Influence of milk pH on the chemical, physical and sensory properties of a milk-based alcoholic beverage

Rodrigo A. Ibáñez, Stefanie Vyhmeister, María F. Muñoz, Natalia Brossard, Fernando Osorio, Fernando N. Salazar, María Angélica Fellenberg and Einar Vargas-Bello-Pérez

SUPPLEMENTARY FILE

Fig. S1 Appearance of *Licor de Oro* made from milks acidified to different pH values.

Fig. S2 Protein profile chromatograms obtained from *Licor de Oro* made with different pH values

 Table S1 Description of methodology used for the analysis of Licor de Oro.

Analysis	Method description	
Total Solids	Oven-drying method (AOAC 2007).	
Total protein	Kjeldahl (%N × 6.38; IDF 1986).	
Protein profile	Reversed-phase high performance liquid chromatography	
	(Bonizzi et al. 2009) with some modifications using a	
	Shimadzu Prominence system which consisted of a DGU-	
	20A5R degassing unit, a LC-20AD quaternary pump, a SIL-	
	20A autosampler, a CTO-20A column oven and a SPD-	
	M20A diode array detector interfaced with LabSolutions	
	software (Shimadzu Corporation, Tokyo, Japan). The	
	column used for analyses was a Restek® Viva C4, 5 µm	
	spherical particle size, 300 Å pore size, 2.1×150 mm.	
	Elution was monitored at 214 nm and the mobile phase	
	consisted of two solvents: A, 0.1% trifluoroacetic acid (TFA,	
	Sigma-Aldrich, St. Louis, MO, USA) in liquid	
	chromatography (LC) grade water (LiChrosolv®; EMD	
	Millipore Corporation, Billerica, MA, USA); and B, 0.1%	
	(v/v) TFA in LC grade acetonitrile (LiChrosolv®; EMD	
	Millipore Corporation, Billerica, MA, USA). Aliquots of 0.4	
	mL of <i>LO</i> were mixed with 1.6 mL of an urea buffer, filtered	
	through 0.45 mm polyethersulfone filter (Biocomma	
	Limited, Shenzhen, P.R. China) and 30 μ L of the filtrate was	
	injected for LC analysis at an eluent flow rate of 0.75	
	mL/min, with column oven equilibrated at 40°C. The elution	
	gradient was linear from 20% B (0 min) to 50% B (30 min),	
	followed by isocratic gradient of 20% B from 30.1 to 35 min	
	to maintain initial conditions of analysis for following	
	samples. A blank consisted of LC grade water mixed with	
	urea buffer at a ratio 1:5 was run before and after each LO	
	sample to prevent accumulation excessive sugar in the	
	system. Chromatogram peaks were identified by comparing	
	peak intensity and retention times with case (α_{s}, β) and κ -	
) and whey protein (α -lactoalbumin and β -lactoglobulin)	
A ch	standards (Sigma-Aldrich, St. Louis, MU, USA).	
Asil	Gravinietric method by neating samples at 550° C × 4 h (AOAC 2007)	
all.	(AUAU 2007). Direct massurement with all clostrods on complete st 2000	
рп	Direct measurement with pH electrode on samples at 20° C (ININ 1070)	
Titratable asidity	(IININ $17/7$). Addition of NoOII 0.1 Numtil share labele is an desire of	
i matable acidity	Addition of NaOH 0.1 IN until phenoiphthatein endpoint at $pH = 8.3$ (INN 1008)	
	pri 0.3 (IIII) 1370).	

Continued

Table S1	(Continued))
----------	-------------	---

Analysis	Method description	
Ethanol content	Direct measurement with with an alcoholmetre at 20°C on	
	distilled alcohol obtained from 250 mL of sample.	
Density	Use of a 5 mL pycnometre.	
Viscosity	Use of a controlled stress rheometre (Discovery HR-2; TA Instruments, Waters LLC, Leatherhead, Surrey, UK) equipped with a conical geometry (60 mm diameter, 1.0081° and 27 μ m gap; H/A-AL ST, TA Instruments). Shear rate was increased from 0.1 to 300/s over 8 min at 25°C.	
Turbidity	Direct measurement on a nephelometre (HI 83749, Hanna Instruments, USA) at 20°C.	
Colour	Direct measurement with a colorimetre (Konika-Minolta CR-400, Konika-Minolta Optics Inc., Osaka, Japan) set to the CIELAB system (Hunterlab 2012), illuminant D65 and a visual angle of 2°, using a glass cuvette (CM-A96) contained in a sample holder (CR-A505) and a white calibration plate (CR-A43) as background.	
Sensory analysis	The appearance, texture and flavour attributes of <i>LO</i> samples were measured by a combination of Spectrum and quantitative sensory analysis (Meilgaard <i>et al.</i> 1999). <i>LO</i> samples were evaluated in duplicate by 12 panellists with at least 15 h of training. Samples were identified with random 3-digit code. <i>LO</i> samples (45 mL) were served in 90 mL transparent cups at ~22°C. Sensory evaluation was performed using a numerical scale, ranging from 0 to 15. Description of evaluated attributes and their references are shown in Table S2.	

Attribute	Definition and evaluation	References used, preparation instructions and
	procedure	anchor points (0-15)
Turbidity	Degree of visual haze in beverage	Deionized water = 0.0.
	caused by suspended particles.	Skim milk 0% fat (Colun) = 15.0.
Whiteness	Degree of white color developed in	Orange Crush soft drink (orange color; Dr.
	beverage.	Pepper Snapple Group) $= 0.0$.
		Pap soft drink (intense yellow color; CCU) = 5.5.
		Skim milk 0% fat (white color; Colun) = 15.0.
Creaminess	Degree of thickness in beverage	Deionized water $= 0.0$.
	perceived by pressing the tongue	Full-fat cultured milk (Soprole) = 5.0
	with on the palate.	Sweetened condensed milk (La Lechera Nestlé) =
		14.0
Alcohol	Sensation perceived due to the	None to pronounced.
	presence of ethanol.	
Sweet	Basic taste sensation elicited by	None to pronounced.
	sweet compounds.	
Acid	Basic taste sensation elicited by	None to pronounced.
	acids.	
Bitter	Basic taste sensation elicited by	None to pronounced.
	bitter compounds	
Milkfat	$\ \ Aromatics and flavor associated with$	None to pronounced.
	milk or fresh cream.	
Vanilla	$\ \ Aromatics and flavor associated with$	None to pronounced.
	vanillin.	
Cloves	Aromatics and flavor associated with	None to pronounced
	eugenol.	
Pungent	Chemical feeling factor associated	None to pronounced.
	with high concentrations of irritants	
	to the mucous membranes of the oral	
	cavity	
Astringent	Harsh, drying, puckering sensation	None to pronounced.
	on the surfaces of the mouth.	

Table S2 Definition of the attributes used by trained panelists to evaluate the sensory properties of *Licor de Oro* at $22^{\circ}C^{*}$.

*Attributes were evaluated using Spectrum and quantitative descriptive analysis (Meilgaard *et al.* 1999).

References

- AOAC 2007 *Official methods of analysis*, 18th edn, Rockville Maryland, USA: Association of Official Agricultural Chemists International
- **Bonizzi, I, Buffoni, JN, & Feligini, M** 2009 Quantification of bovine casein fractions by direct chromatographic analysis of milk. Approaching the application to a real production context. *Journal of Chromatography. A*, **1216**, 165–168.
- **Hunterlab** 2012. Application Note 1005.00: Hunter L,a,b vs CIE L*,a*,b*. http://www.hunterlab.com/an-1005b.pdf. Accessed November 30 2018
- **IDF** 1986 Determination of the nitrogen content (Kjeldalh method) and calculation of crude protein. Brussels, Belgium: International Dairy Federation
- **INN** 1979 Norma chilena oficial NCh 1671 Of. 1979. Leche y productos lácteos Determinación del pH [Official Chilean normative 1671:1979. Milk and dairy products - pH determination], Santiago, Chile: Instituto Nacional de Normalización, Chile.
- **INN** 1998 Norma chilena oficial NCh 1738 Of. 1998 Leche Determinación de la acidez titulable [Official Chilean normative 1738:1998. Milk and dairy products - titratable acidity determination], Santiago, Chile: Instituto Nacional de Normalización, Chile.
- Meilgaard, MM, Civille, GV, & Carr, BT 1999 Selection and training of panel members. In *Sensory evaluation techniques*, 3rd edn, Boca Raton, FL, USA: CRC Press, pp. 174–176.