), General Pur-
pose and Demolition” – states that 7.1 billion pounds of bombs were produced, sug-
gesting ζ ≈ 0.02. Acknowledging that this seems very low, our choice of the prior
experience coefficient for this category is 0.1.

Aircraft bombs, Not General Purpose. The secondary literature generally agrees
that there was almost no production of incendiary or fragmentation bombs during
World War I, and no testing of this materiel between the wars. Therefore, we can
assume prior experience of almost 0 for these models of explosives (Ross 2003, Hecks
1990). According to the War Production Board (1945) table, there were 2.26 million
incendiary, fragmentation and armor-piercing bombs produced. We used ζ = 0.001.

Combat and Motor Vehicles. This category unites products that were similar to
products that U.S. manufacturers were already producing, such as jeeps and trucks,
with others, like tanks, for which they had almost no prior experience. We were able
to find disaggregated numbers for many of these products. For example, we know
that prior to 1940 a cumulative number of 4.89 million trucks were registered in the
United States (Cain 2006). During the war, 2.45 million trucks were manufactured,
both for use on the front and for the armament effort at home, suggesting a ζ ≈ 1.99.
In contrast, prior experience in manufacturing tanks was very low. Only 799 tanks
were produced during World War I and there was no military demand for further pro-
duction in the interwar period (Ayres 1919). During World War II, 86,333 tanks were
produced. Since apart from tanks, all products in this category are similar to trucks,
we use a category-level ζ = 1.99, except for one product in the “Motor Carriages for
Self-propelled Guns” category, which is a light tank chassis, for which we used ζ = 1.

Communications and Electronics. Similar to Combat and Motor Vehicles, this cat-
egory groups together products that manufacturers had a wide range of experience
producing. In particular, there is a clear distinction between radios and radar. Ra-
dios were extensively manufactured prior to World War II, primarily for civilian and
commercial use. Approximately 86,400 radio sets had been produced by U.S. manu-
facturers by the end of 1940 (Cain 2006). In stark contrast, only 22 radars had ever
been made globally prior to 1940. Only the British “Chain Home” system was opera-
tional before 1940, with the first stations opening in 1938. Therefore, we apply prior
experience corrections at the product level. Furthermore the table in War Production
Achievements that we use for aggregate production numbers does not report communi-
cations and electronics output in terms of individual units, but rather in dollar values.
Therefore, exceptionally for this category, we have summed cumulative production
stated in Crawford & Cook (1952). According to this aggregation, 940,852 ground
radio sets were manufactured, including vehicular radios, plus 1.25 million air radios
were manufactured (ζ ≈ 0.04). Just over 66,000 radar sets were completed for ground
and airborne use, suggesting truly negligible prior experience. (This number excludes
the transponders and fuses that were attached to American materiel for friend-or-foe
recognition.). We applied the above-mentioned experience factors for radar and ra-
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dios, the same as radar for underwater sound equipment, and ζ = 0.1 for products in
the “Miscellaneous wire communication” category, mostly wires and cables.

Other Supplies. This is a broad category that unites products used to outfit, house,
feed and provide medical treatment for soldiers, as well as machinery and construc-
tion equipment. Prior experience varied greatly for these products,

In textiles and household-like goods, such as clothing, tents and cannisters, U.S.
manufacturers had extensive prior experience. A priori, WWII military production of
clothing compared to previous clothing produced should be small, suggesting a very
high ζ. It was surprisingly difficult to find estimates of prior production denoted in
units (rather than dollars) for these categories. Therefore, we have to use very rough
estimates of prior production from Carter et al. (2006) to estimate prior experience
in this category of products. This series allows us to estimate numbers for manu-
factured apparel, specifically men’s and boys suits and coats, back to 1927. In total,
178,496,000 of these items of clothing were produced from 1927 to 1940. This gives
a lower bound to be compared with the 428,316,000 items of clothing (not includ-
ing socks) manufactured for soldiers and sailors during the War, suggesting ζ = 0.41.
Since this is clearly lower bound, we assume ζ = 1.

For aviation gasoline, we used the same estimate as for aircraft, ζ = 0.2.
The Machinery category includes mostly construction equipments, such cranes,

showels, road rollers, and road scrapers, and railroad equipment includes one model
of locomotive. Assuming that prior experience was probably lower than for trucks
and automobile (2), but higher than for most other products, we chose ζ = 1.

The miscellaneous equipment categories includes everything from sleeping bags to
airplane hangers, through insecticide and steel drums. Overall they tend to be items
for which there existed significant prior experience, and we chose ζ = 0.5.

Medical supplies and medicines–like morphine, penicillin, sulfa drugs and plasma–
were mass produced for the first time during World War II (Rostker 2013). Therefore,
we estimate prior experience for this sub-category to be very low–1% of WWII out-
put. The total output of these products during World War II was 6 billion ampules.
We assumed an experience correction factor of 10% because the category including
Medical Supplies also includes subsistence rations. Note that we have no product for
this category in the OMPUS data,but we will use this estimated prior experience in the
Contract Prices dataset,using a procedure which we now explain in details.

B.2 Estimates of prior experience for the Contract Prices data

To obtain estimates of prior experience at the level of War departments/Army Service
Forces, we take advantage of the fact that we have already justified prior experience
coefficients at a lower aggregation level in the previous section. We manually con-
struct a concordance table between each sub-category of the OMPUS Table of Content
(ToC) and the War department services (see Table 4). We rely on Crawford & Cook
(1952), the source of the War department data, where for each War department there
is also a finer grained decomposition for the quantity of individual goods in each War
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Department. We compared the items in these finer grained data to the OMPUS cate-
gories, and assigned an OMPUS category to a War Department if the goods that War
Department procured matched the OMPUS category. In the cases where multiple de-
partment procured the same good, we assigned it to the department that procured
the most of the good. We also supplemented this by consulting extensive histories of
the divisions from the Army and military historians (Coates Jr 1959, Coker & Stokes
1991, Crawford & Cook 1952, Killblane 2012, Mauroni 2015, Risch 2014, Rubis 2012).
For example, we assigned the ’mortar shells’ category to ‘Chemical’, as Crawford and
Cook list the ‘Chemical’ department as procuring the majority of mortar shells.8

War department ζ Z0 Method
ASF Chemical 0.2 353 Our assumption
ASF Engineers 0.75 3774 Our assumption
ASF Medical 0.1 81 Average of corresponding OMPUS categ.
ASF Ordnance 0.6158 22437 Average of corresponding OMPUS categ.
ASF Quartermaster 0.6333 14561 Average of corresponding OMPUS categ.
ASF Signal 0.0259 106 Average of corresponding OMPUS categ.
ASF Transportation 1 2112 Average of corresponding OMPUS categ.
ASF Total 0.5931 43423 Sum of sub-services
AAF Total 0.2096 9421 Average of corresponding OMPUS categ.
Total War Department 0.4472 52845 Sum of sub-departments

Table 5: Estimated prior experience for the Contract Prices data

We computed the prior experience coefficient of a War Department as the aver-
age of the prior experience coefficient of its associated OMPUS ToC sub-categories.
We thus obtained prior experience coefficients for the AAF and for 5 of the ASF sub-
categories. For the categories ASF Chemical and ASF Engineers, we somewhat arbi-
trarily assign the values 0.2 and 0.75, based on our reading of the historical literature.

To get an estimate of prior experience for the aggregate services ASF, we sum up
the estimated prior experience of the corresponding subservices. The top part of Table
5 reports the estimated values of prior experience Z0 for the ASF subservices. We sum
up these values to obtain Z0 for ASF Total. The table reports the corresponding value
of ζ for information only, we do not use it to estimate Z0. We proceed similarly to
estimate Z0 for the Total War department, which is the sum of ASF’s and AAF’s Z0.

B.3 Estimates of prior experience for the Labor Productivity data

The Labor Productivity productivity data is mostly at the plant (Source Book) or prod-
uct level (Ford, Searle) . There is an issue with correcting this data for prior experience

8Sometimes our mappings are unintuitive due to quirks in how the US procured goods. For example
the M2 mortars the US used were originally designed to only fire smoke shells as the US peace lobby
opposed the use of high explosives and chemical shells after WWI. Hence the Chemical department
dealt with the ammunition. But during WWII they adapted them to fire high-explosive ammunition.
Thus the Chemical department handled all types of ammunition, even though it was mainly high-
explosives and thus seems more likely to be handled by Ordnance.
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because if a plant enters in production late, it will not produce a lot and since the fac-
tor ζ is applied to total plant-level production, plants that arrive late and benefit most
from past experience actually get a lower estimated prior experience. We decided to
apply no correction to the data presented in the main text. See Appendix D.4 for the
results when we apply a correction for initial experience.

C Estimators for the OMPUS-USMH dataset

In the OMPUS-USMH dataset, there are two observations per product, but the dates
and span of these observations differ across products. Thus, we cannot estimate a
first-differences model. In this appendix we discuss the “heterogenous-differences”
(HD) model, in which we regress the differences in log cost on the differences in log
experience and the time span between the two observations (and where no constant
is allowed). We show that it results in the same regression coefficients as the fixed-
effects (FE) model used in subsection OMPUS-USMH: unit costs at the product level of
the section Empirical results, but that it is different from the cross section regression
of the product’s average monthly growth rates. We also discuss how the share of cost
decrease due to the exogenous time trend is computed is Section Discussion.

Equivalence between the point estimates of the HD and FE estimators We define
the Heterogenous Differences (HD) estimator as follows. For each individual i, there
are two periods t0i and t1i , and we denote the span of time between the two as

t1i − t0i = τi .

We define the HD operator ∆τi on a variable V as the difference of the two available
observations

∆τiV = V (t1i)−V (t0i).

Obviously,
∆τi t = t1i − t0i = τi ,

and
∆τiconstant = constant− constant = 0,

so that applying the operator ∆τi to our main equation

logci,t = constant +αt + β logZi,t + εi,t

gives
∆τi logci = ατi + β∆τi logZi +∆τiεi (1)

Note that just like in first differencing, applying the ∆τi operator leads to the loss of
one observation. Since there are two observations per individual to start with, there
is now only one observation per individual, so we have removed the subscript t. Note
also that there is no intercept in Eq. 1.

We define the HD estimator as the OLS estimator of Equation 1,

β̂HD = (XTX)−1Xy, (2)
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where y = ∆τi logci and, denoting τi as xi1 and ∆τi logZi as xi2,

X
n×2

=


x11 x12
x21 x22
...

...
xn1 xn2


To show that it is equivalent to the Fixed Effects estimator, we observe that when

there are only two observations, the “within” transformation is almost equivalent to
applying the ∆τi operator. The within transformation consists in substracting the
group-specific mean from each observation, that is, for a variable V with two observa-
tions in t1 and t0, the within transformation operatorW gives

W (V (t1i)) = V (t1i)−
V (t0i) +V (t1i)

2
=
V (t1i)−V (t0i)

2
=
∆τiVi

2

and similarly

W (V (t0i)) = −∆
τiVi
2

,

so the within and HD transformations are very similar. But in contrast to the HD
transformation, the within transformation does not reduce the number of observa-
tions, so a direct comparison of the matrix of regressors is not possible. However, we
can write the within estimator as

β̂FE = (X̃T X̃)X̃ỹ, (3)

where

X̃
2n×2

=
1
2



x11 x12
−x11 −x12
x21 x22
−x21 −x22
...

...
xn1 xn2
−xn1 −xn2


.

Now, if we compute the entries of XTX and X̃T X̃, we find X̃T X̃ = 1
2X

TX and thus

(X̃T X̃)−1 =
(1
2
XTX

)−1
= 2(XTX)−1. (4)

Similarly, writing down explicitly the entries of X̃ỹ and simplifying shows that

X̃ỹ =
1
2
Xy (5)

Putting Eqs. 5 and 4 into 3, and comparing with Eq. 2, we see that

β̂FE =
(
2(XTX)−1

)(1
2
Xy

)
= (XTX)−1Xy = β̂HD .

�
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Non-equivalence between the HD and the growth rates cross-section estimators.
When faced with heterogenously spaced data with two observations per individual,
another option would simply be to calculate average growth rates, and perform a
cross-sectional regression, that is

∆τi logci
τi

= α + β
∆τi logZi

τi
+ noise. (6)

As can readily be seen by comparing the matrix of regressors, the coefficients esti-
mated from Eq. 6 and the HD/FE estimator Eq. 1 are in general different, so Table 4
in the main text (columns 4-6) also reports the estimates based on Eq. 6.

Share of cost decrease accounted for by the exogenous time trend To do a growth
decomposition for the OMPUS-USMH, we take expectations of Eq. 1,

E[∆τi logci] = αE[τi] + βE[∆τi logZi],

so that the relative contribution of the exogenous time trend to the change in cost is
estimated as

share exo =
α 1
n

∑
i τi

1
n

∑
i∆

τi logci
(7)

D Robustness checks

D.1 Time series analysis

We can perform time series analysis only in the Labor productivity and Contracts datasets,
and they have different structures (unbalanced and N > T for the first, but balanced
and T > N for the second).

Thus we first present results that relate to the time aspect of the models and that
can be computed on all three datasets: two-way fixed effects, and using the lag (instead
of contemporaneous) experience as regressor. We then proceed to discuss time series
properties in the Labor productivity and Contracts datasets in turn.

We omit the specifications with production as a regressor.

Two-ways fixed effects In the main specification, we constrain the effect of the time
variable to be an exponential trend. Instead, we can estimate a fixed effects model
with both individual and time dummies, that is

logcit = κi +θt + β logZit + ηit. (8)

This allows us to control for economy-wide (in addition to product-specific) effects
on costs that are not necessarily growing exponentially in time. Table 6 reports the
results9, showing an estimate of the effect of experience similar to the one obtained
with individual dummies and an exogenous linear time trend.

9The models are estimated by performing a single transformation (removing individual means) and
adding time dummies, and the R2 are the R2 of this regression.
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Table 6: Panel regression results for Two-ways fixed effects

Labor Productivity USMH Contracts
Experience -0.300∗∗∗ -0.059∗∗ -0.167∗

(0.018) (0.020) (0.058)
Observations 3034 1046 308
R2 0.789 0.250 0.803

First lag of experience We use the first lagged value of experience instead of con-
temporaneous experience as a regressor. The results, presented in Table 7, do not
change much as compared to the baseline results, except for the FD estimator in the
Labor Productivity dataset where the experience coefficient drops by a half and the
exogenous time trend instead increases. The coefficient for experience in the OMPUS-
USMH is also somewhat weaker than in the baseline results.

Table 7: Panel regression results for Experience lagged 1 period

Labor Productivity USMH Contracts
FE FD FE FE FD

Experience(t-1) -0.236∗∗∗ -0.109∗∗∗ -0.033∗∗ -0.149∗ -0.120∗

(0.019) (0.020) (0.013) (0.051) (0.045)

Time -0.008∗∗ -0.036∗∗∗ -0.005∗∗∗ -0.003 -0.004
(0.003) (0.004) (0.001) (0.003) (0.003)

N 2912 2719 1046 308 301
R2 0.717 0.046 0.159 0.786 0.060

Labour productivity We first test the null of no first-order autocorrelation in the
Fixed Effects results using experience and time as regressors (Second column of Table
3 in the main text), using Wooldridge’s (2002) (section 10.5.4) test, and strongly reject
it (p < 0.001).

A possibility is that the variables exhibit unit roots, however because our panel
is unbalanced our options for testing are limited. We use Fisher-type tests (Choi
2001). This consists in applying a standard test (Augmented Dickey-Fuller or Phillips-
Perron) to each time series, aggregating the p-values, and testing the null hypothesis
that all panels contain unit roots, against the alternative that at least one panel is
stationary. The Fisher-type tests are based on the T →∞ asymptotic, with finite or in-
finite N depending on the statistics. All four statistics derived by Choi (2001) deliver
a near zero p-value for both the log of experience and the log of person-hours per unit,
so we reject that all series contain a unit root.

Since there is autocorrelation but it is not as strong as to suggest a first-difference
model, we follow two separate directions. First, we simply estimate a Fixed Effects
model with autocorrelated errors, with two different estimators for the autocorrelation
parameter (Durbin Watson or the autocorrelation of residuals, both computed on the
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Table 8: Time Series models for Labor Productivity

AR1 Lagged Dep.Var.
DW Corr. OLS OLS Arellano-Bond

Experience -0.169∗∗∗ -0.349∗∗∗ -0.219∗∗∗ -0.029∗∗ -0.026
(0.019) (0.016) (0.029) (0.009) (0.100)

Time 0.004∗ 0.008∗∗∗ -0.002∗ -0.003∗∗∗ -0.003
(0.002) (0.002) (0.001) (0.001) (0.010)

Personhours(t-1) 0.771∗∗∗ 0.772∗∗∗ 0.744∗∗∗

(0.022) (0.022) (0.211)

Experience(t-1) 0.159∗∗∗

(0.022)
Observations 2882 2882 2830 2830 2660
AR(1) 0.83 0.65
Experience, long-run -0.260 -0.126 -0.101

within transformed data). These two methods of computing autocorrelations result in
noticeably different results, yet in both cases the sign of the exogenous time trend is
reversed and the coefficient of experience remains important and strongly significant
(first two columns of Table 8).

The second approach is to consider that residual autocorrelation is caused by mis-
specification, whereby the lagged values of the regressor and/or the regressand are
missing. The more complete model

logcit = κi + a logci,t−1 + β logZi,t + β2 logZi,t−1 + ηit

nests a large class of dynamic linear models (Hendry 1995). The results of estimating
this using OLS are in column 3, showing coefficients of opposite signs for experience
and its lagged value. Removing the lag of experience (col 4), the autoregressive param-
eter remains the same, and the estimated long-run effect10 decreases by half. Finally
(col. 5), although we have a fairly “long” panel whereby the Nickell bias is unlikely to
be large, we estimate the same equation using the two step Arellano & Bond’s (1991)
estimator with all possible instruments and robust (Windmeijer) standard errors, and
find similar results.

Contracts. We start again with Wooldridge’s test for AR(1) residuals and as for the
Labor productivity data, we strongly reject the null of no autocorrelation. However, in
contrast to the Labor productivity data, all the unit root tests we performed (Choi 2001,
Im et al. 2003, Levin et al. 2002, Hadri 2000, Breitung 2001, Harris & Tzavalis 1999)
systematically suggested that both the log of contract prices and the log of production
experience have unit roots.

10This is estimated as as the sum of the coefficient(s) of experience divided by one minus the autore-
gressive parameter.
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Thus we tested for co-integration, using Pedroni’s (1999) test statistics. None of
the 7 test statistics suggested rejection of the null of no co-integration. This is not
too surprising, as we do not see a compelling reason for the existence of a strong
relationship between the levels of cost and experience, so that a departure from this
long term level relationship would imply an error-correction behavior and a return
to this trend11. Overall, these tests suggest that costs and experience are related in
difference, that is, a change in experience is associated with a change in costs.

D.2 Coefficient heterogeneity

In the main text, we have reported results with either both α and β common across
all products, or separate regressions for each product. Here we investigate the results
when we constrain only one of the two parameters to be the same across products and
allow the other one differ.

Time trend heterogeneity only. We can investigate heterogenous time trends by es-
timating a fixed effect regression on the first differenced values, that is

∆ logcit = κi + β∆ logZit + ηit. (9)

The results in Table 9 show results that are robust in the case of the Labor Productivity
dataset, but evaporate entirely in the Contracts data. This is not too surprising given
what we had reported using individual-level regressions in Figs. 2 and 4 in the main
text.

Table 9: Fixed effects on the first differences

Labor Productivity Contracts
Experience -0.210∗∗∗ 0.004

(0.020) (0.083)
Observations 2830 301
R2 0.105 0.000

Experience effect heterogeneity. We can estimate heterogeneous slopes for experi-
ence using Swamy’s (1970)’s random coefficients model and the Mean Group estima-
tor of Pesaran & Smith (1995). We estimate these two models on the first differenced
variables.

The results are in Table 10. The point estimates in the Labor Productivity dataset
suggest a stronger effect of experience than in our main specification, while the reverse
is true in the Contracts dataset. In all cases, however, the standard errors are such that
the distributions for the coefficients presented here and the coefficients estimated in
the main text overlap significantly.

11Note also that experience cannot decrease, which would imply additional restrictions on the error-
correction model.
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Table 10: Heterogenous coefficients models (Swamy and Mean group)

Labor Productivity Contracts
Swamy MG Swamy MG

Experience -0.272∗∗ -0.362∗∗∗ -0.031 -0.035
(0.087) (0.082) (0.061) (0.047)

Constant -0.013 -0.015 -0.007∗ -0.008∗

(0.016) (0.015) (0.004) (0.003)
Observations 2817 2817 301 301

D.3 Instrumenting by lagged values

Because unit and labor costs are total costs divided by output, output appears on both
sides of the equations.

As shown in Reed (2015), using a lagged value of the regressor to deal with si-
multaneity is not appropriate, but using the lagged values as instruments in an IV
regression can be effective, if the lagged regressors are themselves not regressors in
the true data generating process, and when the lagged regressors are sufficiently cor-
related with the (instrumented) regressors.

Table 11 reports instrumental variable estimates for the main specification (first-
difference) using the first lag of (log) production as instrument for (log) production,
and first lag of (log) experience as instrument for (log) experience. We cannot perform
this robustness check for the USMH data due its structure.

Table 11: Instrumental variable estimates

Labor productivity Contracts
Experience -0.209∗∗∗ -0.219∗∗∗ -0.123∗∗∗ -0.124∗∗∗

(0.021) (0.018) (0.033) (0.029)

Time -0.021∗∗∗ -0.021∗∗∗ -0.004 -0.004∗∗

(0.005) (0.004) (0.002) (0.001)

Production -0.025 -0.007
(0.014) (0.083)

N 2578 2719 301 301
R2 within 0.70 0.70 0.76 0.77
R2 overall 0.00 0.00 0.12 0.13

The results are very similar to those reported in the main text. We also performed
these regressions using the fixed effect, rather than first-difference, estimator, again
finding results very similar to those reported in the main text.

We have considered other instrumental variable approaches. One approach is to
use demand side instruments, for instance battle-related variables, as one may have
thought that higher losses of materiel led to an increase in production, and was not

25



correlated with weapons costs decreases. However, as we argued from historical anal-
ysis, production operated at maximum capacity, guided by long-term (yearly) targets,
and thus was not driven by battlefield losses. A second approach would have been
to use supply-side instruments, such as the provision of raw materials; because these
were in very short supply, they constrained production but their supply may have
been argued to be unrelated to cost decreases (but note that there is evidence of in-
duced technical change during the war to save on raw materials). Here we faced the
issue that it is virtually impossible to construct product-level instruments.

D.4 Initial experience

Contracts To evaluate the robustness of the results to a different evaluation of the
prior experience coefficient, we re-construct experience using values of ζ multiplied
by a factor f , with f = 0 . . .5. Fig. 6 reports the results, showing that indeed the
results would change noticeably if we misestimated prior experience by an important
factor. The third panel, which shows the share of the decrease in cost attributed to the
exogenous time trend, shows that if the true ζs were all 20 times lower (f = 0.05), the
exogenous time trend would explain all cost decrease, and the “learning” parameter
would be close to zero. For even smaller values of f , the sign of β̂ would even change.
On the other hand, if we misestimated all the prior experience coefficients by a factor
of 2 (f = 1/2 or f = 2), say, our main conclusion would not be fundamentally affected.
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Figure 6: Estimated coefficient of the first difference regression of the log of contract prices
on the log of experience and an exogenous time trend, for different values of a factor f that
multiplies our baseline vector of estimates of prior experience ζ. The rightmost panel shows
α̂ divided by the average cost decrease µ̂ = −0.008 (as reported in Table 6 in the main text).
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Figure 7: Estimated coefficient of the fixed-effect regression of the log of USMH unit costs
on the log of experience and an exogenous time trend, for different values of a factor f that
multiplies our baseline vector of estimates of prior experience ζ. The rightmost panel shows
α̂ divided by the average cost decrease µ̂ = −0.008 (as reported in Table 6 in the main text).

OMPUS-USMH. Fig. 7 shows the robustness of the results to a change of the esti-
mates of initial experience by a factor f , as for the Contracts data. Again, the results do
change sensibly, but overall the results are fairly robust: it would take a very different,
implausible change to the estimates of initial experience to alter our conclusion that
experience and the exogenous time trend both explain an important share of the cost
trend.

Labor Productivity. In the main text, we did not use data corrected for prior expe-
rience (see Section B.3 for a discussion). If we apply the corrections suggested by the
discussion in Section B.1 for more aggregated categories, we would apply ζ = 0.2 for
aircraft, ζ = 0.05 for ships, and, say, ζ = 1 for Ford. In this subsection we apply this
correction, and take it as a baseline on which we apply a factor f as above (for f = 0.01,
the coefficients correspond almost exactly to the coefficients reported in Table 3 in the
main text, where f = 0). Again we observe some change in the results, but the overall
qualitative conclusion remains.

We also note that increasing prior experience tends to worsen the problem of
collinearity. The estimated effect of experience on individual time series is less ro-
bust to the inclusion of a time trend. In Fig. 2 in the main text, where there is no prior
experience correction (f = 0, i.e. ζ = 0), the points lie fairly well along the unit line
and the correlation between β̂i(αi = 0) and β̂i(αi , 0) is 0.37. In the baseline correction
(f = 1), this correlation falls to 0.16.
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Figure 8: Estimated coefficient of the first difference regression of the log of person-hours on
the log of experience and an exogenous time trend, for different values of a factor f that mul-
tiplies the vector of estimates of prior experience ζ described in this appendix. The rightmost
panel shows α̂ divided by the average cost decrease µ̂ = −0.066 (as reported in Table 6 in the
main text).

The robustness checks described here do not account for the fact that we may have
mis-estimated prior experience coefficients much more in some categories than in oth-
ers. We do not report specific robustness checks for this, but during the process of re-
vising the estimates of the individual ζs, we have re-estimated our main specification
several times and while the results somewhat change, as above the main result is not
fundamentally affected, with both experience and the exogenous time trend explain-
ing important shares of cost decrease.

All considered, while we acknowledge that correcting for initial experience is dif-
ficult, we believe that our method represents a substantial step towards more realistic
estimates than simply not correcting, or applying a correction based on constant expo-
nential growth. We believe that our estimates of prior experience are highly unlikely
to be systematically wrong by more than a factor of 5, so our key results would not
be dramatically affected. That said, there is a lot of heterogeneity among products
and our method necessarily produces estimates that could be wildly incorrect for spe-
cific products. Our sources, data, and metadata are available, making it possible for
historians interested in specific products to build upon and improve our work.

D.5 Comparing the datasets

The OMPUS-USMH and Contracts datasets contain, in principle, overlapping informa-
tion. Many detailed products in the OMPUS-USMH form part of the basis for the price
indices in the Contracts datasets. To give estimates of prior experience, in Section B.3,
we have built a concordance table between the OMPUS Table of Content (ToC) and the
War department services (Table 4). Here we exploit this concordance table to compare
the estimated coefficients in Fig. 9. We cannot consider the OMPUS-USMH Ships,
which cannot be matched with war departments available in Contracts, and we omit
Transportation, for which only one OMPUS-USMH product is available.
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Figure 9: Comparison of the OMPUS-USMH and Contracts sector-level results.

The estimates of the exogenous technological progress α̂ first (left panel) are fairly
similar, with a correlation of 0.57. In contrast, the estimates of the effect of experience
β̂ can be quite different, though the correlation remains around 0.33. The estimates
for Quartermaster, in particular, are very different. However, the standard errors are
very large, and often overlap the identity line, suggesting that the two datasets do not
necessarily provide significantly different estimates, and legitimizing our approach of
pooling the different war departments.

D.6 Controlling for inflation

During the war, the prices of inputs, including wages, tended to increase, although
moderately because of price controls. These input price changes bias our estimates of
the effect of experience, which are likely to be higher than what we measure under the
assumption of constant input prices.

We cannot control for the price of inputs precisely, due to the lack of available
data at a granular level, so we have to resort to an aggregate price index. Of course,
even within each dataset the products are quite heterogeneous in terms of their input
mix. To control for input prices in this context, we also show a specification which
allows each product to have a separate coefficient for the effect of the price index,
that is, we interact the price index with the individual dummies (for OMPUS-USMH,
we used war departments instead of individual products as the basis for interaction
terms; for Labor productivity, 5 interacted dummies are removed because of perfect
multicollinearity).

We used the Producer Price Index for All Commodities (PPIACO), available from
FRED. Table 12 reports the results, showing that our main results do not change sub-
stantially.
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Table 12: Adding PPI as dependent variable

Labor Productivity USMH Contracts
Experience -0.219∗∗∗ -0.222∗∗∗ -0.061∗∗∗ -0.043∗ -0.110∗ -0.104

(0.022) (0.022) (0.017) (0.018) (0.042) (0.054)

Time -0.024∗∗∗ -0.023∗∗∗ 0.003 -0.003 -0.005 -0.005
(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

PPI 0.899 -3.901∗ 0.277∗

(0.593) (1.752) (0.095)
PPI Interacted No Indiv. No War Dep. No Indiv.
N 2830 2830 1046 1046 301 301
R2 0.126 0.177 0.174 0.224 0.057 0.072

D.7 External learning

A large literature has looked at experience spillovers explicitly, attempting to estimate
cross-plant or cross-product spillovers by regressing costs of product i on experience
producing i and experience producing j. Here we attempt to capture spillovers at
the larger level of the war economy, by constructing an aggregate time series of ‘War
Effort”. A negative effect on cost would indicate spillovers, whereas a positive ef-
fect would suggest that aggregate production negatively affects individual products
productivity, perhaps due to scarce inputs, which was the case in the war economy.
We take the quantity index for the whole War Departments from the Contract Prices
dataset, that is, the solid black line in Fig. 4. Cumulative War effort is the cumulative,
using the estimated prior experience from Table 5.

Table 13: Adding Total War effort as dependent variable

Labor Productivity USMH Contracts
Experience -0.214∗∗∗ -0.211∗∗∗ -0.063∗∗∗ -0.066∗∗∗ -0.106 -0.117∗

(0.022) (0.022) (0.017) (0.017) (0.043) (0.044)

Time -0.023∗∗∗ -0.022∗ -0.003∗∗∗ 0.042∗∗∗ -0.004 -0.007
(0.004) (0.010) (0.001) (0.011) (0.003) (0.003)

War Effort 0.087∗∗ -0.208∗∗∗ -0.000
(0.032) (0.051) (0.008)

Cumul. War Effort -0.039 -1.788∗∗∗ 0.129
(0.376) (0.412) (0.066)

N 2810 2810 1046 1046 301 301
R2 0.123 0.120 0.192 0.191 0.047 0.050

The results are in Table 13. The estimated effects of the “War effort” variables are
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inconsistent across datasets, and the effects of individual products’ experience do not
change as compared to our main estimates.

D.8 Depreciation of experience

An important issue in the literature is whether applying a depreciation to experience
improves the fit. Usually, one specifies a perpetual inventory method formula for
experience and attempts to estimate the depreciation rate. For instance, Levitt et al.
(2013) use non-linear least squares.

A specific problem we have here is that assuming depreciation should logically
imply that we decrease the estimate of previous experience. Unfortunately, we were
able to give estimates of previous experience but not of how it unfolded over time -
thus we cannot easily apply a depreciation factor to it.

Here we simply omit this issue, and take the same estimates of initial experience
as in the main text12. We then cumulate production using a depreciation factor, as

Zt = δZt−1 + qt.

Instead of estimating δ, we fit the model for a range of values of δ ∈ (0.8,1) and pro-
vide the R2 of the regression (to show what Nonlinear Least Squares would estimate),
the estimated coefficients for time and experience, and the implied share of exogenous
progress.

12Assuming a lower initial experience, e.g. depreciated initial experience = initial experience /6,
does not change the patterns in Fig. 10.
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Figure 10: Change of the main result as a function of the depreciation of experience parameter
δ. Top: Labor productivity; Center: OMPUS-USMH; Bottom: Contracts

The results are in Fig. 10. The robust pattern that emerges is that allowing δ < 1
would always make β̂ less negative and α̂ more negative, and the estimate of the share
of exogenous progress larger. However, the best fit models would imply no or only a
moderate increase of the estimated share of exogenous progress. For instance, in the
“worst” case, Labor productivity, δ̂ = 0.91 implies a substantial annual depreciation of
0.9112 = 0.32, but the share of exogenous progress rises only from 0.33 to 0.46.

D.9 Overlap between estimated coefficients

Our main estimates for the parameters α and β in the three datasets, summarized in
Table 6 in the main text, are quite different. This is not surprising since the estimated
value of β in each dataset is itself a pooled estimate for somewhat heterogenous βis
at the individual levels (Figs 2 and 4 in the main text). For instance, our estimate of
β in the Labor Productivity dataset is 4 times higher than in the OMPUS-USMH data.
Rather than providing formal significance testing, we want to make a broader point:
while the estimated coefficients may be different from one dataset to the other, the fact
that both exogenous and endogenous progress account for relatively similar shares of
progress is relatively robust.

We assume that the distribution of these estimates is normal, with a mean as the
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point estimate and a standard deviation as the standard error (this is a conservative
assumption, compared to assuming a t-distribution, which would be more widespread
and produce higher overlaps). For instance, looking at column 5 of Table 2 in the main
text, we assume that the true coefficient β for the Labor Productivity dataset follows
β ∼N (0.217,0.0222).
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Figure 11: Distribution of the estimated coefficients, using the key results as selected for the
Discussion section in the main text.

Fig. 11 shows the results. Overall, the OMPUS and the Contract prices datasets
tend to have a good overlap for both β and α, while the Labor Productivity dataset has
stronger (more negative) estimates. This is because, in the Labor Productivity dataset,
there is more cost decrease to explain: costs declines have been much stronger in
airplanes than in other categories, and this dataset is dominated by this category of
products. This is why we believe that a more reasonable quantity to look at is relative:
the share of cost growth rate µ̂ that is accounted for by exogenous vs endogenous
progress.

Unfortunately, the distribution of the ratio α̂/µ̂ is difficult to derive. If α̂ and µ̂
were independent and both normally distributed, the distribution would be Cauchy,
but here α̂ and µ̂ are dependent since they are computed from the same data. While
approximate formulas have been developed for the variance of the distribution of ra-
tios of correlated normally distributed random variables, these formulas are approx-
imate, include population (rather than sample) moments, and require an estimate of
the covariance between the variables. A key point to note is that while α̂ may have a
fairly high variance, due to the multicolinarity issues we have highlighted throughout
the paper, µ̂ is a simple sample average, and our datasets are fairly large, so it is likely
to have a fairly small variance.

As a result, we propose to circumvent this issue with the following thought ex-
periment. We take µ̂ as a given scalar (i.e. non stochastic), and we ask how the ratio
α̂/µ̂ is distributed, considering µ̂ as fixed but α̂ as distributed according its estimated
distribution from our main regressions. In other words, we ask: taking the mean cost
growth rate of each dataset as given, and taking a reasonable proxy for uncertainty
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on the rate of exogenous progress measured in each dataset, is it plausible that the
contribution of exogenous progress is similar across datasets?

More precisely, we assume that α ∼ N (α̂,σ2
α) and µ = µ̂, so that share exo ≡ α

µ ∼

N
(
α̂
µ̂ ,

(
σα
µ̂

)2)
, where µ̂ is the average growth rate of cost, as reported in column 1 of

Table 6 in the main text. The procedure should be slightly amended for the OM-
PUS data, where the share of exogenous progress is computed from Eq. 7, that is

E[share exo] =
1
n

∑
i τi

1
n

∑
i ∆

τi logci
E[α], so we use Var[share exo] =

( 1
n

∑
i τi

1
n

∑
i ∆

τi logci

)2
Var[α].

The overlap between the three distributions is now more evident. Overall, this
suggests that while concluding about specific values for elasticities is delicate, the
idea that changes in costs will in general be due to both exogenous and endogenous
forces in “relatively similar proportions” is supported by the data.

D.10 Assuming known economies of scale

Recall our main regression

∆ logcit = −a
s
− b
s
∆ logZit +

(1
s
− 1

)
∆ logQit

This can be rewritten as

s∆ logcit − (1− s)∆ logQit = −a− b∆ logZit

In other words, if we know the economies of scale parameter s, we can compute the
LHS and regress it on an intercept and the growth of experience to identify the pa-
rameters of interest, a and b, directly.

Our goal is to separate overall contributions of exogenous and endogenous effects,
so ultimately we want to see how − âs changes for different assumed values of s.
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â
s

−0.04

−0.02

0.00

0.02

0.04

0.10

0.15

0.20

0.25

OMPUS−USMH

R
2

0.6 0.8 1.0 1.2 1.4

Economies of scale (s)

â
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Figure 12: Value of estimated effect of experience β̂ as a function of the assumed value of the
economies of scale parameter s. The blue lines indicate the values of β̂ when s = 1. These
corresponds to the values reported in Tables 3, 4 and 5 in the main text, except for OMPUS-
USMH because here we need to remove all the observations with Q=0, whereas we do not need
to do this when the observations of Q are not needed to perform a transformation of variables.
The red lines indicate the pairs (s, β̂) that correspond to the highest R2 value.

Figure 12 shows the results. Assuming non constant returns to scale could, indeed,
change the estimated value of the intercept quite substantially, depending on what
we consider to be “reasonable” departures from the assumption of constant returns.
We also plot the goodness of fit of these estimate, as an indication of what might
be a reasonable value. In all cases, the suggested value of s would be lower than
one, and this would always correspond to a weaker overall contribution of exogenous
technological progress.
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