Potential response from selection schemes based on progeny testing and genomic selection for the Chilean dairy cattle under pastoral systems: a deterministic simulation

Felipe Lembeye, Nicolás López-Villalobos and Héctor Uribe

SUPPLEMENTARY FILE

Selection Index Methodology

Selection criterion

$$I = \sum_{i=1}^{m} b_i x_i = \mathbf{x}' \mathbf{b}$$

 $\mathbf{x}' =$ row vector of m known and adjusted phenotypic values of measured traits.

 \mathbf{b} = row vector of m weight coefficients to be estimated.

Selection Objective

$$H = \sum_{i=1}^{n} v_i g_i = \mathbf{g}' \mathbf{v}$$

 $\mathbf{g}' = \text{row vector of unknown true breeding values of the n traits included in H.}$

v =row vector of the corresponding n known relative economic values.

Selection criterion coefficients

$$\mathbf{b} = \mathbf{P}^{-1}\mathbf{G}\mathbf{v}$$

G = genetic (co)variances matrix.

 P^{-1} = inverse phenotypic (co)variances matrix,

Derivation of co(variance) matrices in bull and cows pathways of selection.

- $\sigma_{P i}^2$ = Phenotypic variance.
- σ_{Gi}^2 =Genetic variance.
- $\sigma_{P ij}$ = Phenotypic covariance.
- $\sigma_{G ii}$ = Genetic covariance.

n= number of records per animal (own performance in cow pathways, performance of daughters in bull path).

r= repeatability.

p= number of animals in progeny group.

k= relationship among animals in progeny groups (half-siblings=0.25).

a= relationship among animals in progeny groups and animals to evaluate (bull to daughter =0.5).

Derivation of phenotypic and genetic (co)variances in cow pathways:

Elements in matrix \mathbf{P}

$$\sigma_{P ii}^{2} = \left[r + \frac{1 - r}{n}\right] \times \sigma_{P ii}^{2} ,$$

$$\sigma_{P ij} = \frac{\sigma_{P ij} + (n - 1) \times \sigma_{G ij}}{n}$$

Elements in matrix G

$$\sigma_{G ii}^2 = \sigma_{G ii}^2,$$
$$\sigma_{G ij} = \sigma_{G ij}$$

Derivation of phenotypic and genetic (co)variances in bull pathways:

Elements in matrix **P**

$$\sigma_{P ii}^2 = \frac{[r + (1 - \frac{r}{n})] + (p - 1)k \times h_i^2}{p} \times \sigma_{P ii}^2,$$

$$\sigma_{P ij} = \frac{[\sigma_{P ij} + (n - 1) \times \frac{\sigma_{G ij}}{n} + k \times \sigma_{G ij}]}{p}$$

Elements in matrix G

$$\sigma_{G ii}^2 = \sigma_{G ii}^2 \times a,$$

$$\sigma_{G ij} = \sigma_{G ij} \times a$$