Probing of alpha, beta, and kappa-caseins variations in the *Gangatiri* cow milk with the use of polyacrylamide gel electrophoresis and High-Resolution Accurate Mass Spectroscopy

Manish Kumar Singh, Arvind, Ramadevi Nimmanapalli and Ankita Hooda

SUPPLEMENTARY FILE

Fig. S1: Comparative demonstration of SDS-PAGE dissociation of whole caseins isolated from the two exotic cow breeds, Jersey and HF, and two indigenous breeds of cow, Sahiwal, and Gangatiri (Lanes 4-7). Lane first contains a protein ladder (Sigma Aldrich). Whole bovine caseins were fractionated into alpha, beta, and kappa casein bands.

Fig. S2: The amino acid sequence of αs1-casein according to UniProt Custom reference proteome database (ID: P02662) as comparing data obtained from HRAMS analysis homologous to NCBI database depicts variant B.

 $1-Arg\-Pro\-Lys\-His\-Pro\-Ile\-Lys\-His\-Gln\-Gly\-Leu\-Pro\-Gln\-Glu\-Val\-Leu\-Asn\-Glu\-Asn\-Leu\-Arg\-Phe\-Phe\-Val\-Leu\-Asn\-Leu\-Arg\-Phe\-Phe\-Val\-Leu\-Asn\-Leu\-Asn\-Leu\-Arg\-Phe\-Phe\-Val\-Leu\-Asn\-Le$

26–Ala-Pro-Phe-Pro–Glu-Val-Phe-Gly-Lys-Glu–Lys-Val-Asn-Glu-Leu-Ser–Lys-Asp-Ile-Gly-SerP–Glu–SerP-Thr-Glu

51–Asp-Gln-Ala-Met-Glu-Asp-Ile-Lys–Gln-Met-Glu-Ala-Glu-SerP-Ile-SerP-SerP-Glu–Glu-Ile-Val-Pro-Asn-SerP

76–Val-Glu-Gln-Lys-His-Ile-Gln-Lys-Glu-Asp-Val-Pro-Ser-Glu-Arg-Tyr-Leu-Gly-Tyr-Leu-Glu-Gln-Leu-Arg 101–Leu-Lys-Lys-Tyr-Lys-Val-Pro-Gln-Leu–Glu-Ile-Val-Pro-Asn-SerP-Ala-Glu–Glu-Arg-Leu-His-Ser-Met-Lys-Glu

126-Gly-Ile-His-Ala-Gln-Gln-Lys-Glu-Pro-Met-Ile-Gly-Val-Asn-Gln-Glu-Leu-Ala-Tyr-Phe-Tyr-Pro-Glu-Leu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Star-Glu-Phe-Sta

151–Arg-Gln–Phe-Tyr-Gln-Leu-Asp-Ala-Tyr–Pro-Ser-Gly-Ala-Trp-Tyr-Tyr–Val-Pro-Leu-Gly-Thr–Gln-Tyr–Thr-Asp

176-Ala-Pro-Ser-Phe-Ser-Asp-Ile-Pro-Asn-Pro-Ile-Gly-Ser-Glu-Asn-Ser-Glu-Lys-Thr-Thr-Met-Pro-Leu-Trp

Fig. S3: The amino acid sequence of α s2-casein according to UniProt Custom reference proteome database (ID: P02663) as comparing data obtained from HRAMS analysis homologous to NCBI database depicts variant A.

1-Lys-Asn-Thr-Met-Glu-His-Val-SerP-SerP-Glu-Glu-Ser-Ile-Ile-SerP-Gln-Glu-Thr-Tyr-Lys-Gln-Glu-Lys-Asn

51-Glu-Tyr-Ser-Ile-Gly-SerP-SerP-Glu-Glu-SerP-Ala-Glu-Val-Ala-Thr-Glu-Glu-Val-Lys-Ile-Thr-Val-Asp-Asp

76-Lys-His-Tyr-Gln-Lys-Ala-Leu-Asn-Glu-Ile-Asn-Gln-Phe-Tyr-Gln-Lys-Phe-Pro-Gln-Tyr-Leu-Gln-Tyr-Leu-Tyr

101-Gln-Gly-Pro-Ile-Val-Leu-Asn-Pro-Trp-Asp-Gln-Val-Lys-Arg-Asn-Ala-Val-Pro-Ile-Thr-Pro-Thr-Leu-Asn-Arg

126–Glu-Gln–Leu-SerP-Thr–SerP-Glu–Glu-Asn–Ser-Lys-Lys-Thr–Val-Asp-Met–Glu–SerP-Thr-Glu–Val-Phe–Thr-Lys-Lys

151–Thr-Lys-Leu–Thr-Glu–Glu–Glu–Lys-Asn-Arg-Leu–Asn-Phe-Leu-Lys-Lys–Ile-Ser-Gln-Arg-Tyr–Gln-Lys-Phe-Ala

176–Leu-Pro-Gln-Tyr-Leu-Lys-Thr-Val-Tyr-Gln-His-Gln-Lys-Ala-Met-Lys-Pro-Trp-Ile-Gln-Pro-Lys-Thr-Lys-Val-Ile-Pro-Tyr-Val-Arg-Tyr-Leu

Fig. S4: The total amino acids chain of β -Cn according to UniProt Custom reference proteome database(ID: P02666) as correlating results obtained from HRAMS proteomics showing similarity to NCBI database depicts Proline (P) at position 67 showing A2 variant.

1–Arg-Glu-Leu-Glu-Glu-Leu-Asn-Val-Pro-Gly-Glu-Ile-Val-Glu-SerP-LeuSerP-SerP-SerP-Glu-Glu-Ser-Ile-Thr-Arg 26–Ile-Asn-Lys-Lys-Ile–Glu-Lys-Phe-Gln-SerP-Glu-Glu-Gln-Gln-Gln–Thr-Glu-Asp-Glu-Leu-Gln-Asp-Lys-Ile-His 51–Pro-Phe–Ala-Gln–Thr–Gln-Ser–Leu-Val-Tyr-Pro–Phe-Pro-Gly-Pro-Ile–Pro-Asn-Ser-Leu-Pro–Gln-Asn–Ile-Pro-76–Pro-Leu-Thr–Gln-Thr-Pro-Val–Val-Val-Pro-Phe–Leu-Gln-Pro-Glu-Val-Met-Gly-Val-Ser-Lys-Val-Lys-Glu 101–Ala-Met-Ala-Pro-Lys-His-Lys-Glu-Met-Pro-Phe-Pro-Lys-Tyr-Pro-Val-Glu-Pro-Phe-Thr-Glu-Ser-Glu-Ser-Leu 126–Thr-Leu-Thr–Asp–Val-Glu–Asn-Leu-His-Leu–Pro-Leu-Pro-Leu-Gln-Ser-Trp–Met-His-Gln–Pro-His-Gln-Pro-

151–Leu-Pro-Pro-Thr-Val-Met–Phe-Pro-Pro-Gln-Ser–Val-Leu-Ser-Leu-Ser-Gln–Ser-Lys-Val-Leu-Pro-Val-Pro-Gln 176–Lys-Ala-Val-Pro-Tyr-Pro-Gln-Arg-Asp-Met-Pro-Ile-Gln-Ala-Phe-Leu-Leu-Tyr-Gln-Glu-Pro-Val-Leu-Gly-Pro 201–Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val

Fig. S5: The amino acid sequence of kappa-casein according to UniProt Custom reference proteome database (ID: P02668) as comparing data obtained from HPLC-MS analysis homologous to NCBI database depicts Threonine(T) at position 136 and Aspartic acid(D) at position 148.

1–Glu-Glu-Gln-Asn-Gln-Glu-Gln-Pro-Ile-Arg-Cys-Glu-Lys-Asp-Glu-Arg-Phe-Phe-Ser-Asp-Lys-Ile-Ala–Lys-Tyr 26–Ile-Pro-Ile-Gln-Tyr-Val-Leu-Ser–Arg-Tyr-Pro-Ser-Tyr-Gly-Leu–Asn-Tyr-Tyr-Gln-Gln-Lys–Pro-Val–Ala-Leu 51–Ile-Asn-Asn-Gln-Phe–Leu-Pro-Tyr-Pro–Tyr-Tyr-Ala-Lys-Pro-Ala-Ala-Val-Arg-Ser-Pro-Ala-Gln-Ile–Leu-Gln 76–Trp-Gln-Val-Leu-Ser-Asn-Thr-Val-Pro-Ala-Lys-Ser-Cys-Gln-Ala-Gln-Pro-Thr-Thr-Met-Ala-Arg-His-Pro-His 101–Pro-His-Leu-Ser–Phe-Met–Ala-Ile-Pro-Pro-Lys–Lys-Asn-Gln-Asp-Lys–Thr-Glu-Ile-Pro-Thr-Ile–Asn-Thr-Ile 126–Ala-Ser-Gly-Glu-Pro-Thr-Ser-Thr-Pro-Thr-Thr-Glu-Ala-Val-Glu-Ser-Thr-Val-Ala-Thr-Leu-Glu-Asp-SerP-Pro 151–Glu-Val-Ile-Glu-Ser-Pro-Pro-Glu-Ile-Asn-Thr-Val-Gln-Val-Thr-Ser-Thr-Ala-Val

1									Ser.	1000			1994	5.9	5.6	S			
S. No	Protein Group ID:	Accession	Description	Sequence	Sum PEP Score	Coverage [%]	# Peptides	IN PSMts	# Unique Peptides	# AAS	(MM [KDa]		Score Sequest HT Sequest HT	# Peptides (by Searc Engine): MS Amana	# Peptides (by Searc Engine): Sequest H	Entrez Gene ID	Gene Symbol	Chromosome	Il Protein Pathway Groups
1	9	P02662	Alpha-51-casein	MILLILTCL VAVALAR PKHPI KHQGL PQEVL NE NLLRFF VAPF PEVFGKEKV NELSKDIGSESTEDQ AMEDIKQMEAE SISSSEEI VPN SVEQKHIQKED VPSERYLGYLEQLLRLKKYKV PQLEIVPNSAEER LHSMKEGIHAQQKEPMI GVN QELAYFYPELFR QFYQLDAYPSGAWYYVPLGTQYTDAPSFSDIP NPIGSENSEKTTMPLW	277	59	20	504	20	214	24.5	5.02	78106.1	16	20	282208	CSN151	6	2
2	25	P02663	Alpha-S2-casein	MKFFIFTCLLAVALAKNTMEHVSSSEESIISQETY KQEKNMAINPSKENLCSTFCKEVVRNANEEEY SIGSSSEESAEVATEEVKITVDDKHYQKALNEIN QPYQKFPQYLQYLYQGPVLNPWDQVRNAV PITPTLNREQLSTSEENSKKTVDMESTEVFTKKT KLTEEEKNRLNFLKKISQRYQXFALPQYLKTVYQ HQKAMKPWIQPKTKVIPYVRYL	50.4	53	13	95	13	222	25	8.43	10445.3	12	13	282209	C\$N152	6	0
3	29	P00760	Cationic trypsin	MKTFIFLALLGAAVAFPVDDDDKIVGGYTCGAN TVPYQVJSUNSGYHFCGGSUNSQWVVSAAHCY ISGIQURLGEDNINWEGNEQFISARSIVHPSY NSNTLNNDIMLIKLKSAASLNSRVASISLPTSCA SAGTQCLISGWGNTISSGTSYPDVLKCLKAPILS DSSCKSAYPGQITSNMFCAGYLEGGKDSCQGD SGGPVVCSGKLQGIVSWGSGCAQKNKPGVYTK VCNYVSWIKQTIASN	235	73	22	966	22	246	25.8	8.07	1951.13	12	22	615026; 780933	LOC615026; PRS51; LOC780933	4	4
4	59	P02666	Beta-casein	MKVULACL VALALARELEELNVPGEI VESLSSSE ESITRINKKIEKPQSEEQQQTEDELQDKI HPFAQ TQSLVPPFQPIPNSLPQNI PPLTQTPVVVPPFL QPEVMGVSKVKEAMAPKHKEMPFPKYPVEPFT ESQSLTLTDVENLHLPLPLLQSWMHQPHQPLP PTVMFPPQSVLSLSQSKVLPVPQKAVPYPQRD MPIQAFLLYQEPVLGPVRGPFPIV	132	33	13	302	13	224	25.1	5.35	298.86	10	13	281099	CSN2	6	0
5	8	F1MC11	Keratin, type I cytoskeletal 14	MTTCSRQYTSSSSIKSSGGIGGGSSRISSVLAGGS CRAPSAYGGLSVSSSRYSSGGVCGLGGGYGGGF SSSSFGGALGSSFGGGYGGGLGAGFGGGFGG GVGGGFGGGFGVGDGLLAGSEKVTMQNLND RLASYLDNVRALEGANADLEWIRDWYQRQP AEIKDYSPYFKIEDLRNKILTATVDNANVVLQI DNARLAADDFRTYYETELN.RLSVEADINGLRR VLDELTLARADLEMQIESLKEELAYLRKNHEEE MNSLRGQVGGDVNVEMDAAPGVDLSRILNE NRSLRGQVGGDVNVEMDAAPGVDLSRILNE ATNSELVQSGKSEISELRRTLQNLEIELQSQLSM ALSLENLGETXGRYCMQLAQIQELISSVEEQLA QLRCEMEQQNQEYKILLDVKTRLEQEIATYRRL LEGEDAHLSSSQFSSGSGSRDVSSSRQVRTKV VDVHDGKVVSTHEQIVRTKN	96	42	23	121	17	477	51.9	5.16	172.25	19	23	404111	KRT14	19	7
6	66	P02668	Kappa-casein	MMKSFFL WTILALTLPFL GAQEQNQEQPIRCE KDERFFSDKIAKYI PI QIYULSRYPSYGL NYYQQIP VALINNQFLPYPYYANPAAVRSPAQI LQWQVLS NTVPAKSCQAQPTTMARHPHPHLSFMAI PPKK NQDKTEIPTINTIASGEPTSTPTTEAVESTVATLE DSPEVIESPPEINTVQVTSTAV	19	25	4	18	4	190	21.3	6.77	31.75	4	4	281728	CSN3	6	0

Table S1 Result of detailed sequence database search in UniProt