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The dynamics of surnames

In this appendix, we build a model for the dynamics of surnames and present simulations to illustrate
the claims in the section of the paper in which we lay out the conceptual framework. This document
is organized as follows: Section 1 introduces the basic setup; Section 2 presents formal properties that
describe the evolution of surnames; Section 3 presents the simulations; finally, Section 4 presents formal
proofs of these properties.

1 Model set-up

An important feature of surnames, found in both Anglo-Saxon and Hispanic naming conventions, is that
they are inherited from the father (the surname of the father is passed down to his heirs). The model
therefore does not include females. We consider two areas indexed by j = [A, B], with a population size
at time t denoted by P j

t . Let qj ∈ [0, 1] be the time-independent probability of each agent born in area
j to survive enough to reproduce. Conditional on surviving up to the age of reproduction, each agent
has m sons.1 We assume that agents can migrate from area A to area B, but not the other way around.
Let p ∈ [0, 1] be the probability of migrating from area A to B. Individuals live in one single period in
which they migrate or do not migrate, reproduce or do not reproduce, and die. In this framework, the
conditional expectations of population are

E
[
P A

t+1|P A
t

]
= P A

t (1 − p)qAm

E
[
P B

t+1|P A
t , P B

t

]
= P A

t pqAm + P B
t qBm

(1)

We denote the fixed and discrete set of potential surnames by Ω and its number of elements by
S. Each individual is associated with one surname s ∈ Ω. All the elements of Ω are not necessarily
active in period t, but only a subset Ωj

t with its own number of elements Sj
t ≤ S. The function

F j
t (s) : Ωj

t→[0, 1] represents the marginal distribution of surnames. Finally, let N j
t (s) be the number of

individuals with the same surname s for area j in period t (notice that N j
t (s) = P j

t F j
t (s)). Obviously,

Sj
t =

∑
s∈S I

[
N j

t (s) > 0
]
.

We now turn to describe the dynamics of surnames. In order to understand the process from F j
t (s)

to F j
t+1(s), it is important recall that a surname s can be exclusive or common in the way it has been

defined in the "Conceptual framework" section of the main document. In our model, the set of exclusive
surnames in A at time t is given by ΩA

t − ΩB
t , the set of exclusive surnames in B is ΩB

t − ΩA
t , and the

set of common surnames is ΩA
t ∩ ΩB

t .
1The initial setup up to this point is similar to the one proposed by Guell et al. (2014), but with some differences.

They propose a model for a single location where the number of surnames can increase if some individuals change their
surname, that is, if some sons acquire different surnames than their fathers. They develop a methodology that relies on
this "mutation" to analyze inter-generational mobility. In contrast, we propose two areas to emphasize the importance
of migration to the dynamics of surnames. We do not allow for surname mutation.

2



2 The surname process

The appearance and disappearance of a surname within an specific area depends on a stochastic process.
We begin by analyzing area A. A new surname cannot arise, because, by assumption, migration from
area B to area A is not possible. However, a surname disappears in t + 1 if all fathers with surname s

bear zero offspring, or reproduce and migrate. This happens with probability [(1 − qA) + qAp]N
A
t (s) =

[1 − qA(1 − p)]N
A
t (s). We now turn to consider the case of area B. A new surname appears in t + 1 if an

individual from A with an exclusive surname s ∈ ΩA
t −ΩB

t migrates and reproduces. This happens with
probability 1 − (1 − qAp)NA

t (s).2 Finally, a surname can disappear from B in t + 1 under two scenarios.
First, a common surname s ∈ ΩA

t ∩ ΩB
t can disappear from B if no father in A with surname s migrates

and reproduces, and concurrently all fathers s in B bear zero offspring. This happens with probability
(1 − qAp)NA

t (s)(1 − qB)NB
t (s). Second, an exclusive surname s ∈ ΩB

t − ΩA
t disappears simply if all fathers

bear zero offspring. This happens with probability (1 − qB)NB
t (s).

Our first observation is simple: if surviving and reproducing is a certain event and there is no
migration, population may grow exponentially, while the number of surnames within a community
remains the same over time.3 The following property presents this idea formally.

Property 1. Assume q = 1, p = 0 and m > 1. While population exponentially grows in areas A and
B, the number of surnames remains the same.

Proof. The fact that population grows comes directly from applying the assumptions to equation 1.
The stability of the number of surnames is a consequence that the probabilities for the appearance and
disappearance of a given surname within A and B are equal to zero under the provided assumptions. ■

The evolution of surnames is different in a context of migration and mortality. In order to describe
it, a previous step is computing the number of individuals with surname s migrating from A to B at t,
which we denote by Nm

t (s).

Property 2. Assume p > 0.The number of individuals with surname s migrating from A to B at t is
a binomial random variable with support [0, NA

t (s)] and described by:

Nm
t (s) = NA

t (s)p + ϵst ifNA
t (s) > 0

= 0 ifNA
t (s) = 0

where the conditional mean of ϵst is zero and the conditional variance is NA
t (s)p(1 − p).

2The probability that an individual from A does not migrate to B or does not reproduce is 1 − qAp and hence the
probability that all individuals from A do not migrate to B or do not reproduce is (1 − qAp)NA

t (s). The complement is
the probability that at least one individual migrates and reproduces.

3The number of surnames can increase if some individuals change their surname, that is, if some sons acquire surnames
other than those of their fathers (bringing their surname to the area). As Guell et al. (2014) states, this is an important
generator of new surnames for a society. However, we believe this mutation could hardly explain large regional differences
in the number of surnames and so we do not allow this possibility in the model.
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The proof is in Section 4. Since the number of migrating individuals with a given surname is a
binomial random variable, its mean and variance are easily computable. Therefore, the previous simple
equation can describe its process.

We now analyze how surnames within area A evolve. The number of individuals with the same
surname grows from those who do not migrate to B and reproduce. Note that, if a surname disappears
in a given period, it does so forever. Finally, given that there are no migration flows from B to A, it is
not possible that a new surname would appear. We state these ideas formally in the following property.

Property 3. Assume p > 0, q < 1 and m > 1. The number of individuals with surname s for area A

follows a random walk process with drift and an absorbing barrier at zero:

NA
t+1(s) =

[
NA

t (s) − Nm
t (s)

]
qAm + µst ifs ∈ ΩA

t

= 0 ifs ∈ ΩB
t − ΩA

t

where the conditional mean of µst is zero and the conditional variance is
[
NA

t (s) − Nm
t (s)

]
qA(1−qA)m2.

The proof is in Section 4. Basically, the number of individuals with a given surname that reproduce
while staying in A is a binomial random variable with support [0, NA

t (s)m−Nm
t (s)m] whose parameters

are easily computable.
The case of the surnames within B is more complex because this area receives migrants. The process

from t to t + 1 depends on the status of each specific surname in t, namely, whether s is exclusive in A,
common, or exclusive in B. Consider the following property.

Property 4. Assume q < 1, p > 0 and m > 1. The number of individuals with surname s for area B

follows the next process with an absorbing barrier at zero:

NB
t+1(s) = Nm

t (s)qAm + wA
st ifs ∈ ΩA

t − ΩB
t

= Nm
t (s)qAm + NB

t (s)qBm + wA
st + wB

st ifs ∈ ΩA
t ∩ ΩB

t

= NB
t (s)qBm + wB

st ifs ∈ ΩB
t − ΩA

t

where the conditional mean of wA
st is zero and the conditional variance is Nm

t (s)qA(1 − qA)m2, whereas
the conditional mean of wB

st is zero and the conditional variance is NB
t (s)qB(1 − qB)m2.

The proof is in Section 4. Basically, the number of individuals with surname s migrating from A

that reproduce and the number of individuals in B that reproduce are both binomial random variables
whose parameters are computable. The former is the only variable playing a role if s is exclusive in A,
the latter is the only variable that matters if s is exclusive in B, and both play a role if s is common.
Section 4 also shows the specific support of NB

t+1(s) in every case.
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3 Simulations

We present simulations to illustrate the four claims of our conceptual framework. We start by assuming
an initial population structure: 100 A-exclusive surnames, 100 B-exclusive surnames and 100 common
surnames, with 20 individuals per surname. Hence, the initial total population is 6,000. We then apply
properties 3 and 4, which describe how the number of individuals with a particular surname evolves
from one period to another in area A and B, respectively. Note that a surname can change status from
period to period, and therefore the applicable equation of Property 4 for each surname may also change
over time. Consider, for instance, the exclusive surname s in A that arrives at B at t+1. In that period,
this surname can become common or exclusive in B.4 Finally, we work with a number of generations
equal to T = 20 and, for simplicity, we fix the number of sons to m = 2.

3.1 Claims

The first claim is that a mortality increase (or a fertility decrease), when it generates total deaths, leads
to a decrease in the number of surnames in area A and it has no effect in area B. At the same time,
this shock leads to a decrease in the number of exclusive surnames in area A and to an increase in area
B. In order to illustrate this claim, we set the probability of surviving and reproducing to 0.8 over time
in A and B, but we change this probability to 0.4 in A from period 2 to 8. Figure B.1 presents the time
series of our indicators. The shock obviously generates a difference between population in area A and
B. In the case of the number of surnames, it decreases in A because entire groups of individuals with
the same surname disappear. This variable remains equal in B, because no shock was introduced there.
In the case of the number of exclusive surnames, it decreases in A, because some surnames vanish due
to total death. This number increases in B because total death in A for some families with common
surnames makes these surnames exclusive in B.

4In general, a surname s ∈ ΩA
t − ΩB

t can disappear, remain exclusive in A, become common or even become exclusive
in B in period t + 1. A surname s ∈ ΩA

t ∩ ΩB
t may also disappear, become exclusive in A, remain common or become

exclusive in B. A surname s ∈ ΩB
t − ΩA

t can only disappear or remain exclusive in A.
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Figure B.1: Effect of mortality increase in A on time series of indicators

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 0.8, p = 0, m = 2 and T = 20. A 7-period shock is introduced from period 2 to 8, where qA = 0.4.
The graphs show time series for population size, number of surnames and number of exclusive surnames.
Source: Simulation using the model presented in the section titled "The surname process".

An important observation related to the first claim is that a mortality increase in A has to fulfill
three conditions to produce total deaths. First, it must take place in a context of few people for each
surname. Since the number of people per surname tends to grow exponentially, this last condition is
fulfilled if the shock affects the first generations. Figure B.2 analyzes how the period of shock initiation
affects the results. We set the probability of survival and reproducing to 0.9 in A and B from period
1 to period 20. We allow this probability to be equal to 0.4 in A for 7 periods, starting in a period
that varies over the x-axis from 1 to 7. The y-axis of the three plots represents population size, number
of surnames and number of exclusive surnames, respectively, in A and B at the last period. While
shocks initiated during any period generate a difference between the last population size in A and B,
only shocks initiated in the first periods open a gap between our surname indicators at the last period.
In this particular simulation, the shock has to be initiated no later than period 4. The intuition is
direct. During initial periods, total death may occur because families have a relatively smaller number
of members, but it rarely takes place once a family reaches a certain size.
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Figure B.2: Effect of a mortality increase in A on indicators at the last period, by initial period

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 1, p = 0, m = 2 and T = 20. A 7-period shock is introduced by setting qA = 0.4 from an initial
period that varies as shown by x-axis. The graphs show population size, number of surnames and number of exclusive
surnames at the last period.
Source: Simulation using the model presented in the section titled "The surname process".

Second, for a mortality increase to produce total death, it must be large enough to include all the
members of some families. Figure B.3 shows how the results depend on the magnitude of the shock. We
set the probability of surviving and reproducing to 1 in A and B over time, and allow this probability to
be different in A from period 2 to 8. The x-axis of the three plots of Figure B.3 show different levels for
this probability, over a range that extends from 0.1 to 1.0 (i.e. the shock is equal to 1 minus the value
in the x-axis). The y-axis of the three plots present the level of population size, number of surnames
and number of exclusive surnames, respectively, in A and B at the last period (t = T = 20). Figure B.3
shows that all mortality decreases in A cause the last population size smaller in A than in B. However,
small shocks do not open a gap between A and B in the final number of surnames or the final number
of exclusive surnames. In this particular simulation, the mortality decrease must be larger than 0.5,
that is, the probability of surviving and reproducing must be smaller than 0.5.

Third, the mortality increase must be spread over a number of generations until it reaches all family
members. Figure B.4 shows that the results depend on the extension of the shock over time. We set
the probability of surviving and reproducing to 1 in A and B from period 1 to 20, but change this
probability to 0.4 in A from period 2 to a varying period number. Of course, this final period number
determines different extensions for the shock. The x-axis of the three plots in Figure B.4 show these
different extensions over a range that extends from 1 to 7 years. The y-axis of the three plots represents
the level of population size, number of surnames and number of exclusive surnames, respectively, in A

and B at the last period. Figure B.4 again shows that the final population size is always smaller in A

than B. However, a shock in A does not open a gap between A and B in the surname indicators unless
is lasts more than 3 periods.

In sum, an eventual difference in current population size may be caused by numerous shocks. In
contrast, a difference in our indicators can only be generated by some specific mortality increases (or
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Figure B.3: Effect of a mortality increase in A on indicators at the last period, by size

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 1, p = 0, m = 2 and T = 20. A 7-period shock is introduced from period 2 to 8 by varying qA as
shown by x-axis. The graphs show population size, number of surnames and number of exclusive surnames at the last
period.
Source: Simulation using the model presented in the section titled "The surname process".

Figure B.4: Effect of a mortality increase in A on indicators at the last period, by duration

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 1, p = 0, m = 2 and T = 20. A shock is introduced by setting qA = 0.4 from period 2 on, for a
varying number of periods as shown by x-axis. The graphs show population size, number of surnames and number of
exclusive surnames at the last period.
Source: Simulation using the model presented in the section titled "The surname process".

fertility decreases). In particular, shocks must be old, large and long. These exercises show that indi-
cators based on surnames correctly identify a mortality increase with these characteristics (like the one
caused by mita).

The second claim is that a mortality decrease in A (or a fertility increase) does not raise the number
of surnames or the number of exclusive surnames in either location. We illustrate this claim by setting
the probability of surviving and reproducing to 0.7 in A and B over time and by introducing a probability
equal to 1 in A from period 2 to 8. Figure B.5 presents the time series of our indicators. The shock
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obviously results in population size being greater in A than in B. However, since the stock of surnames
is given, this shock does not increase the number of surnames or the number of exclusive surnames; it
only results in the number of individuals per surname being larger in A than in B.

Figure B.5: Effect of a mortality decrease in A on time series of indicators

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 0.7, p = 0, m = 2 and T = 20. A 7-period shock is introduced from period 2 to 8, where qA = 1.0.
The graphs show time series for population size, number of surnames and number of exclusive surnames.
Source: Simulation using the model presented in the section titled "The surname process".

The third claim is that a migration flow from A to location different from B, when it generates
total migrations, leads to a decrease in the number of surnames in area A and has no effect in area B.
At the same time, this shock leads to a decrease in the number of exclusive surnames in area A and
to an increase in area B. The figures used in the case of a mortality increase are useful for illustrating
this migration flow: The reader only has to consider total migration instead of total death, and partial
migration instead of partial death.

The fourth claim is that a migration flow from A to B leads to a decrease in the number of surnames
and number of surnames in area A, and to an increase in both indicators in area B. We set the probability
of migration from A to B equal to 0 from periods 1 to 20. However, we increase it to 0.6 from period 1
to period 8. Figure B.6 presents the time series by location. The number of surnames in A decreases,
because some families experience total migration. The number of surnames in B, in contrast, increases
due not only to total migration of families with exclusive surnames, but also to their partial migration.
Since the appearance of a surname in B requires only one individual from a family with an exclusive
surname in A to migrate, the number of surnames in B rapidly reaches its maximum possible value. The
number of exclusive surnames drops in A due to total and partial migration: if only one individual from
a family with an exclusive surname in A migrates, then this surname becomes common. The number of
exclusive surnames in B rises due to total migration: only if all members of a family out-migrate from
A does their surname becomes exclusive in B. In sum, migration from A to B makes both the number
of surnames and the number exclusive surnames smaller in A than in B.
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Figure B.6: Effect of a migration flow from A to B on time series of indicators

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 1.0, p = 0, m = 2 and T = 20. A 7-period shock to migration is introduced from periods 2 to 8,
where p = 0.7. The graphs show time series for population size, number of surnames and number of exclusive surnames.
Source: Simulation using the model presented in the section titled "The surname process".

3.2 Scenarios

The article states that we are not permitted to draw conclusions about past population size from
observing this variable today, and it identifies two scenarios in which current population may lead to
error and surnames would not. One scenario assumes a shock that did not generate a mortality increase
in the past but in recent times as a consequence of differentiated living conditions (Scenario 2 ). We
illustrate this case by setting the probability equal to 0.8 in A from periods 1 to 10 and then to 0.60 from
period 11 to 20. Figure B.7 shows the time series of our indicators. Notice that, in the last period, we
observe a gap in population size but no gap in the surname indicators. In fact, the surname indicators
do not change at all.

The other case assumes a shock that generated a mortality increase in the past, and a posterior
mortality decrease or a posterior fertility increase (Scenario 4 ). We illustrate this by introducing two
successive shocks. In a context of a probability of surviving and reproducing equal to 0.6 in A and B,
we set this probability equal to 0.4 in A from periods 2 to 8 and then to 0.85 from period 9 to 16.
Figure B.8 shows the time series of our indicators. The two shocks compensate for each other in terms
of population, but the first opens a gap between the number of surnames and the number of exclusive
surnames that lasts forever.
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Figure B.7: Effect of a recent shock to mortality in A on time series of indicators

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 0.8, p = 0, m = 2 and T = 20. A 10-periods mortality increase is introduced from period 11 to 20,
where qA = 0.6. The graphs show time series for population size, number of surnames and number of exclusive
surnames.
Source: Simulation using the model presented in the section titled "The surname process".

Figure B.8: Effect of mixed shocks to mortality in A on time series of indicators

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = SB(0) = 200, 100 common surnames, 20 individuals per
surname, qA = qB = 0.6, p = 0, m = 2 and T = 20. A 7-period mortality increase is introduced from period 2 to 8,
where qA = 0.4, and another 7-period mortality decrease from period 2 to 8, where qA = 0.85. The graphs show time
series for population size, number of surnames and number of exclusive surnames.
Source: Simulation using the model presented in the section titled "The surname process".

3.3 Galton-Watson process

The question posed by Francis Galton refers to an initial situation with a large number N of males, each
with a different surname. It also assumes that six fixed fractions of the males have different numbers
of male children (from 0 to 5) in each generation. A main conclusion of the GW process is that, if the
population growth rate is positive, the number of surnames decreases overtime up to a fixed number.
If the population growth rate is zero, this fixed number is equal to one and the population eventually
disappears.

The model we present is compatible the Galton-Watson (GW) process. The population growth rate
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of our simulations is usually greater than zero, except for the temporary shocks in q we introduce. This
can be easily verified by considering that the growth population rate is given by 1 − mq and that we
assume individuals to have two children (m = 2). Our graphs show convergence to a fixed number as
predicted by the GW process. Consider, for instance, the time series for the number of surnames in
Figure B.1. This variable converges to a fixed number in area A from period 3 to 14, and then it is
steady; and it is constant for area B.

We go further by testing the case of growth population rate equal to zero. We introduce a few
simplifications in our simulations: one individual per surname, a null probability of migration (p = 0),
and a probability of surviving and reproducing equal to 0.5 (q = 0.5). As m = 2, the growth population
rate is zero. We assume a number of periods equal to 100. Figure B.9 shows the time series of our
indicators. We obtain that the number of surnames converges to 1, as predicted by GW process.

Figure B.9: Galton-Watson process

Population Surnames Exclusive surnames

Notes: Simulation with baseline parameter values: SA(0) = 200, 0 common surnames, 1 individual per surname,
qA = 0.5, p = 0, m = 2 and T = 60. The graphs show time series for population size, number of surnames and number
of exclusive surnames.
Source: Simulation using the model presented in the section titled "The surname process".

4 Proofs of model’s properties

Proof of property 2

Consider a surname s ∈ ΩA
t . We define Nm

t (s) as the number of individuals with surname s migrating
from A to B at t. Conditional on NA

t (s), Nm
t (s) is a binomial random variable with support

[
0, NA

t (s)
]
:

P (Nm
t (s) = k) =

(
NA

t (s)
k

)
pk(1 − p)NA

t (s)−k

where Et [Nm
t (s)] = NA

t (s)p and Vt [Nm
t (s)] = NA

t (s)p(1 − p).

Then:
Nm

t (s) = NA
t (s)p + ϵst
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where Et [ϵst] = 0 and Vt [ϵst] = NA
t (s)p(1 − p).

Proof of property 3

The variable of interest NA
t+1(s), conditional on Nm

t (s), is a binomial random variable with support[
0,
[
NA

t (s) − Nm
t (s)

]
m
]
:

P
(
NA

t+1(s) = km
)

=
(

NA
t (s) − Nm

t (s)
k

)
qA

k(1 − qA)NA
t (s)−Nm

t (s)−k

where Et

[
NA

t+1(s)
]

=
[
NA

t (s) − Nm
t (s)

]
qAm

and Vt

[
NA

t+1(s)
]

=
[
NA

t (s) − Nm
t (s)

]
qA(1 − qA)m2.

Then:
NA

t+1(s) =
[
NA

t (s) − Nm
t (s)

]
qAm + µst

where Et [µst] = 0 and Vt [µst] =
[
NA

t (s) − Nm
t (s)

]
qA(1 − qA)m2.

Proof of property 4

We present this proof on a case by case basis.

Exclusive surnames of area A

Consider a surname s ∈ ΩA
t − ΩB

t . Conditional on Nm
t (s), NB

t+1(s) is a binomial random variable with
support [0, Nm

t (s)m]:

P
(
NB

t+1(s) = km
)

=
(

Nm
t (s)
k

)
qA

k(1 − qA)Nm
t (s)−k

where Et

[
NB

t+1(s)
]

= Nm
t (s)qAm and Vt

[
NB

t+1(s)
]

= Nm
t (s)qA(1 − qA)m2.

Then:
NB

t+1(s) = Nm
t (s)qAm + wA

st

where Et

[
wA

st

]
= 0 and Vt

[
wA

st

]
= Nm

t (s)qA(1 − qA)m2.

Exclusive surnames of area B

Consider a surname s ∈ ΩB
t − ΩA

t . Conditional on NB
t (s), NB

t+1(s) is a binomial random variable with
support

[
0, NB

t (s)m
]
:

P
(
NB

t+1(s) = km
)

=
(

NB
t (s)
k

)
qB

k(1 − qB)NB
t (s)−k

where Et

[
NB

t+1(s)
]

= NB
t (s)qBm and Vt

[
NB

t+1(s)
]

= NB
t (s)qB(1 − qB)m2.

13



Then:
NB

t+1(s) = NB
t (s)qBm + wB

st

where Et

[
wB

st

]
= 0 and Vt

[
wB

st

]
= NB

t (s)qB(1 − qB)m2.

Common surnames

Consider a surname s ∈ ΩA
t ∩ΩB

t . Conditional on Nm
t (s) and NB

t (s), NB
t+1(s) is the sum of two binomial

random variables g1 and g2, whose supports are [0, Nm
t (s)m] and

[
0, NB

t (s)m
]
, respectively:

P (g1 = km) =
(

Nm
t (s)
k

)
qA

k(1 − qA)Nm
t (s)−k

P (g2 = km) =
(

NB
t (s)
k

)
qB

k(1 − qB)NB
t (s)−k

where Et [g1] = Nm
t (s)qApm and Vt [g1] = NA

t (s)qA(1 − qA)m2,
and Et [g2] = NB

t (s)qBm and Vt [g2] = NB
t (s)qB(1 − qB)m2.

Then:

NB
t+1(s) = g1 + g2

= Nm
t (s)qAm + NB

t (s)qBm + wA
st + wB

st

where Et

[
wA

st

]
= 0 and Vt

[
wA

st

]
= Nm

t (s)qA(1 − qA)m2,
and Et

[
wB

st

]
= 0 and Vt

[
wB

st

]
= NB

t (s)qB(1 − qB)m2.
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