Online Appendix: Not for publication

Appendix A. Additional robustness

Here, we present the results of additional robustness exercises not discussed in the text.
A.0.1. Cost distance. While in our baseline we control for the natural logarithm of pairwise distance in kilometers, we can show that our results survive controlling for an alternative cost distance measure constructed by Özak (2010, 2018). Using data on the maximum speeds that dismounted infantry can sustain in given conditions based on climate, topography, and terrain, Özak computes the time needed to cross any given grid cell. The cost distance between any two markets, then, is simply the number of weeks needed along the quickest routes between them. Results appear in Table A6 and are almost unchanged. This should not be surprising: the correlation coefficient between this distance measure and our baseline distance measure (log kilometers) is 0.8961 .
A.0.2. Other crops. Although we have focused our analysis on the crops whose prices are reported most in the data (wheat, salt and rice), we are able to show similar results for a wide range of other crops. These data are again taken from Wages and Prices in India. We present estimates of (1) for these other prices and wages in tables A7, A8, A9, and A10. Several other prices show patterns similar to our main results. Where the conditional correlation between market integration and linguistic distance is insignificant, this is often for products whose pairwise price correlations we can compute for a much smaller set of market pairs than our main results.
A.1. Sample. In Table A11, we restrict our sample to modern India, in order to assuage concerns that the results are driven by comparisons between broad, administratively distinct, culturally dissimilar, and geographically distant regions, particularly in Burma. In Table A12, we remove any negative price correlations from the sample. In Table A13, we remove outliers by discarding the top and bottom 5 percent of observations by values of $\rho_{i j}^{p}$. In Table A14, we instead remove outliers by discarding the top and bottom 5 percent of observations by values of linguistic distance. Table A15, we show that market pairs with correlations computed from sparse data do not drive the results by only keeping pairs with at least ten observations in common.

In Table A16, we discard all markets with city populations above 75,000 in order to demonstrate that results are not driven by observations with unusual linguistic diversity and markets that may work differently than elsewhere. In Table A17, we drop coastal markets. These too might be unusually diverse in language and well integrated with other markets both domestic and foreign. In Table A18, we drop Gangetic markets, which are overwhelmingly Hindi-speaking and likely to be well integrated with each other. Tables A19 and A20 report results using only price observations from before or after 1891 (the midpoint in the sample) to compute $\rho_{i j}^{p}$. Across these sample restriction exercises, results remain similar to the baseline.

In figures A2, A3, and A4, we show that our results (corresponding to column (4) in Table 2) when we restrict our results to markets within a maximum cutoff distance from each other. For cutoffs of 1500 km and greater for wheat, 1000 km and greater for salt, and 750 km and greater for rice, results are similar in magnitude and significance to our baseline.

While readers may be concerned that our results are driven by linguistically similar markets facing correlated shocks, we note that our baseline analysis controls for the correlation in rainfall between two markets. As a further check, we drop all market pairs within 500 kilometers of each other in Table A21. Results are similar to the baseline except that the results with the correlation in wheat prices as an outcome have become insignificant in one column.
A.2. Measures of linguistic distance and market integration. In Table A22 we replace our baseline measure of market integration with the natural logarithm of (one plus) the correlation coefficient. Similarly, in Table A23 we replace our main measure with centiles of the correlation coefficient. In Table A24 we replace our baseline measure of linguistic distance with an alternative in which $\delta=0.5$. In Table A25, we instead use the pairwise distance between the largest language in each district to compute linguistic distance. In Table A26, similarly, we use a dummy for whether the largest language differs. These exercises give results similar to those in Table 2.

Our baseline measure of linguistic distance follows the literature (e.g. Esteban et al. (2012)) in taking a nonlinear transformation of the number of branches shared by two languages. The results in figures 6,7 , and 8 , in which we replace this with a dummy for having fewer than a given number of branches, is an alternative nonlinear transformation. Other nonlinear transformations are not as predictive of market integration. In Table A27, we include the square of linguistic distance as an additional right-hand-side variable. This adds noise to the estimation, often making the linear term insignificant while not itself being statistically significant. In Tables A28 and A29, we show that results obtained when taking the log of linguistic distance, or both the correlation coefficient and linguistic distance, are somewhat similar to our baseline results, but generally do not survive the inclusion of both controls and fixed effects. The R-squared values corresponding to the specification with fixed effects and controls are larger in our baseline than in the log-log specification: the relevant values are 0.81 and 0.70 for wheat, 0.61 and 0.45 for salt, and 0.87 and 0.80 for rice.

We report two alternative measures of linguistic distance, computed from the Wichmann et al. (2016) Automated Similarity Judgment Program Database. The first is an alternative cladistic measure that replaces the classification trees from Ethnologue with the classification trees from Glottolog. We use the same procedure as in section 3.2.2 to compute these distances. However, of the 257 unique ISO codes we match to languages in the 1901 census,
only 158 are present in the ASJP data. Like our genetic distance calculations in (5), then, we scale population shares by the share actually matched to the ASJP data.

The second alternative is a lexicostatistical measure similar to that in Dickens (2018). For 100 standard words (e.g. blood, bone) in each language, the ASJP reports the word in a standardized phonetic orthography. For any pair of languages, we compute the average Levenshtein distance between words that have the same meaning, and the average Levenshtein distance between words that have different meanings. The ratio of the two is a measure of linguistic distances across languages, corrected for any accidental similarity of sounds across words with different meanings. Because this ratio can be greater than one, we divide this by its maximum to rescale it between zero and one. We then use these language distances when computing linguistic distances between districts, again rescaling population shares by the share actually matched to the ASJP data.

Results are presented in tables A30 and A31. Though these have some similarities to our baseline measures, they are not as robust, being statistically insignificant in a larger number of specifications. Given the incomplete set of languages and the incomplete word lists in the data (the average entry in the ASJP data reports only 37 words), it is likely that this is due in part to measurement error of the right-hand-side variable.
A.3. Standard errors. Tables A32 and A33 present alternative approaches to standard errors. Rather than clustering by market i and market j, we report two-way clustering by either the largest language in each district or by the province in which each district falls. To account for possible correlation over space in the error term, we report Conley (1999) standard errors in Table A34, allowing dependence at distances up to five decimal degrees.
A.4. Convergence. Because it is possible that the gradual erosion of a large price gap across two markets could produce a negative correlation in the prices recorded in the two markets, we show that our results survive controlling for the mean absolute log price difference between any two markets. Results are presented in Table A35 and the results are little different from our main results.
A.5. Additional checks. We show in Table A36 that there is a significant coefficient on the interaction between linguistic and physical distance in our main equation only in one of the twelve reported specifications (fixed effects and controls for rice). For this exercise, we convert \log physical distance into a standardized $N(0,1)$ variable. We recognize that linguistic distance may simply be a marker of other differences across populations, such as the degree of shared history; thus, we show in Table A37, the results that we obtain when we control for whether both markets were part of the Mughal empire. In particular, using the maps in Richards (1995), we consider the extent of the empire in 1605, at the death of Akbar, and in 1707, at its maximum extent. Results are similar to our baseline. Results
for rice are the lone exception; these results are insignificant in two specifications. We show in Table A38 that results are similar if religion from the 1901 census is used to compute religious distance.

Appendix B. Additional Figures

Figure A1. Ludhiana: Genetic distances

Figure A2. Distance cutoffs: Wheat

Figure A3. Distance cutoffs: Salt

Figure A4. Distance cutoffs: Rice

Appendix C. Additional Tables

Table A1. Correlation coefficients: Part 1

Table A2. Correlation coefficients: Part 2

	D. in Groundnut Suit.	D. in Dry Rice Suit.	D. in Oil Palm	m Suit.	D. in Onion		D. in Precipitatio	ion D. in Slope	D. in Soybean Suit.	D. in Sugar Sut	Suit. D. in Tea Suit.
Correlation: Salt -	-. 13	-. 18	-. 10		-. 10		-. 40	-. 35	-. 12	-. 12	-. 01
Correlation: Wheat -	-. 09	-.23	-. 42		. 037		-. 29	-. 16	-. 00	-. 32	-. 29
Correlation: Rice -	-. 05	-. 06	-. 01		-. 07		-. 21	-. 09	-. 03	-. 17	-. 14
Linguistic Distance ($\mathrm{d}=0.05$) -	-. 01	. 267	. 190		-. 04		. 227	. 403	-. 10	. 258	. 102
Ln Distance in KM	. 222	. 478	. 202		. 204		. 423	. 284	. 183	. 452	. 202
Same Province -	-. 08	-. 26	-. 00		-. 09		-. 17	-. 12	-. 12	-. 23	-. 07
Both Coastal .	. 031	-. 09	. 171		. 001		. 081	. 107	-. 05	. 005	. 046
Same River -	-. 08	-. 09	-. 01		-. 08		-. 11	-. 09	-. 07	-. 06	-. 04
Rainfall Correlation -	-. 14	-. 31	-. 21		-. 05		-. 36	-. 17	-. 07	-. 46	-. 32
Difference in Land Quality	. 458	. 193	-. 01		. 511		. 231	-. 05	. 504	. 090	. 023
Difference in Ruggedness	. 020	. 176	. 184		. 031		. 287	. 933	-. 02	. 169	. 157
Difference in Malaria 0	. 072	. 232	. 354		-. 12		. 510	. 124	-. 02	. 360	. 330
Difference in Humidity 2	. 287	. 252	. 218		. 208		. 498	. 113	. 283	. 677	. 361
Difference in Altitude	. 060	. 060	-. 03		. 136		. 022	. 261	. 165	. 047	. 032
Difference in Banana Suitability . 2	. 234	. 159	. 543		-. 12		. 528	. 238	-. 01	. 705	. 867
Difference in Chickpea Suitability .	. 054	. 144	-. 02		. 045		. 021	. 059	. 025	-. 00	-. 02
Difference in Cocoa Suitability .	. 142	. 302	. 847		-. 11		. 422	. 328	-. 00	. 432	. 400
Difference in Cotton Suitability .	. 747	. 091	-. 04		. 668		. 151	-. 06	. 786	-. 03	-. 05
Difference in Groundnut Suitability 1	1	. 056	. 183		. 736		. 314	. 014	. 826	. 143	. 213
Difference in Dry Rice Suitability .	. 056	1	. 190		. 033		. 261	. 204	. 035	. 306	. 110
Difference in Oil Palm Suitability	. 183	. 190	1		-. 09		. 268	. 197	. 031	. 344	. 312
Difference in Onion Suitability .	. 736	. 033	-. 09		1		. 146	-. 00	. 719	-. 00	-. 13
Difference in Precipitation . 31	. 314	. 261	. 268		. 146		1	. 358	. 208	. 545	. 509
Difference in Slope .	. 014	. 204	. 197		-. 00		. 358	1	-. 04	. 185	. 172
Difference in Soybean Suitability . 8	. 826	. 035	. 031		. 719		. 208	-. 04	1	. 013	-. 02
Difference in Sugar Suitability .	. 143	. 306	. 344		-. 00		. 545	. 185	. 013	1	. 648
Difference in Tea Suitability . 2	. 213	. 110	. 312		-. 13		. 509	. 172	-. 02	. 648	,
Difference in Wetland Rice Suitability	. 351	. 308	. 184		. 375		. 653	. 160	. 345	. 637	. 304
Difference in White Potato Suitability -	-. 00	. 163	-. 05		. 060		-. 03	. 122	-. 02	-. 03	-. 03
Difference in Wheat Suitability .	. 005	. 316	-. 04		. 043		-. 02	. 108	-. 01	-. 02	-. 01
Difference in Tomato Suitability .	. 654	. 028	-. 11		. 822		. 183	. 011	. 734	-. 01	-. 01
Difference in Temperature .	. 067	. 127	-. 08		. 120		. 000	. 160	. 040	. 015	. 067
Latitude Difference .	. 109	. 543	. 190		. 145		. 098	. 237	. 058	. 091	-. 04
Longitude Difference 20	. 207	. 205	. 172		. 133		. 567	. 238	. 171	. 514	. 320
Religious Distance	. 299	. 175	. 169		. 126		.421	. 262	. 273	. 240	. 230
	D. in Wetland Rice Suit. D. in		Potato Suit.	D. in Wheat Suit.		D. in Tomato Suit.		D. in Temperatu	e Latitude D.	Longitude D.	Religious Distance
Correlation: Salt	-. 28	-. 17		-. 20		-. 11		-. 00	-. 19	-. 44	-. 44
Correlation: Wheat	-. 22	-. 04		-. 08		. 069		-. 04	-. 25	-. 32	-. 18
Correlation: Rice	-. 19	-. 03		-. 03		-. 09		-. 03	-. 02	-. 35	-. 23
Linguistic Distance ($\mathrm{d}=0.05$)	. 192	. 022		. 063		-. 14		. 151	. 531	. 286	. 311
Ln Distance in KM	. 512	. 251		. 301		. 167		. 261	. 605	. 672	. 397
Same Province	-. 26	-. 16		-. 21		-. 10		-. 14	-. 29	-. 31	-. 16
Both Coastal	-. 02	-. 12		-. 15		-. 04		-. 03	-. 04	. 079	. 044
Same River	-. 13	-. 07		-. 08		-. 05		-. 04	-. 16	-. 13	-. 10
Rainfall Correlation	-. 40	-. 11		-. 16		-. 06		-. 13	-. 31	-. 54	-. 30
Difference in Land Quality	. 475	. 066		. 050		. 534		. 109	. 217	. 236	. 249
Difference in Ruggedness	. 129	. 176		. 148		. 048		. 244	. 241	. 199	. 208
Difference in Malaria	. 289	-. 05		-. 05		-. 11		-. 06	-. 00	. 525	. 515
Difference in Humidity	. 667	-. 04		-. 03		. 240		. 069	. 144	. 447	. 169
Difference in Altitude	. 032	. 092		. 048		. 093		. 309	. 107	. 085	-. 02
Difference in Banana Suitability	. 347	. 017		. 017		-. 02		. 090	. 061	. 348	. 258
Difference in Chickpea Suitability	. 028	. 600		. 648		. 118		. 196	. 254	. 039	. 009
Difference in Cocoa Suitability	. 297	-. 05		-. 04		-. 12		-. 08	. 222	. 280	. 280
Difference in Cotton Suitability	. 255	. 189		. 205		. 732		. 194	. 151	. 113	. 253
Difference in Groundnut Suitability	. 351	-. 00		. 005		. 654		. 067	. 109	. 207	. 299
Difference in Dry Rice Suitability	. 308	. 163		. 316		. 028		. 127	. 543	. 205	. 175
Difference in Oil Palm Suitability	. 184	-. 05		-. 04		-. 11		-. 08	. 190	. 172	. 169
Difference in Onion Suitability	. 375	. 060		. 043		. 822		. 120	. 145	. 133	. 126
Difference in Precipitation	. 653	-. 03		-. 02		. 183		. 000	. 098	. 567	. 421
Difference in Slope	. 160	. 122		. 108		. 011		. 160	. 237	. 238	. 262
Difference in Soybean Suitability	. 345	-. 02		-. 01		. 734		. 040	. 058	. 171	. 273
Difference in Sugar Suitability	. 637	-. 03		-. 02		-. 01		. 015	. 091	. 514	. 240
Difference in Tea Suitability	. 304	-. 03		-. 01		-. 01		. 067	-. 04	. 320	. 230
Difference in Wetland Rice Suitability	y 1	-. 00		-. 01		. 391		. 016	. 168	. 586	. 328
Difference in White Potato Suitability	y -. 00	1		. 935		. 206		. 526	. 364	. 026	. 118
Difference in Wheat Suitability	-. 01	. 935		1		. 201		. 484	. 439	. 015	. 080
Difference in Tomato Suitability	. 391	. 206		. 201		1		. 280	. 080	. 163	. 180
Difference in Temperature	. 016	. 526		. 484		. 280		1	. 387	. 025	. 096
Latitude Difference	. 168	. 364		. 439		. 080		. 387	1	. 024	. 112
Longitude Difference	. 586	. 026		. 015		. 163		. 025	. 024		. 534
Religious Distance	. 328	. 118		. 080		. 180		. 096	. 112	. 534	1

Table A3. Main results: All coefficients

	(1)	(2) Correlation	(3)	(4)	(5)	$\left.{ }^{(6)}\right)_{\text {Corr }}$	n: Salt	(8)	(9)	$\stackrel{(10)}{\text { Correl }}^{(0)}$	n: Rice	(12)
Linguistic Distance	$-0.257^{* * *}$ (0.035)	$-0.210^{* * *}$	-0.023 (0.025)	$-0.067^{* *}$ (0.030)	$-0.484^{* * *}$	$-0.392^{* * *}$	$\begin{aligned} n: \text { s.alt } \\ -0.384^{* * *} \end{aligned}$	$-0.189^{* * *}$	$-0.083^{* * *}$	$\begin{gathered} \text { Correl } \\ -0.073^{* * *} \end{gathered}$		$-0.035^{* * *}$
Ln Distance in KM			${ }_{-0.001}$	-0.008			-0.065**	${ }_{-0.014}$			${ }_{-0.041 * * *}$	-0.017***
Same Province			(0.013)	(0.010)			${ }^{(0.026)}$	${ }_{(0.024)}^{(0.05 * * *}$			${ }^{(0.012)}$	${ }_{(0.005)}^{(0.05 * *}$
Same Province			(0.013)	0.018*)			$0.118^{* * *}$	$0.105^{* *}$			(0.017)	${ }_{\text {O }}^{0.031006)}$
Both Coastal			-0.014	0.003			0.052	0.080**			${ }_{-0.040}$	${ }^{-0.006}$
Same River			${ }^{(0.022)} 0$	(0.016)			${ }_{(0.033)}^{(0.019} 0$	${ }_{\text {- }}^{(0.038)}$			(0.032)	(0.008)
			${ }_{\text {(0.016 }}$	(0.009)			(0.018)	(0.012)			0.014 (0.010)	0.007 (0.005)
Rainfall Correlation			-0.003	-0.020			-0.110**				-0.112***	-0.015
			(0.025)	(0.018)			(0.052)	(0.037)			${ }_{0}^{(0.039)}$	(0.010)
D Land Quality			$\begin{gathered} 0.018 \\ (0.026) \end{gathered}$	- ${ }_{(0.017)}$			(0.046)	(0.029)			(0.023)	(0.008)
D Ruggedness			0.000	-0.000			-0.000**	-0.000**			-0.000**	-0.000
D Malaria			${ }^{(0.0000)}$	${ }^{(0.000)}$			${ }_{(0.000)}$	${ }^{(0.000)}$			(0.000)	(0.000)
			(0.003)	(0.002)			(0.006)	(0.006)			(0.002)	(0.001)
D Humidity			${ }_{\text {O }}^{0.002 * * *}$	${ }_{(0.002 * * *}^{0.001)}$			$\xrightarrow{-0.006 * * *}$	(0.001)			-0.001	-0.001*
D Altitude			-0.000***	-0.000			0.000***	0.000***			0.000	-0.000**
			${ }^{(0.000)}$	(0.000)			(0.000)	(0.000)			(0.000)	(0.000)
D Banana Suit			$\begin{aligned} & 0.000^{* * *} \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.000) \\ (0.00 \end{gathered}$			$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$			$\xrightarrow{0.000}(0.000)$	0.000 (0.000)
D Chickpea Suit			- ${ }^{-0.000} \mathbf{0 . 0 0 0)}$	$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$			$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$			$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$0.000^{* * *}$ (0.000)
D Cocoa Suit			-0.000*	0.000			-0.000	${ }_{-0.000}$			$0.000 *$	0.000
D Cotton Suit			(0.000)	(0.000) 0.000 0.0			(0.000)	(0.000)			${ }_{0}^{(0.000)}$	(0.000)
			(0.000)	(0.000)			(0.001)	(0.000)			(0.000)	(0.000)
D Groundnut Suit			$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$	0.000** (0.000)			-0.000)	-0.000 (0.000)			0.000 (0.000)	0.000*
D Dry Rice Suit			-0.000	0.000**			0.000	0.000			-0.000	0.000**
D Oil Palm Suit			(0.000) -0.000	${ }_{\text {- }}^{(0.0000) * *}$			(0.000) $0.000 * *$	(0.000) 0.000 0			${ }_{\text {col }}^{(0.000)}$	$\xrightarrow{(0.0000)}$
			(0.000)	${ }^{(0.000)}{ }^{\text {a }}$			(0.000)	(0.000)			(0.000)*	(0.000)
D Onion Suit			- ${ }_{(0.000}^{(0.000)}$	$-0.000^{* *}$ (0.000)			$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.000) \end{gathered}$			$-0.000^{* *}$ (0.000)	${ }_{(0.000)}^{(0.000 *}$
D Precipitation			- ${ }^{-0.000}(0.000)$	-0.000			$\xrightarrow{-0.0000 * * *}$	-0.0000^{*} (0.000)			-0.000	-0.000
D Slope			-0.000	-0.000			(0.000)	(0.000)			${ }_{0.000 * * *}^{(0.000)}$	(e.000)
D Soybean Suit			(0.000)	(0.000)			(0.000)	(0.000)			(0.000)	(0.000)
D Soybean Suit			(0.000)	(0.000)			${ }^{-0.000}(0.000)$	(0.000)			0.000 (0.000)	$\xrightarrow{0.000}(0.000)$
D Sugar Suit			-0.000	0.000			0.000***	0.000*			0.000***	0.000
D Tea Suit			${ }^{(0.0000 * * *}$	-0.000*			${ }_{0.001 * * *}$	${ }_{0}^{(0.0000} 0$			${ }^{(0.0 .000) * *}$	${ }^{(0.0000 * *}$
D Wetland Rice Suit			(0.000)	(0.000)			(0.000)	${ }^{(0.0000)}$			(0.000)	$\stackrel{(0.000)}{0.000} 0$
D White Potato Suit			(0.000)	${ }^{(0.000)}{ }^{(0.000 * *}$			(0.000)	${ }^{(0.000)}$			(0.000)	(0.000)
D White Potato Suit			(0.000)	-0.000			(0.000)	$\stackrel{-0.00000}{(0.000)}$			(0.000)	-
D Wheat Suit			-0.000	-0.000**			-0.000***	-0.000			-0.000	-0.000
D Tomato Suit			(0.000) 0.000 0.0	${ }_{0}^{(0.0000)}$			${ }^{(0.000)}$	${ }_{0.000}^{(0.000)}{ }^{(0.0 * *}$			${ }_{\text {- }}\left(0.00000^{* *}\right.$	${ }^{(0.000)}$
D Temperature			${ }^{(0.000)}$	$\left(\begin{array}{c}(0.000) \\ 0.005 \\ (0.005\end{array}\right.$			${ }_{0}^{(0.000)} 0$	${ }_{0}^{(0.000)}$			$\stackrel{(0.000)}{0.005}$	${ }_{0}^{(0.0000)}{ }^{(0.004 *}$
titude Diff			(0.005)	${ }^{(0.003)}$			${ }^{(0.010)}$	(0.007)			(0.004)	(0.001)
Latitude Difference			${ }_{(0}^{-0.001}$	$\begin{gathered} -0.006^{* * *} \\ (0.002) \end{gathered}$			(0.006)	$\begin{gathered} 0.008^{*} \\ (0.004) \end{gathered}$			0.004** (0.002)	$\xrightarrow{0.001 *}(0.001)$
Longitude Difference			$-0.009^{* * *}$ (0.002)	$\xrightarrow{-0.0055^{* * *}}$			$\xrightarrow{-0.007 * * *}$	$\xrightarrow{-0.004 * * *}$			$\xrightarrow{-0.0055^{* * *}}$	$\xrightarrow{-0.0033^{* * *}}(0.001)$
Religious Distance			$\begin{gathered} (0.002) \\ -0.051^{* *} \\ (0.023) \end{gathered}$	$\begin{aligned} & -0.009 \\ & (0.020) \end{aligned}$			$\begin{gathered} (0.003) \\ -0.196 * * * \\ (0.071) \end{gathered}$	$\begin{gathered} (0.002) \\ -0.238^{* * *} \\ (0.055) \end{gathered}$			$-0.055^{* *}$ (0.026)	-0.006 (0.012)
	15,652	15,652	15,652	15,652	20,909	20,909	20,909	20,909		20,909		
$\underset{\mathrm{FE}}{\mathrm{R} \text {-squared }}$	0.139 No	${ }^{0}{ }_{\text {Yes }}$		${ }_{\text {O }}^{0} \mathrm{Y}$ Yes	${ }^{0.216}$ No	${ }^{0.708}$	0.566 No cole	${ }^{0.791}$	0.045 No	O. 834	0. 282 No \%	${ }_{\text {cose }}^{0.868}$
Controls	No	No	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A4. Comparing linguistic and physical distance

	(1)	(2)	(3)
		Correlation: Wheat	
Linguistic Distance	$-0.257^{* * *}$		$-0.185^{* * *}$
	(0.035)		(0.037)
Ln Distance in KM		$-0.114^{* * *}$	-0.080***
		(0.010)	(0.008)
N	15,652	15,652	15,652
Rsq	0.139	0.134	0.195
		Correlation: Salt	
Linguistic Distance			-0.346***
	(0.061)		(0.067)
Ln Distance in KM		$-0.250^{* * *}$	-0.152***
		(0.022)	(0.021)
N	20,909	20,909	20,909
Rsq	0.216		0.266
		Correlation: Rice	
Linguistic Distance	$\begin{gathered} -0.083^{* * *} \\ (0.017) \end{gathered}$		-0.034*
			(0.019)
Ln Distance in KM		$-0.064^{* * *}$	-0.054***
		(0.006)	(0.006)
N	20,909	20,909	20,909
Rsq	0.045	0.084	0.089
Fixed Effects	No	No	No
Controls	No	No	No

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

TABLE A5. Restrict market pairs to districts where the major language is Indo-European

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

TABLE A6. Control for cost distance

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.257^{* * *}$	-0.210***	-0.023	-0.067**
	(0.035)	(0.036)	(0.025)	(0.031)
N	15,652	15,652	15,652	15,652
Rsq	0.139	0.762	0.580	0.806
	Correlation: Salt			
Linguistic Distance	$-0.484^{* * *}$	-0.392***	$-0.383^{* * *}$	$-0.190^{* * *}$
	(0.061)	(0.072)	(0.052)	(0.045)
N	20,909	20,909	20,909	20,909
Rsq	0.216	0.708	0.566	0.792
	Correlation: Rice			
Linguistic Distance	$-0.083^{* * *}$	$-0.073^{* * *}$	$-0.055^{* * *}$	$-0.032^{* * *}$
	(0.017)	(0.010)	(0.018)	(0.010)
N	20,909	20,909	20,909	20,909
Rsq	0.045	0.834	0.282	0.868
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at 5%, *Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A7. Other crops

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A8. Other crops

	(1)	(2)	(3)	(4)
		Correlation:	Gram	
Linguistic Distance	$-0.204^{* * *}$	$-0.102^{* * *}$	$-0.149^{* * *}$	$-0.053^{* *}$
	(0.034)	(0.014)	(0.022)	(0.022)
N	16,470	16,470	16,470	16,470
Rsq	0.223	0.816	0.672	0.868
		Correlation:	Jawar	
Linguistic Distance	$-0.184^{* * *}$	$-0.155^{* * *}$	-0.036^{*}	$-0.075^{* * *}$
	(0.045)	(0.014)	(0.020)	(0.014)
N	8,001	8,001	8,001	8,001
Rsq	0.194	0.800	0.652	0.841
		-0.004		
Linguistic Distancelation:	Kangni	-0.799^{*}	0.218	
	-0.520	(0.337)	(0.469)	(0.283)
N	(0.714)	1,275	1,275	1,275
Rsq	1,275	0.594	0.340	0.645
Fixed Effects	0.003	Yes	No	No
Controls	No	No		Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%, *$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A9. Other crops

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A10. Other crops

	(1)	(2)	(3)	(4)
		Correlation: Great Millet		
Linguistic Distance	-0.115^{*}	$-0.343^{* * *}$	$0.231^{* * *}$	0.118
	(0.059)	(0.053)	(0.070)	(0.079)
N	1,228	1,228	1,228	1,228
Rsq	0.018	0.576	0.570	0.706
		Correlation:	Lesser Millet	
Linguistic Distance	$-0.520^{* * *}$	$-0.533^{* * *}$	$-0.264^{* * *}$	$-0.225^{* * *}$
	(0.125)	(0.103)	(0.102)	(0.085)
N	253	253	253	253
Rsq	0.213	0.686	0.592	0.826
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at 5%, *Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A11. Restrict sample to present-day India

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	-0.268***	$-0.217^{* * *}$	-0.044*	-0.074**
	(0.033)	(0.038)	(0.026)	(0.032)
N	10,854	10,854	10,854	10,854
Rsq	0.203	0.792	0.553	0.853
Correlation: Salt				
Linguistic Distance	-0.178***	$-0.223^{* * *}$	-0.145***	-0.074**
	(0.041)	(0.037)	(0.046)	(0.036)
N	13,040	13,040	13,040	13,040
Rsq	0.055	0.585	0.454	0.729
	Correlation: Rice			
Linguistic Distance	-0.010	$-0.053^{* * *}$	-0.000	$-0.012^{* *}$
	(0.014)	(0.006)	(0.019)	(0.006)
N	13,040	13,040	13,040	13,040
Rsq	0.001	0.877	0.241	0.908
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A12. No negative correlations

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.243^{* * *}$	-0.207***	-0.028	$-0.066^{* *}$
	(0.031)	(0.035)	(0.024)	(0.029)
N	15,479	15,479	15,479	15,479
Rsq	0.160	0.770	0.592	0.825
	Correlation: Salt			
Linguistic Distance	-0.269***	-0.255***	-0.255***	$-0.118^{* * *}$
	(0.033)	(0.030)	(0.040)	(0.031)
N	18,211	18,211	18,211	18,211
Rsq	0.148	0.586	0.382	0.696
	Correlation: Rice			
Linguistic Distance	$-0.089^{* * *}$	-0.073***	-0.061***	$-0.035^{* * *}$
	(0.017)	(0.010)	(0.018)	(0.010)
N	20,768	20,768	20,768	20,768
Rsq	0.063	0.799	0.338	0.842
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%, *$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A13. Remove outliers by price correlation

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	-0.191***	$-0.178^{* * *}$	-0.020	-0.042
	(0.024)	(0.028)	(0.021)	(0.026)
N	14,243	14,243	14,243	14,243
Rsq	0.161	0.718	0.633	0.799
Correlation: Salt				
Linguistic Distance	-0.362***	$-0.310^{* * *}$	-0.370***	$-0.167^{* * *}$
	(0.048)	(0.055)	(0.045)	(0.040)
N	19,027	19,027	19,027	19,027
Rsq	0.161	0.647	0.482	0.741
Correlation: Rice				
Linguistic Distance	-0.077***	$-0.070^{* * *}$	-0.059***	$-0.036^{* * *}$
	(0.014)	(0.010)	(0.015)	(0.009)
N	19,027	19,027	19,027	19,027
Rsq	0.086	0.765	0.373	0.823
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

TABLE A14. Remove outliers by linguistic distance

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.230^{* * *}$	-0.204***	-0.035	-0.066 **
	(0.038)	(0.035)	(0.025)	(0.030)
N	14,586	14,586	14,586	14,586
Rsq	0.108	0.763	0.577	0.809
Correlation: Salt				
Linguistic Distance	$-0.417^{* * *}$	-0.370***	-0.377***	$-0.201^{* * *}$
	(0.065)	(0.072)	(0.054)	(0.048)
N	19,015	19,015	19,015	19,015
Rsq	0.161	0.703	0.527	0.785
Correlation: Rice				
Linguistic Distance	$-0.072^{* * *}$	-0.077***	-0.055***	$-0.036^{* * *}$
	(0.019)	(0.011)	(0.019)	(0.010)
N	19,015	19,015	19,015	19,015
Rsq	0.030	0.836	0.267	0.872
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A15. Remove market pairs with fewer than 10 common observations

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.261^{* * *}$	$-0.210^{* * *}$	-0.021	-0.070**
	(0.035)	(0.036)	(0.024)	(0.030)
N	15,494	15,494	15,494	15,494
Rsq	0.155	0.787	0.592	0.834
Correlation: Salt				
Linguistic Distance	-0.484***	$-0.392^{* * *}$	-0.384***	$-0.189^{* * *}$
	(0.061)	(0.072)	(0.051)	(0.044)
N	20,907	20,907	20,907	20,907
Rsq	0.216	0.709	0.566	0.791
Correlation: Rice				
Linguistic Distance	$-0.083^{* * *}$	$-0.073 * * *$	-0.056***	$-0.035^{* * *}$
	(0.017)	(0.010)	(0.018)	(0.010)
N	20,907	20,907	20,907	20,907
Rsq	0.045	0.836	0.283	0.870
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

TABLE A16. Drop cities above 75,000

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.265{ }^{* * *}$	$-0.219^{* * *}$	-0.013	-0.081**
	(0.036)	(0.040)	(0.028)	(0.035)
N	10,929	10,929	10,929	10,929
Rsq	0.138	0.758	0.568	0.801
Correlation: Salt				
Linguistic Distance	$-0.493 * * *$	-0.398***	-0.383***	$-0.203^{* * *}$
	(0.066)	(0.078)	(0.055)	(0.045)
N	15,051	15,051	15,051	15,051
Rsq	0.219	0.712	0.560	0.789
Correlation: Rice				
Linguistic Distance	$-0.094^{* * *}$	$-0.076^{* * *}$	-0.068***	$-0.042^{* * *}$
	(0.017)	(0.011)	(0.018)	(0.010)
N	15,051	15,051	15,051	15,051
Rsq	0.085	0.782	0.318	0.833
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%, *$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A17. Drop coastal

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.238^{* * *}$	$-0.216^{* * *}$	-0.037	$-0.074^{* * *}$
	(0.037)	(0.035)	(0.028)	(0.027)
N	11,895	11,895	11,895	11,895
Rsq	0.154	0.779	0.509	0.830
Correlation: Salt				
Linguistic Distance	$-0.431^{* * *}$	$-0.370^{* * *}$	$-0.381^{* * *}$	$-0.228^{* * *}$
	(0.069)	(0.077)	(0.070)	(0.055)
N	14,195	14,195	14,195	14,195
Rsq	0.181	0.740	0.505	0.797
	Correlation: Rice			
Linguistic Distance	$-0.110^{* * *}$	$-0.088^{* * *}$	-0.073***	$-0.052^{* * *}$
	(0.023)	(0.014)	(0.025)	(0.015)
N	14,195	14,195	14,195	14,195
Rsq	0.091	0.816	0.372	0.848
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A18. Drop Gangetic

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.250^{* * *}$	$-0.171^{* * *}$	0.001	-0.035
	(0.035)	(0.036)	(0.029)	(0.027)
N	10,362	10,362	10,362	10,362
Rsq	0.148	0.789	0.578	0.834
	Correlation: Salt			
Linguistic Distance	$-0.445^{* * *}$	$-0.372^{* * *}$	-0.327***	$-0.167^{* * *}$
	(0.063)	(0.074)	(0.055)	(0.045)
N	14,705	14,705	14,705	14,705
Rsq	0.178	0.651	0.548	0.756
	Correlation: Rice			
Linguistic Distance	$-0.078^{* * *}$	$-0.075^{* * *}$	-0.044**	-0.031***
	(0.017)	(0.010)	(0.019)	(0.009)
N	14,705	14,705	14,705	14,705
Rsq	0.036	0.841	0.263	0.871
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

[^0]Table A19. Prices before 1891

	(1)	(2)	(3)	(4)
Correlation: Wheat				
Linguistic Distance	$-0.236^{* * *}$	$-0.264^{* * *}$	-0.090	-0.032
	(0.049)	(0.043)	(0.068)	(0.051)
N	15,165	15,165	15,165	15,165
Rsq	0.075	0.567	0.329	0.654
Correlation: Salt				
Linguistic Distance	$-0.490^{* * *}$	$-0.672^{* * *}$	-0.392***	$-0.261^{* * *}$
	(0.081)	(0.090)	(0.080)	(0.082)
N	19,701	19,701	19,701	19,701
Rsq	0.112	0.430	0.352	0.597
Correlation: Rice				
Linguistic Distance	$-0.158^{* * *}$	$-0.229^{* * *}$	-0.077**	-0.067*
	(0.024)	(0.028)	(0.032)	(0.038)
N	19,697	19,697	19,697	19,697
Rsq	0.049	0.401	0.258	0.504
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A20. Prices after 1891

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	-0.081***	$-0.148^{* * *}$	-0.058***	-0.039**
	(0.015)	(0.025)	(0.014)	(0.020)
N	13,690	13,690	13,690	13,690
Rsq	0.037	0.733	0.622	0.799
Correlation: Salt				
Linguistic Distance	-0.344***	$-0.195^{* * *}$	$-0.213^{* * *}$	$-0.091^{* * *}$
	(0.047)	(0.060)	(0.036)	(0.023)
N	20,908	20,908	20,908	20,908
Rsq	0.200	0.789	0.613	0.863
Correlation: Rice				
Linguistic Distance	-0.079***	$-0.070^{* * *}$	-0.066***	$-0.038^{* * *}$
	(0.017)	(0.013)	(0.016)	(0.009)
N	20,909	20,909	20,909	20,909
Rsq	0.039	0.879	0.261	0.902
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A21. Drop pairs within 500km

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	-0.238***	$-0.151^{* * *}$	-0.021	-0.042
	(0.036)	(0.037)	(0.028)	(0.032)
N	12,681	12,681	12,681	12,681
Rsq	0.125	0.771	0.576	0.807
Correlation: Salt				
Linguistic Distance	-0.454***	-0.255***	-0.404***	-0.112**
	(0.065)	(0.064)	(0.052)	(0.047)
N	17,552	17,552	17,552	17,552
Rsq	0.189	0.732	0.561	0.801
	Correlation: Rice			
Linguistic Distance	-0.063***	$-0.044^{* * *}$	-0.051***	$-0.022^{* *}$
	(0.018)	(0.010)	(0.020)	(0.010)
N	17,552	17,552	17,552	17,552
Rsq	0.026	0.845	0.271	0.867
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

TABLE A22. Log $1+\rho$ as outcome

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.158^{* * *}$	$-0.127^{* * *}$	-0.012	$-0.046^{* *}$
	(0.024)	(0.024)	(0.016)	(0.020)
N	15,648	15,648	15,648	15,648
Rsq	0.100	0.638	0.462	0.668
Correlation: Salt				
Linguistic Distance	$-0.393^{* * *}$	$-0.310^{* * *}$	-0.295***	$-0.138^{* * *}$
	(0.057)	(0.069)	(0.043)	(0.037)
N	20,909	20,909	20,909	20,909
Rsq	0.189	0.706	0.559	0.780
Correlation: Rice				
Linguistic Distance	-0.046 ${ }^{* * *}$	$-0.041^{* * *}$	$-0.031^{* * *}$	$-0.020^{* * *}$
	(0.010)	(0.006)	(0.011)	(0.006)
N	20,909	20,909	20,909	20,909
Rsq	0.033	0.844	0.244	0.871
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

[^1]Table A23. Centiles of ρ as outcome

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A24. $\delta=0.5$

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.333^{* * *}$	$-0.189^{* * *}$	-0.030	$-0.037^{* *}$
	(0.039)	(0.025)	(0.022)	(0.019)
N	15,652	15,652	15,652	15,652
Rsq	0.133	0.764	0.580	0.805
Correlation: Salt				
Linguistic Distance	$-0.723^{* * *}$	$-0.515^{* * *}$	-0.435***	$-0.137^{* * *}$
	(0.072)	(0.075)	(0.056)	(0.042)
N	20,909	20,909	20,909	20,909
Rsq	0.222	0.713	0.545	0.788
Correlation: Rice				
Linguistic Distance	$-0.148^{* * *}$	$-0.116^{* * *}$	-0.087***	$-0.042^{* * *}$
	(0.020)	(0.012)	(0.020)	(0.012)
N	20,909	20,909	20,909	20,909
Rsq	0.065	0.840	0.283	0.868
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A25. Measure distance using largest language

	(1)	(2)	(3)	(4)
		Correlation:	Wheat	
Distance by largest language	$-0.206^{* * *}$	$-0.141^{* * *}$	-0.038^{*}	$-0.047^{* *}$
	(0.035)	(0.027)	(0.020)	(0.020)
N	15,652	15,652	15,652	15,652
Rsq	0.128	0.759	0.581	0.806
		Correlation:	Salt	
Distance by largest language	$-0.415^{* * *}$	$-0.303^{* * *}$	$-0.302^{* * *}$	$-0.135^{* * *}$
	(0.054)	(0.061)	(0.046)	(0.040)
N	20,909	20,909	20,909	20,909
Rsq	0.210	0.704	0.560	0.790
		Correlation:	Rice	
Distance by largest language	$-0.064^{* * *}$	$-0.055^{* * *}$	$-0.045^{* * *}$	$-0.023^{* * *}$
	(0.014)	(0.009)	(0.014)	(0.008)
N	20,909	20,909	20,909	20,909
Rsq	0.035	0.833	0.281	0.868
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A26. Measure distance as dummy for different largest language

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Different Language	$-0.123^{* * *}$	-0.071***	-0.017***	-0.011*
	(0.015)	(0.010)	(0.006)	(0.006)
N	15,652	15,652	15,652	15,652
Rsq	0.033	0.758	0.580	0.805
Correlation: Salt				
Different Language	$-0.332^{* * *}$	-0.206***	-0.028	0.010
	(0.033)	(0.037)	(0.022)	(0.018)
N	20,909	20,909	20,909	20,909
Rsq	0.057	0.688	0.514	0.787
Correlation: Rice				
Different Language	$-0.104^{* * *}$	$-0.057^{* * *}$	-0.031***	$-0.013^{* * *}$
	(0.009)	(0.008)	(0.010)	(0.004)
N	20,909	20,909	20,909	20,909
Rsq	0.039	0.834	0.276	0.868
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

[^2]Table A27. Linguistic distance squared

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	-0.191	$-0.400^{* * *}$	-0.190**	-0.013
	(0.164)	(0.130)	(0.079)	(0.078)
Squared	-0.068	0.190	0.184**	-0.053
	(0.160)	(0.123)	(0.090)	(0.071)
N	15,652	15,652	15,652	15,652
Rsq	0.140	0.762	0.582	0.806
	Correlation: Salt			
Linguistic Distance	0.182	-0.024	0.144	0.327
	(0.268)	(0.255)	(0.187)	(0.204)
Squared	-0.649**	-0.350	$-0.524^{* * *}$	-0.485 **
	(0.263)	(0.260)	(0.190)	(0.192)
N	20,909	20,909	20,909	20,909
Rsq	0.227	0.709	0.572	0.792
	Correlation: Rice			
Linguistic Distance	-0.139	-0.074	-0.005	0.023
	(0.118)	(0.057)	(0.067)	(0.032)
Squared	0.054	0.000	-0.051	-0.055*
	(0.115)	(0.057)	(0.066)	(0.031)
N	20,909	20,909	20,909	20,909
Rsq	0.045	0.834	0.282	0.869
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at 5%, *Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A28. Log linguistic distance variable

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A29. Log-log specification

	(1)	(2)	(3)	(4)
			heat	
\ln Distance	$-0.074^{* * *}$	$-0.028^{* * *}$	-0.012	-0.003
	(0.011)	(0.007)	(0.007)	(0.004)
N	15,479	15,479	15,479	15,479
Rsq	0.061	0.668	0.338	0.697
			alt	
ln Distance	$-0.110^{* * *}$	-0.088***	$-0.073^{* * *}$	-0.011
	(0.014)	(0.013)	(0.013)	(0.010)
N	18,211	18,211	18,211	18,211
Rsq	0.060	0.459	0.246	0.543
ln Distance	-0.030***	-0.015***	$-0.013^{* * *}$	-0.000
	(0.005)	(0.003)	(0.004)	(0.002)
N	20,768	20,768	20,768	20,768
Rsq	0.025	0.783	0.164	0.802
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A30. Cladistic Distance from Glottolog

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at 5%, *Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A31. Lexicostatistical Distance from ASJP

	(1)	(2)	(3)	(4)
		Correlation:	Wheat	
Lexicostatistical Distance	$-0.488^{* * *}$	$-0.187^{* * *}$	$-0.117^{* *}$	-0.016
	(0.057)	(0.022)	(0.051)	(0.017)
N	15,652	15,652	15,652	15,652
Rsq	0.125	0.759	0.583	0.805
		Correlation:	Salt	
Lexicostatistical Distance	$-0.891^{* * *}$	$-0.685^{* * *}$	$-0.154^{* *}$	$-0.159^{* * *}$
	(0.116)	(0.108)	(0.068)	(0.059)
N	20,909	20,909	20,909	20,909
Rsq	0.111	0.710	0.515	0.788
		Correlation:	Rice	
Lexicostatistical Distance	$-0.172^{* * *}$	$-0.159^{* * *}$	0.035	$-0.045^{* * *}$
	(0.035)	(0.017)	(0.026)	(0.012)
N	20,909	20,909	20,909	20,909
Rsq	0.029	0.840	0.275	0.868
Fixed Effects	No	Yes	No	No
Controls	No		Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A32. Cluster by largest ethnic group

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.257^{* * *}$	$-0.210^{* * *}$	-0.023	$-0.067^{* *}$
	(0.041)	(0.038)	(0.035)	(0.031)
N	15,652	15,652	15,652	15,652
Rsq	0.139	0.762	0.580	0.806
Correlation: Salt				
Linguistic Distance	$-0.484^{* * *}$	$-0.392^{* * *}$	$-0.384^{* * *}$	-0.189**
	(0.128)	(0.149)	(0.076)	(0.074)
N	20,909	20,909	20,909	20,909
Rsq	0.216	0.708	0.566	0.791
	Correlation: Rice			
Linguistic Distance	$-0.083^{* * *}$	$-0.073^{* * *}$	$-0.056^{* * *}$	$-0.035^{* *}$
	(0.032)	(0.018)	(0.019)	(0.016)
N	20,909	20,909	20,909	20,909
Rsq	0.045	0.834	0.282	0.868
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by largest ethnic groups in market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. . Fixed effects are for market i and j.

Table A33. Cluster by province

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.257^{* * *}$	$-0.210^{* * *}$	-0.023*	$-0.067^{* *}$
	(0.046)	(0.043)	(0.012)	(0.032)
N	15,652	15,652	15,652	15,652
Rsq	0.139	0.762	0.580	0.806
Correlation: Salt				
Linguistic Distance	$-0.484^{* * *}$	-0.392**	-0.384***	-0.189**
	(0.173)	(0.178)	(0.084)	(0.094)
N	20,909	20,909	20,909	20,909
Rsq	0.216	0.708	0.566	0.791
	Correlation: Rice			
Linguistic Distance	$-0.083^{* *}$	$-0.073^{* * *}$	-0.056***	-0.035*
	(0.038)	(0.023)	(0.016)	(0.018)
N	20,909	20,909	20,909	20,909
Rsq	0.045	0.834	0.282	0.868
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at 5%, *Significant at 10%. Standard errors clustered by provinces of market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A34. Conley Standard Errors

Crop	Column	Coefficient	Standard Error	$p<0.05$
Wheat	1	-.2567	$(.0276)$	$*$
	2	-.1611	$(.0368)$	$*$
	3	-.0228	$(.0260)$	$*$
Salt	4	-.0667	$(.0313)$	$*$
	1	-.4840	$(.0521)$	$*$
	2	-.3917	$(.0943)$	$*$
Rice	3	-.3842	$(.0504)$	$*$
	4	-.1889	$(.0579)$	$*$
	1	-.0833	$(.0114)$	$*$
	2	-.0560	$(.0115)$	$*$

This table reports results analogous to those in Table 2, but with Conley standard errors accounting for spatial correlation in the error term at distances up to five decimal degrees. The "Crop" column indicates which crop's correlation coefficient is being used as an outcome variable. "Column" indicates the corresponding column in Table 2. "Coefficient" is the corresponding coefficient estimate. "Standard error" is the corresponding standard error. Coefficients that are statistically significant at the 5% level are indicated with an asterisk.

Table A35. Control for mean absolute log difference

	(1)	(2)	(3)	(4)
Correlation: Wheat				
Linguistic Distance	$-0.084^{* * *}$	$-0.112^{* * *}$	-0.004	-0.047*
	(0.032)	(0.030)	(0.025)	(0.027)
N	15,652	15,652	15,652	15,652
Rsq	0.287	0.783	0.594	0.814
Correlation: Salt				
Linguistic Distance	$-0.347^{* * *}$	-0.254***	-0.301***	-0.130***
	(0.059)	(0.049)	(0.048)	(0.035)
N	20,909	20,909	20,909	20,909
Rsq	0.485	0.804	0.663	0.837
Correlation: Rice				
Linguistic Distance	$-0.086^{* * *}$	$-0.057^{* * *}$	-0.072***	$-0.036^{* * *}$
	(0.015)	(0.008)	(0.016)	(0.010)
N	20,909	20,909	20,909	20,909
Rsq	0.222	0.859	0.378	0.873
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A36. Interact linguistic and physical distance

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A37. Mughal History

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%, *$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

Table A38. Use religious distance from 1901 census

	(1)	(2)	(3)	(4)
	Correlation: Wheat			
Linguistic Distance	$-0.257^{* * *}$	$-0.210^{* * *}$	-0.023	$-0.067^{* *}$
	(0.035)	(0.036)	(0.025)	(0.030)
N	15,652	15,652	15,652	15,652
Rsq	0.139	0.762	0.579	0.806
Correlation: Salt				
Linguistic Distance	-0.484***	$-0.392^{* * *}$	-0.387***	$-0.180^{* * *}$
	(0.061)	(0.072)	(0.050)	(0.043)
N	20,909	20,909	20,909	20,909
Rsq	0.216	0.708	0.562	0.791
Correlation: Rice				
Linguistic Distance	$-0.083^{* * *}$	$-0.073^{* * *}$	-0.053***	$-0.035^{* * *}$
	(0.017)	(0.010)	(0.019)	(0.010)
N	20,909	20,909	20,909	20,909
Rsq	0.045	0.834	0.282	0.868
Fixed Effects	No	Yes	No	Yes
Controls	No	No	Yes	Yes

Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, $\ln ($ distance $)$ in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

[^0]: Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

[^1]: Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

[^2]: Notes: ${ }^{* * *}$ Significant at $1 \%,{ }^{* *}$ Significant at $5 \%,{ }^{*}$ Significant at 10%. Standard errors clustered by market i and market j in parentheses. All regressions are OLS and include a constant. Controls are minimum year, maximum year, number of observations, \ln (distance) in km , both coastal, connected to river, rainfall correlation, temperature correlation, and absolute differences in: altitude, latitude, longitude, rainfall, temperature, land quality, ruggedness, malaria, humidity, precipitation, slope, religion, and suitabilities for growing banana, chickpea, cocoa, cotton, groundnut, dryland rice, oil palm, onion, soybean, sugar, tea, wetland rice, white potato, wheat, and tomato. Fixed effects are for market i and j.

