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Theoretical Model 
 

 In the analysis of our article, we test whether there are increasing returns in U.S. 
manufacturing and what is driving these returns. In the first step, we estimate overall 
returns to scale by regressing growth of industry output on growth of total industry 
input. In the second step, we estimate each of the output elasticities separately to 
distinguish between market power and hoarding (input utilization) as potential 
explanations for increasing returns. This Appendix illustrates the theoretical background 
of our market power vs. hoarding hypotheses. We closely follow Basu and Fernald,1 
who provide a more extensive discussion of these issues and show how the results 
follow from first principles of a dynamic cost-minimization problem. The firm 
production function is 
 

Y  F K, L, M, Z  
 

where Y  is output, K  is effective capital input, L  is effective labor input, M  are 
intermediate inputs and Z  is technology. The production function F  is differentiable 
and homogenous of degree   in inputs. This parameter indicates the returns to scale, so 

 1 corresponds to constant returns to scale. In general, returns to scale can be 

written as the sum of output elasticities 
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where Fx  is the marginal product of that input. If firms are assumed to minimize costs, 

the returns to scale based on the cost function C Y  2 can be expressed as the inverse 

of the elasticity of the cost function with respect to output 
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where, C Y  '  is the derivative of the cost function with respect to output, AC  

denotes average costs and MC  denotes marginal costs. This expression is useful 
because it relates returns to scale to costs of the firm, though it will only hold at the cost-
minimizing level of output. Next, firms may charge a price P  that is a markup   over 

marginal cost:  P MC . Equation A3 can be rewritten as 

 
 

  
1 Basu and Fernald, “Procyclical.” 
2 In general, the cost function will also depend on input prices and quasi-fixed inputs such as 

the number of employees or the capital stock. These are omitted for simplicity. 
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where s is the share of pure economic profit in gross revenue. 

 Cost-minimizing firms who are price takers in input markets will use inputs up to the 
point where the marginal revenue product is equal to the marginal cost of each input. 
The marginal revenue product of each input x  is given by 
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Equation A5 is then set equal to the marginal cost of input x : 
 

P


Fx  wx  Fx  
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where wx  is the price of input x  and is equal to the marginal cost to the firm. Equation 

A6 shows how output elasticities are related to cost shares when firms have market 
power. 
 Following Solow,3 take logs of both sides of equation A1 and differentiate with 
respect to time:4 
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where small letters denote growth rates, so dy  is the growth rate of Y . This equation 

shows the familiar growth accounting decomposition of output growth into 
contributions from input growth and technological change. The weight of each input is 
given by its output elasticity, which Solow showed to be equal to input revenue shares 
under perfect competition. To see how this changes under imperfect competition, 
rewrite equation A6 so that the output elasticity of, for example, capital is 
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 Equation A8 shows that the output elasticity of capital is equal to the markup of price 
over marginal cost times the share of capital costs in revenue. Using equation A4, it can 
be shown that this is equivalent to the returns to scale times the cost share of capital. 
 This is a result we use in formulating our market power hypothesis. If increasing 
returns to scale are due to market power such that the ratio of price over marginal cost is 

  
3 Solow, “Technical.” 
4 Normalizing the output elasticity with respect to technology to one for simplicity. 
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larger than one, the estimated output elasticity for each of the inputs should be larger 
than the cost share by the same factor  . 

 Now turn to the alternative hypothesis, namely unmeasured input utilization, or input 
hoarding. In equation A1, capital and labor was defined as effective capital and labor 
input. To be precise, assume that firms face adjustment costs when changing the capital 
stock or workforce. In the short run, however, firms may vary the degree to which they 
utilize the capital stock and workforce, which leads to 

 

K  CK  
L  EHN  

 

 Effective capital input K is equal to the capital stock K  times the length of the 

workweek of the capital stock C . Effective labor input L  is equal to the number of 
employees N  times the average number of hours paid per worker H  times the 
average effort per worker E . In practice, we do not observe the workweek of capital or 
worker effort. In our article, worker effort also includes the gap between hours paid and 
hours worked. So when estimating output elasticities based on a measure of capital 
stock (horsepower installed) and total hours paid, we face an omitted variable problem. 
Equation 4 in the main text gives the estimating equation for individual output 
elasticities. But based on equations A9 and A10, the true relationship is:5 

 

dy Ld hn  Kdk M dm  Lde Kdc   dz  
 

where the terms in brackets are not observed. However, the key insight exploited by 
Basu et al. is that while unobserved, these utilization terms are correlated with flexible 
inputs, which can be freely adjusted.6 If a firm faces a particular shock, it will not just 
change one input but will change all flexible inputs in the same direction. In our setting, 
average hours paid, dh , could be a flexible input, but its stand-alone explanatory power 

turns out to be very limited. Intermediate inputs, dm , is another flexible input therefore, 
in the spirit of Basu,7 we use it here to also infer changes in unmeasured input 
utilization. 
 This lays out the foundations of our approach to distinguishing market power from 
hoarding (unmeasured input utilization). If increasing returns to scale are due to market 
power, equation A8 shows that all estimated output elasticities should exceed their cost 

shares by the same factor, such that ̂ x   cx  for each input x  (where a hat over a 

variable denotes an estimate). If increasing returns to scale are instead due to 
unmeasured input utilization, only the estimated output elasticity of the flexible input 

should exceed its cost share: ̂M  cM . Of course, market power and hoarding are not 

mutually exclusive hypotheses, so if both were relevant, ̂ x   cx  for labor and capital 

and ̂M   cM  for intermediate inputs. 
  

5 For simplicity, we assume one type of labor instead of the two in the article. For consistency, 

we refer to the growth in hours paid by dhn  and horsepower installed by dk  instead of the 

dhp  in the main text. 
6 Basu, Fernald, and Kimball, “Technology.” 
7 Basu, “Procyclical.” 
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Robustness Analysis 
 

APPENDIX TABLE 1 
RETURNS TO SCALE ESTIMATES USING DIFFERENT INPUT DATA 

Input Combination  
(labor, capital, intermediates) 

 

              (1) 
 

                N*H, HP, I

      (2) 
 

 N*H, HP, O

      (3) 
 

   N, HP, I 

      (4) 
 

 N*H, K, I 

Weighted average input growth 
 

 1.181** 
(0.0646) 

1.258***
(0.0576) 

1.214*** 
(0.0722) 

1.202***
(0.0655) 

Observations 
R-squared 

     190 
 0.823 

190 
0.943 

190 
0.817 

190 
0.839 

* p < 0.1.  
** p < 0.05. 
*** p < 0.01. 
The null hypothesis is that the parameter is equal to 1.  
Notes: Robust standard errors, clustered by industry, in parentheses. The dependent variable is 
biennial growth of gross output in each of 19 manufacturing industries between 1919 and 1939. 
In column 1, weighted average input growth is calculated using total hours worked (N*H), 
horsepower installed (HP) and input-deflated intermediate inputs (I). In column 2, output-
deflated intermediate inputs (O) are used. In column 3, the number of workers (N) is used. In 
column 4, capital stock (K) is used. All regressions include industry fixed effects (not shown). 
Sources: See the main text. 

 
APPENDIX TABLE 2 

RETURNS TO SCALE BASED ON ALTERNATIVE OUTPUT CONCEPTS 

 Gross Output            Value Added 

       (1) 
 
 

 

      (2) 
 

  Double- 
 Deflated 

      (3) 
 

  Single-    
Deflated 

Weighted average input growth 
 

1.181** 
(0.0646) 

1.531** 
(0.204) 

1.675*** 
(0.133) 

Implied value added RTS 1.520   
Observations 
R-squared 

190 
    0.823 

190 
    0.388 

190 
    0.695 

* p < 0.1.  
** p < 0.05. 
*** p < 0.01. 
The null hypothesis is that the parameter is equal to 1. 
Notes: Robust standard errors, clustered by industry, in parentheses. The dependent variable in 
column 1 is biennial growth of gross output in each of 19 manufacturing industries between 
1919 and 1939. The dependent variable in column 2 is double-deflated value added growth; in 
column 3 it is single-deflated value added growth. In column 1, weighted average input growth 
includes total hours worked, horsepower installed and input-deflated intermediate inputs. In 
columns 2 and 3, it only includes total hours worked and horsepower installed. The weights 
used to calculate the weighted average sum to one in both of the cases. The implied value added 
RTS is calculated based on the share of value added in gross output and is drawn from Basu and 
Fernald “Returns.” All regressions include industry fixed effects (not shown). 
Sources: See the main text. 
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APPENDIX TABLE 3 
RETURNS TO SCALE FOR DIFFERENT INDUSTRY GROUPS 

Industry Set 
 

(1) 
 

All 
Industries 

(2) 
 
 

Non-BP 

(3) 
 
 

BP 

(4) 
 
 

Non-CI

(5) 
 
 

CI 

(6) 
 

Non-
Durable 

(7) 
 
 

Durable 

Weighted average 
input growth 

1.181** 
(0.0646) 

1.224
(0.195) 

1.163*** 
(0.0466) 

1.089 
(0.101)

1.253**
(0.0930) 

1.132 
(0.122) 

1.211**
(0.0705)

 
       

Difference in returns to scale  
(compared to industry set in  
previous column) 

 

‒0.0604 
(0.195) 

 
  

0.164 
(0.133) 

 
  

0.0798 
(0.138) 

 
 

Observations 
R-squared 

190 
0.823 

90 
0.665 

100 
0.925 

100 
0.843 

90 
0.818 

120 
0.696 

70 
0.915 

* p < 0.1.  
** p < 0.05. 
*** p < 0.01. 
Notes: Robust standard errors, clustered by industry, are in parentheses. The null hypothesis is 
that the parameter is equal to 1 for weighted average input growth and equal to 0 for difference 
in returns to scale. The dependent variable is biennial growth of gross output in each of 19 
manufacturing industries between 1919 and 1939. The independent variable is weighted average 
input growth based on total hours worked, horsepower installed, and input-deflated intermediate 
inputs. BP denotes industries covered in the data of Bernanke and Parkinson, “Procyclical”; 
non-BP are the other industries. CI indicates the nine industries that were in the top of the 
capital-output distribution; non-CI indicates industries at the bottom. Durable indicates the 
seven industries that are considered durable manufacturing in the current GDP by Industry 
accounts of the BEA; Non-durable indicates the remaining 12 industries. See Appendix 1, 
Appendix Table 1 for the full classifications. The first line shows the results for regressions 
including only the industries listed at the top of each column. The second line shows the results 
of a separate regression: dyit  bi  1dxit  2Ddxit  it , where D  is equal to one if an 

industry is BP (column 3), CI (column 5) or Durable (column 7) and zero otherwise. The line 

“Difference in returns to scale” reports coefficient  2 , while the corresponding  1  is shown in 

the previous column as “weighted average input growth.” All regressions include industry fixed 
effects (not shown). 
Sources: See the main text. 
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APPENDIX TABLE 4 
PERIOD-AVERAGE TECHNOLOGICAL AND TFP CHANGE 

 
Technology 

Change 
 Standard  

Error 

Solow 
Residual 

TFP   
Change 

Animal products ‒0.10 (0.0160) ‒0.04 
Vegetable products except beverages, total 1.37 (0.0214) 1.27 
Beverages and ice, total 9.69 (0.120) 10.16 
Textiles and their products 3.82 (0.0274) 3.82 
Forest products 1.90 (0.0230) 1.57 
Paper and allied products 0.67 (0.0226) 1.59 
Printing, publishing, and allied industries 0.94 (0.0206) 1.42 
Chemicals and allied products 2.13 (0.0278) 2.59 
Products of petroleum and coal 3.03 (0.0370) 4.05 
Rubber products 4.92 (0.0435) 5.04 
Leather and its manufactures, total 3.69 (0.0313) 2.44 
Finished products of leather, total 2.07 (0.0297) 1.82 
Stone, clay, and glass products 2.58 (0.0257) 2.90 
Iron and steel and their products 0.68 (0.0350) 0.82 
Nonferrous metals and their products ‒0.46 (0.0259) ‒0.15 
Machinery, not including transportation equipment 0.23 (0.0321) 0.37 
Transportation equipment, air, land, and water 3.41 (0.0422) 3.06 
Tobacco manufactures ‒0.74 (0.0371) 0.17 
Miscellaneous industries 9.57 (0.0656) 8.75 

Notes: Parameters shown under “Technological Change” are the bi
 coefficients of equation 1 

with corresponding standard errors and correspond to the average over the period of 
dyit  dxit

 for each industry. “Solow Residual TFP Change” is the period average of the 

growth of output minus the growth of inputs. 
Sources: See the main text. 
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APPENDIX TABLE 5 
FIRST-STAGE REGRESSION RESULTS 

Dependent Variable 
 
 

Weighted 
Average 

Input Growth 

Oil price 0.382*** 
(0.0635) 

 

Real government spending 0.100*** 
(0.0314) 

 

Lagged real government spending ‒0.159*** 
(0.0327) 

 

Currency-deposit ratio ‒0.140** 
(0.0525) 

 

Deposits at failed banks ‒0.0205*** 
(0.00474) 

 
Observations 190 
R-squared 0.592 
F-statistic 15.48 

* p < 0.1.  
** p < 0.05. 
*** p < 0.01.  
Notes: Robust standard errors, are in parentheses. Shown is the first-stage regression underlying 
the IV estimates in Table 1, column 2, where instruments are used to explain biennial industry 
input growth. All instruments are taken as log changes from the last period. 
Sources: See the main text. 

 
APPENDIX TABLE 6 

DYNAMIC EFFECTS OF TECHNOLOGY AND TFP CHANGES ON INPUTS AND OUTPUT 

Explanatory Variable: Technology Solow Residual TFP 

Current 
Lagged 

       2Y 
Lagged 

4Y Current 
Lagged 

2Y 
Lagged 

4Y 

Dependent variable:      

Total inputs 
 

0.158 
(0.215) 

0.193* 
(0.0952) 

‒0.107 
(0.0795) 

0.535* 
(0.297) 

0.0942 
(0.0883) 

‒0.127* 
(0.0677) 

Total hours 
 

0.156 
(0.272) 

0.259**
(0.113) 

‒0.277*** 
(0.0872) 

0.531 
(0.323) 

0.145 
(0.111) 

‒0.226***
(0.0626) 

* p < 0.1.  
** p < 0.05.  
*** p < 0.01.  
Notes: Robust standard errors, clustered by industry, are in parentheses. The dependent 
variables are either total inputs (weighted average growth of inputs) or growth of total hours. 
The explanatory variables are either technology change, the residual from the IV regression in 
Table 1 of the main text; or Solow residual TFP change, which is growth of output minus 
weighted average growth of inputs, with two lags. For both technology and Solow residual TFP, 
the current effect and two lags are included. 
Sources: See the main text. 
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APPENDIX TABLE 7 
OUTPUT ELASTICITIES FOR INDIVIDUAL PERIODS 

Period 
(1) 

1919‒1927
(2) 

1919‒1927
(3) 

1929‒1933
(4) 

1929‒1933
(5) 

1935‒1939 
(6) 

1935‒1939 

Intermediate Input Deflation 
Input-

Deflated 
Output-

Deflated 
Input-

Deflated 
Output-
Deflated 

Input-
Deflated 

Output-
Deflated 

Growth of hours worked 
by wage earners 

 

0.132 
(0.164) 

 

0.258**
(0.0981) 

 

‒0.0258 
(0.205) 

 

‒0.0735* 
(0.116) 

 

0.0272 
(0.0823) 

 

0.144* 
(0.0723) 

 

Growth of hours worked 
by salary earners 

 

‒0.09 
(0.0993) 

 

0.043 
(0.0654) 

 

0.053 
(0.153) 

 

0.110 
(0.0795) 

 

0.197 
(0.144) 

 

0.001 
(0.0594) 

 

Growth of horsepower 
installed 

 

0.198 
(0.111) 

 

0.106 
(0.0702) 

 

0.317 
(0.373) 

 

0.351 
(0.193) 

 

0.244 
(0.746) 

 

0.472 
(0.356) 

 

Growth of intermediate 
inputs 

 

0.732**
(0.0667) 

 

0.715**
(0.0611) 

 

0.813** 
(0.113) 

 

0.849***
(0.0550) 

 

0.865** 
(0.113) 

 

0.737***
(0.0247) 

 

Returns to scale 0.965 1.123* 1.158 1.237 1.333 1.354 

Observations 76 76 57 57 57 57 

R-squared 0.921 0.963 0.899 0.976 0.829 0.985 

* p < 0.1. 
** p < 0.05.  
*** p < 0.01. 
Notes: Robust standard errors, clustered by industry, are in parentheses. Returns to scale is the 
sum of the input coefficients and the null hypothesis is that returns to scale are equal to one. For 
other variables, the null hypothesis is that the parameter is equal to its cost share, averaged 
across industries for the period shown at the top of the column (they are approximately similar 
to the cost shares shown in Table 4, column 4). Dependent variable is biennial growth of gross 
output in each of 19 manufacturing industries between 1919 and 1939. Explanatory variables 
are the biennial growth of individual inputs, with input-price deflated and output-price deflated 
intermediate inputs. All regressions include industry fixed effects (not shown). 
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APPENDIX TABLE 8 
OUTPUT ELASTICITIES AND COST SHARES BASED ON VALUE ADDED 

PRODUCTION FUNCTION 

 (1) (2) (3) 

Intermediate Input Deflation Double-Deflated      Single-Deflated    Cost Share 

Growth of hours worked by wage earners 
 

 

0.479 
(0.194) 

 

0.756 
(0.159) 

 

 0.378 
 
 

Growth of hours worked by salary earners 
 
 

 

0.346 
(0.165) 

 

0.174 
(0.121) 

 

 0.114 
 

 

Growth of horsepower installed 
 
 

 0.810 
(0.311) 

 

0.482 
(0.158) 

 

 0.508 
 
 

Returns to scale     1.635**     1.412*** 1.000 

* p < 0.1.  
** p < 0.05. 
*** p < 0.01. 
Notes: Robust standard errors, clustered by industry, are in parentheses. For returns to scale, the 
null hypothesis is that returns to scale are equal to one. For the inputs, the null hypothesis is that 
the output elasticities are equal to the cost share. Columns 1 and 2 show regression estimates 
where growth of value added is the dependent variable and the growth in wage earner hours, 
salary earner hours, and horsepower are explanatory variables. In column 1, double-deflated 
value added is the dependent variable; in column 2, single-deflated value added is the dependent 
variable. Column 3 shows the cost share of each of the inputs in total value added, averaged 
across industries, and years. All regressions include industry fixed effects (not shown). 
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APPENDIX FIGURE 2 

TECHNOLOGY INDEX BASED ON FULL PERIOD RETURNS TO SCALE AND PERIOD-
SPECIFIC RETURNS TO SCALE 

 
Notes: The series are an index with 1919 = 1 and growth rates based on two measures of 
industry technology change. Industry technology change is calculated as the growth of industry 
gross output minus returns to scale times cost-share-weighted growth of inputs: intermediate 
inputs (input-price deflated), growth of hours worked by wage and salary earners, and growth of 
horsepower installed. Industry technology change is weighted using industry value added 
shares. Returns to scale for the “Full period” series are estimated as equal to 1.181 in Table 1 in 
the main text; returns to scale for the “Period-specific” series are estimated as 0.934 for 
1919‒1927, 1.128 for 1929‒1933, and 1.518 for 1935‒1939 in Table 3 in the main text. 
Sources: See the text. 

 
Data Tables on Output and Inputs in U.S. Manufacturing, 1919 –1939 
(see Data tables in pdf or excel format) 
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