A comparative study of extraction techniques for maximum recovery of β -galactosidase from the

yogurt bacterium Lactobacillus delbrueckii ssp. bulgaricus

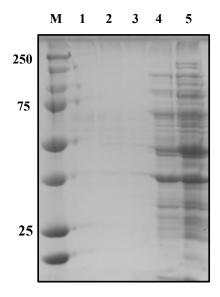
Rabin Gyawali¹, Ayowole Oyeniran¹, Tahl zimmerman¹, Sulaiman O. Aljaloud², Albert

krastanov³, and Salam A. Ibrahim¹

¹Food Microbiology and Biotechnology Laboratory, Food and Nutritional Sciences Program

North Carolina Agricultural and Technical State University, Greensboro, NC, USA

² College of Sport Sciences and Physical Activity, King Saud University, P.O. Box 1949, Riyadh


11362, Saudi Arabia

³Department of Biotechnology, University of Food Technologies, Bulgaria

Short title: β -galactosidase from *Lactobacillus bulgaricus*

*Correspondence: Rabin Gyawali, Email:rgyawali@gmail.com

SUPPLEMENTARY FILE

Figure S1. SDS-PAGE analysis of cell-free extract (supernatant) obtained from *L. bulgaricus* ATCC 11842. M, protein molecular weight marker. Total protein concentration (μg/ml): lane 1, unlysed cells (28.89); lane 2, chloroform (31.36); lane 3, toulene: acetone (18.95); lane 4, beadbeater (116.42); lane 5, sonicator (157.34).

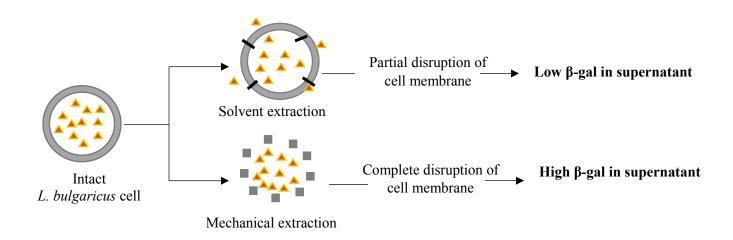


Figure S2. Schematic representation of the effect of solvent and mechanical extraction on β -gal. Mechanical disruption (sonicator; bead-beater) completely lysed the cell and released a high amount of beta-galactosidase when compared to the solvent (\blacksquare Cell wall; \blacktriangle protein).