1

2

4 SUPPLEMENTARY FILE

Navid Ghavi Hossein-Zadeh

- 5
- 6

7 Materials and methods

8 Most meta-analyses do not use the published correlation estimate itself because it usually 9 does not have a normal distribution. Rather, the published correlation is converted to the Fisher's 10 Z scale, and all analyses are performed using the transformed values. The results, such as the 11 estimated parameter and its confidence interval, would then be converted back to correlations for 12 presentation (Borenstein *et al.*, 2009). The approximate normal scale based on Fisher's Z 13 transformation (Steel and Torrie, 1960; Borenstein *et al.*, 2009) is as follows:

A meta-analysis of genetic parameter estimates for milk and serum minerals in dairy cows

14
$$Z_{ij} = 0.5 \left[\ln \left(1 + r_{g_{ij}} \right) - \ln \left(1 - r_{g_{ij}} \right) \right]$$

where r_{gij} is the published genetic correlation estimate for the *i*th trait in the *j*th article. To return to the original scale, the following equation (Borenstein *et al.*, 2009) was used:

17
$$r_{g_{ij}}^* = \frac{e^{2Z_{ij}} - 1}{e^{2Z_{ij}} + 1}$$

18 where $r_{g_{ij}}^*$ is the re-transformed genetic correlation for the *i*th trait in the *j*th article and Z_{ij} 19 is the Fisher's Z transformation.

20 The 95% lower and upper limits for the estimated parameter would be computed 21 respectively for each trait as follows:

22
$$LL_{\overline{\theta}} = \overline{\theta} - 1.96 \times SE_{\overline{\theta}}$$
 and $UL_{\overline{\theta}} = \overline{\theta} + 1.96 \times SE_{\overline{\theta}}$

where $SE_{\bar{\theta}}$ is the predicted standard error for the estimated parameter $\bar{\theta}$, given by:

24
$$SE_{\bar{\theta}} = \sqrt{\frac{1}{\sum_{j=1}^{k} w_j}}$$

25 Publication bias

23

26

Egger's linear regression asymmetry was used to examine the presence of publication 27 28 bias. When significant (P<0.10) bias was detected; the trim-and-fill method (Duval and Tweedie, 29 2000) was applied to find the number of missing studies (Sales, 2011). Also, funnel plots were used to present asymmetry. This technique indicates the symmetric distribution of effect sizes 30 31 around the true effect size if it is assumed that no publication bias exists, that is, the most extreme results have not been published. Once the number of missing observations is estimated, 32 estimated missing values are included to recalculate a weighted mean effect size and its variance. 33 When heterogeneity (Q test, P < 0.10) was detected for the parameters analyzed, testing for the 34 occurrence of possible publication bias is inappropriate as it may lead to false-positive claims 35 (Ioannidis and Trikalinos, 2007; Sales, 2011). 36

37 Discussion

A strong and popular tool to merge findings from various studies is meta-analysis. This 38 39 technique helps to decide in different scopes. The definition of objectives in this study and generally the wide variability among genetic parameter estimates from different studies showed 40 the essentiality of considering the random-effects model. In the field of animal breeding and 41 42 genetics, it is necessary to conduct a meta-analysis based on a random-effects model due to the interest in making inferences at the population level (de Oliveira et al., 2017; Ghavi Hossein-43 Zadeh, 2021). A random-effects model provides outputs that can be generalized (Sutton et al., 44 2000; Safari et al., 2005). 45

Sodium is an essential macro-mineral that has been indicated to be a significant factor in 46 milk production (Spek et al., 2013), and is disappeared through milk, urine, saliva, and feces 47 (Denholm et al., 2019). Milk phosphorus presents in numerous forms (e.g., phospholipids, 48 colloidal Ca phosphate, and casein phosphoserines), all of which are known to indicate great 49 genetic variation (Heck et al., 2008). Therefore, a portion of the genetic variation in milk 50 51 phosphorus can be justified by its casein phosphoserine residues. Milk magnesium presents chiefly as citrate, phosphate, and free ions. Only 35% of magnesium is attached to casein 52 micelles (Gaucheron, 2005); thus, the number of casein phosphoserines might not be so 53 influential in assessing the milk magnesium variation. The milk calcium secretion is a very 54 complicated event with a great variety of forms, including casein-bound Ca, colloidal Ca 55 phosphate, Ca citrate, and free ionized Ca (Neville et al., 1995). Most of Ca (nearly 65%) is 56 connected with casein micelles (Neville et al., 1995). Therefore, the number of casein 57 phosphoserines in milk may determine Ca concentrations and maybe also Zn concentrations 58 59 because the major part of Zn is also attached to casein micelles (Neville et al., 1995). Large influences of dietary Se concentration on its content in milk have been reported (Haug et al., 60 2007; Phipps et al., 2008). Also, the Se content of soil impacts the Se content in plants which are 61 62 applied as roughages. Furthermore, it is observed that Se content in milk can be enhanced by increasing Se content in the fertilizer that is used in grassland (van Hulzen *et al.*, 2009). Wiking 63 64 et al. (2008) reported that the Zn content of bovine milk is significantly influenced by the dietary intake of fat. Fat transfer from diet to milk eases the transfer of Zn from diet to milk (van Hulzen 65 66 *et al.*, 2009).

67 **References**

68	Bonfatti V, Vicario D, Lugo A and Carnier P (2017) Genetic parameters of measures and
69	population-wide infrared predictions of 92 traits describing the fine composition and
70	technological properties of milk in Italian Simmental cattle. Journal of Dairy Science 100,
71	5526-5540.
72	Borenstein M, Hedges LV, Higgins J and Rothstein HR (2009) Random effects model. In
73	'Introduction to meta-analysis'. pp. 69-75. (Wiley: Chichester, UK).
74	Buitenhuis B, Poulsen NA, Larsen LB and Sehested J (2015) Estimation of genetic
75	parameters and detection of quantitative trait loci for minerals in Danish Holstein and
76	Danish Jersey milk. BMC Genetics 16, 52.
77	Costa A, Visentin G, De Marchi M, Cassandro M and Penasa M (2019) Genetic relationships
78	of lactose and freezing point with minerals and coagulation traits predicted from milk mid-
79	infrared spectra in Holstein cows. Journal of Dairy Science 102, 7217-7225.
80	Denholm SJ, Sneddon AA, McNeilly TN, Bashir S, Mitchell MC and Wall E (2019)
81	Phenotypic and genetic analysis of milk and serum element concentrations in dairy cows.
82	Journal of Dairy Science 102 , 11180-11192.
83	de Oliveira HR, Torres VH, Vinícius CE, Alencar PM, Renata V, de Souza DM, de
84	Siqueira Otávio Henrique Gomes Barbosa D and e Silva FF (2017) Meta-analysis of
85	genetic-parameter estimates for reproduction, growth and carcass traits in Nellore cattle by
86	using a random-effects model. Animal Production Science 58, 1575-1583.
87	Duval S and Tweedie R (2000) A nonparametric "trim and fill" method of accounting for
88	publication bias in meta-analysis. Journal of the American Statistical Association 95, 89-
89	98.
90	Gaucheron F (2005) The minerals of milk. Reproduction, Nutrition, Development 45, 473-483.

91	Ghavi Hossein-Zadeh N (2021) A meta-analysis of heritability estimates for milk fatty acids
92	and their genetic relationship with milk production traits in dairy cows using a random-
93	effects model. <i>Livestock Science</i> 244 , 104388.

- 94 Govignon-Gion A, Minery S, Wald M, Brochard M, Gelé M, Rouillé B, Boichard D,
- 95 Ferrand-Calmels M and Hurtaud C (2015) Genetic parameters for milk calcium content
- predicted by MIR spectroscopy in three French breeds. 66th Annual Meeting of the
 European Federation of Animal Science (EAAP), Aug 2015, Varsovie, Poland.
- Haug A, Høstmark AT and Harstad OM (2007) Bovine milk in human nutrition–a review. *Lipids in Health and Disease* 6, 25.
- 100 Heck JML, Olieman NJ, Schennink A, van Valenberg HJF, Visker MHPW, Meuldijk RCR
- and van Hooijdonk ACM (2008) Estimation of variation in concentration,
 phosphorylation and genetic polymorphism of milk proteins using capillary zone
 electrophoresis. *International Dairy Journal* 18, 548-555.
- Ioannidis JPA and Trikalinos TA (2007) The appropriateness of asymmetry tests for
 publication bias in meta-analyses: a large survey. *Canadian Medical Association Journal* 106 176, 1091-1096.
- Neville MC, Zhang P and Allen JC (1995) Minerals, ions and trace elements in milk. Pages
 577-592 in Handbook of Milk Composition. R. G. Jensen, ed. Academic Press Inc., San
 Diego, CA.
- Phipps RH, Grandison AS, Jones AK, Juniper DT, Ramos-Moralos E and Bertin G (2008)
 Selenium supplementation of lactating dairy cows: Effects on milk production and total
 selenium content and speciation in blood, milk and cheese. *Animal* 2, 1610-1618.

113 Prasad AS (2008) Zinc in human health: Effect of zinc on immune cells. *Molecular Medicine*114 14, 353-357.

Safari E, Fogarty N and Gilmour A (2005) A review of genetic parameter estimates for wool,
growth, meat and reproduction traits in sheep. *Livestock Production Science* 92, 271-289.

Sales J (2011) Effects of *Saccharomyces cerevisiae* supplementation on ruminal parameters,
 nutrient digestibility and growth in sheep: A meta-analysis. *Small Ruminant Research* 100,
 19-29.

Sanchez MP, El Jabri M, Minery S, Wolf V, Beuvier E, Laithier C, Delacroix-Buchet A,
 Brochard M and Boichard D (2018) Genetic parameters for cheese-making properties
 and milk composition predicted from mid-infrared spectra in a large data set of

123 Montbeliarde cows. *Journal of Dairy Science* **101**, 10048-10061.

Soyeurt H, Dehareng F, Romnee J-M, Gengler N and Dardenne P (2012) Genetics of the
 mineral contents in bovine milk predicted by mid-infrared spectrometry. Page 18 in Book
 of Abstracts of the 63rd Annu. Mtg. Eur. Fed. Anim. Sci., Bratislava, Slovakia.
 Wageningen Academic Publishers, Wageningen, the Netherlands.

Spek JW, Bannink A, Gort G, Hendriks WH and Dijkstra J (2013) Interaction between
 dietary content of protein and sodium chloride on milk urea concentration, urinary urea
 excretion, renal recycling of urea, and urea transfer to the gastrointestinal tract in dairy
 cows. *Journal of Dairy Science* 96, 5734-5745.

Steel RGD and Torrie JH (1960) Principles and Procedure of Statistics. McGraw-Hill, New
York.

Sutton AJ, Abrams KR, Jones DR, Sheldon TA and Song F (2000) Methods for Meta analysis in Medical Research. J. Wiley.

136 Toffanin V, Penasa M, McParland S, Berry DP, Cassandro M and De Marchi M (2015)

Genetic parameters for milk mineral content and acidity predicted by mid-infrared
spectroscopy in Holstein–Friesian cows. *Animal* 9(5), 775-780.

139 Tsiamadis V, Banos G, Panousis N, Kritsepi-Konstantinou M, Arsenos G and Valergakis

- 140 GE (2016) Genetic parameters of calcium, phosphorus, magnesium, and potassium serum
- 141 concentrations during the first 8 days after calving in Holstein cows. *Journal of Dairy*142 *Science* 99, 5535-5544.
- 143 Van Hulzen KJE., Sprong RC, van der Meer R and Van Arendonk JAM (2009) Genetic and
- 144 nongenetic variation in concentration of selenium, calcium, potassium, zinc, magnesium,
- and phosphorus in milk of Dutch Holstein–Friesian cows. *Journal of Dairy Science* 92,
 5754-5759.
- 147 Visentin G, Niero G, Berry DP, Costa A, Cassandro M, De Marchi M and Penasa M (2019)
- Genetic (co)variances between milk mineral concentration and chemical composition in
 lactating Holstein-Friesian dairy cows. *Animal* 13, 477-486.
- Wiking L, Larsen T and Sehested J (2008) Transfer of dietary zinc and fat to milk-evaluation
 of milk fat quality, milk fat precursors, and mastitis indicators. *Journal of Dairy Science*91, 1544-1551.
- 153 Zaalberg RM, Poulsen NA, Bovenhuis H, Sehested J, Larsen LB and Buitenhuis AJ (2021)
- Genetic analysis on infrared-predicted milk minerals for Danish dairy cattle. *Journal of Dairy Science* 104. https://doi.org/10.3168/jds.2020-19638.
- 156
- 157
- 158

Table S1. The list of studies included in the database for conducting this meta-analysis

Reference	Country	Breed	Method of analysis
Bonfatti et al. (2017)	Italy	Italian Simmental	REML
Buitenhuis et al. (2015)	Denmark	Danish Holstein and Jersey	REML
Costa et al. (2019)	Italy	Holstein	REML
Denholm et al. (2019)	United Kingdom	Holstein	REML
Govignon-Gion et al. (2015)	France	Holstein, Montbéliarde, and	REML
		Normande	
Sanchez et al. (2018)	France	Montbéliarde	REML
Soyeurt et al. (2012)	Belgium	Holstein	REML
Toffanin et al. (2015)	Italy	Holstein	REML
Tsiamadis et al. (2016)	Greece	Holstein	REML
van Hulzen et al. (2009)	Netherlands	Holstein	REML
Visentin et al. (2019)	Italy	Holstein	REML
Zaalberg et al. (2021)	Denmark	Danish Holstein and Jersey	Bayesian

Table S2. Results from statistical tests to evaluate publication bias and the trim-and-fill method

to correct funnel plot asymmetry in mean heritability estimates of minerals that did not present

179	heteroge	eneity
1/9	neteroge	inenty

Troit	Egger's test p-	Trim-and-fill method						
ITall	value	Missing	Mean	95% CI				
Sem	0.783	0	0.171	0.076-0.266				
Zn_m	0.437	2	0.337	0.213-0.461				
Fe _m	0.553	0	0.013	0.000-0.067				

180 "m" subscript indicated the concentrations of the minerals in milk.

181 Missing: Number of missing studies.

Table S3. Results from statistical tests to evaluate publication bias and the trim-and-fill method
 to correct funnel plot asymmetry in mean genetic correlation estimate between milk calcium and
 phosphorus

	Egger's test p-value		Trim-and-fill	method
		Missing	Mean	95% CI
	0.279	2	0.430	0.275-0.563
187	Missing: Number of missing	studies.		
188				
189				
190				
191				

- -

Serum Ca

Serum K

Study name			Statistics	for each	study	Point es			stimate and	95% CI		
	Point estimate	Standard error	Variance	Lower	Upper limit	Z-Value	p-Value					
Denholm et al. (2019)	0.180	0.051	0.003	0.080	0.280	3.529	0.000	1	1	-	- 1	1
Taiamadis et al. (2016)	0.100	0.020	0.000	0.061	0.139	5,000	0.000					
	0.126	0.038	0.001	0.053	0.200	3.361	0.001		1	•		
								-1.00	-0.50	0.00	0.50	1.00

Fig. S1. The forest plots of individual studies and the overall outcome for heritability estimatesof serum calcium and potassium in dairy cows. Detailed information is provided in Fig. 1.

Serum P

Study name			Statistics	for each	study				Point estimate and 95% CI			
	Point estimate	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value					
Denholm et al. (2019)	0.090	0.079	0.006	-0.065	0.245	1.139	0.255	1	1		• 1	- 1
Tsiamadis et al. (2016)	0.250	0.020	0.000	0.211	0.289	12.500	0.000					
	0.188	0.078	0.006	0.036	0.341	2.417	0.016			-		
								-1.00	-0.50	0.00	0.50	1.00

Serum Mg

Study name			Statistics	for each	study				Point estimate and 95% CI			
	Point estimate	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value					
Denholm et al. (2019)	0.140	0.083	0.007	-0.023	0.303	1.687	0.092	1	1	+-	- î -	- T
Tsiamadis et al. (2016)	0.210	0.020	0.000	0.171	0.249	10,500	0.000					
	0.208	0.019	0.000	0.168	0.244	10.603	0.000			•		
								-1.00	-0.50	0.00	0.50	1.00

Fig. S2. The forest plots of individual studies and the overall outcome for heritability estimates

of serum phosphorus and magnesium in dairy cows. Detailed information is provided in Fig. 1.

Fig. S3. Funnel plot of mean heritability estimates for milk zinc. Detailed information is
provided in Fig. 5.

Fig. S4. Funnel plot of mean heritability estimates for milk iron. Detailed information isprovided in Fig. 5.

Milk Ca-P

Study name		Statistics	for each	n study			Correlation and 95% CI				
	Correlation	Lower	Upper limit	Z-Value	p-Value						
Denholm et al. (2019)	0.610	0.404	0.757	4.946	0.000	1	- T	- T	+-	•	
Soyeurt et al. (2012)	0.670	-0.043	0.931	1.862	0.063			+		-	
Toffanin et al. (2015)	0.430	0.382	0.476	15.619	0.000						
	0.500	0.338	0.634	5.448	0.000				٠		
						-1.00	-0.50	0.00	0.50	1.00	

Milk Ca-Na

Fig. S5. The forest plots of individual studies and the overall outcome for genetic correlation estimates between milk calcium with milk phosphorus and sodium in dairy cows. Detailed information is provided in Fig. 1.

Milk Ca-K

Fig. S6. The forest plots of individual studies and the overall outcome for genetic correlation
estimates between milk calcium with milk potassium and magnesium in dairy cows. Detailed
information is provided in Fig. 1.

Milk Na-P

Milk Na-Mg

Study name	1	Statistics	for each	n study			95% CI			
	Correlation	Lower limit	Upper limit	Z-Value	p-Value					
Denholm et al. (2019)	0.160	-0.159	0.449	0.983	0.326	1	1	-+=	-1	1
Soyeurt et al. (2012)	-0.080	-0.102	-0.058	-7.242	0.000					
	-0.015	-0.221	0.193	-0.139	0.889			+	· .	
						-1.00	-0.50	0.00	0.50	1.00

Milk Na-K

Study name		Statistics	for each	n study			Correla	ation and	95% CI	
	Correlation	Lower limit	Upper limit	Z-Value	p-Value					
Denholm et al. (2019)	-0.260	-0.596	0.153	-1.241	0.215	1	-+-		1	1
Soyeurt et al. (2012)	0.090	0.062	0.117	6.394	0.000					
	-0.024	-0.336	0.293	-0.142	0.887	515	-	-	-	
						-1.00	-0.50	0.00	0.50	1.00

Fig. S7. The forest plots of individual studies and the overall outcome for genetic correlation
estimates between milk sodium with milk phosphorus, magnesium, and potassium in dairy cows.
Detailed information is provided in Fig. 1.

Milk Mg-P

Study name	Statistics for each study						Correlation and 95% CI				
	Correlation	Lower limit	Upper limit	Z-Value	p-Value						
Denholm et al. (2019)	0.490	0.247	0.675	3.703	0.000		1	1		Ĩ	
Soyeurt et al. (2012)	0.700	0.684	0.715	55.290	0.000						
	0.625	0.392	0.782	4.506	0.000			ļ	-	•	
						-1.00	-0.50	0.00	0.50	1.00	

Milk Mg-K

Study name		Statistics	for each	study	Correlation and 95% Cl					
	Correlation	Lower limit	Upper limit	Z-Value	p-Value					
Denholm et al. (2019)	0.200	-0.063	0.437	1.497	0.134	- Ĩ -	1	+	-1	1
Soyeurt et al. (2012)	0.220	0.202	0.238	23.648	0.000					
	0.220	0.202	0.237	23.695	0.000					
						-1.00	-0.50	0.00	0.50	1.00

Milk P-K

Study name		Statistics	for each	study		Correlation and 95% CI					
	Correlation	Lower limit	Upper limit	Z-Value	p-Value						
Denholm et al. (2019)	-0.040	-0.357	0.286	-0.235	0.814	1	1		- 1	1	
Soyeurt et al. (2012)	0.140	0.116	0.163	11.514	0.000						
	0.129	0.046	0.211	3.040	0.002			•			
						-1.00	-0.50	0.00	0.50	1.00	

271

Fig. S8. The forest plots of individual studies and the overall outcome for genetic correlation 272 estimates between milk magnesium with milk phosphorus and potassium, and between milk 273 phosphorus with milk potassium in dairy cows. Detailed information is provided in Fig. 1. 274

275

276

277

278

279

Milk Ca-MY

Study name		Statistics	for each	n study			Correlation and 95% CI				
	Correlation	Lower	Upper limit	Z-Value	p-Value						
Toffanin et al. (2015)	-0.260	-0.715	0.349	-0.827	0.408	1	+		- 1	1	
Soyeurt et al. (2012)	-0.170	-0.236	-0.103	-4.903	0.000						
	-0.171	-0.236	-0.104	-4.964	0,000			•	51		
						-1.00	-0.50	0.00	0.50	1.00	

Milk P-MY

281

Fig. S9. The forest plots of individual studies and the overall outcome for genetic correlation estimates between milk calcium and phosphorus with milk yield in dairy cows. Detailed information is provided in Fig. 1.

Fig. S10. Funnel plot of Fisher's Z for the genetic correlations between milk calcium and phosphorus in dairy cows. Detailed information is provided in Fig. 5.