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S1. Proofs for propositions from the main text

Proof of Proposition 1. Note that the sum of degrees over every vertex of a

graph is even. Hence, k is an even number, else the sum of the degrees would

be odd. Number the odd-degree vertices as v1, v2, . . . , vk. Now, add (using ⊕)

edges (vi, vk/2+i), i = 1, 2 . . . k/2, to G to obtain GC . By construction, GC has

only even degree vertices such that GC ∈ Cn by Property P2. Thus, there exists

a graph in Cn that differs from G by k/2 edges.

We prove the second part of the proposition by contradiction. Assume that
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there exists a graph GC ∈ Cn that differs from G in l < k/2 edges. Flipping

these l edges in G to obtain GC will affect the degree of at most 2l vertices since

each edge involves two vertices. Thus, GC shares at least k − 2l > 0 odd-degree

vertices with G which contradicts GC ∈ Cn by Property P2. □

Proof of Proposition 2. Since the cycle space is a vector space with basis

C = {c1, . . . , cr}, each element of the cycle space is in bijective correspondence

with a binary sequence of length r. Each binary element of this sequence

corresponds to the inclusion of the respective cycle basis element. As the

cycle inclusions are independent with probability 0.5, every binary sequence is

equally probable. The marginal edge inclusion probability of 0.5 follows from

Proposition 3 with p = 0.5. □

Proof of Proposition 3. Denote {c1, . . . , cr} by Ce. The edge e is included if

and only if an odd number of cycles from Ce are included. Suppose Ck ⊂ Ce is

a subset with the odd number of elements |Ck| = 2k + 1. Then, the probability

that the cycles in Ck are included and the cycles in Ce \ Ck are not is

p(Ck) =

( ∏
ci∈Ck

pi

) ∏
ci∈Ce\Ck

(1− pi)

 .

By summing this probability over all Ck ⊂ Ce, we get the joint probability of

edge e and including exactly 2k + 1 cycles as
∑

Ck⊂Ce
p(Ck). Note that this is

exactly the coefficient of x2k+1 in f(x). Then, summing this coefficient over

k = 0, . . . , ⌊(r − 1)/2⌋ yields the desired result.

Next, consider the special case where p = p1 = · · · = pr. Then, f(x) =

(1 − p + px)r =
∑r

i=0

(
r
i

)
(1− p)r−i(px)i where the last equality follows from

the binomial theorem. Thus, the probability of inclusion of the edge e is∑
i odd

(
r
i

)
(1− p)r−ipi. By the binomial theorem,

∑r
i=0

(
r
i

)
(1− p)r−ipi = (1−

p + p)r = 1 and
∑r

i=0

(
r
i

)
(1 − p)r−i(−p)i = (1 − p − p)r = (1 − 2p)r. Also,
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∑r
i=0

(
r
i

)
(1− p)r−ipi −

∑r
i=0

(
r
i

)
(1− p)r−i(−p)i = 2

∑
i odd

(
r
i

)
(1− p)r−ipi since

(1− p)r−ipi − (1− p)r−i(−p)i =

0, i even

2(1− p)r−ipi, i odd

Therefore,
∑

i odd

(
r
i

)
(1− p)r−ipi = {1− (1− 2p)r}/2. □

Proof of Corollary 1. Let {v0, . . . , vn−1} be the vertices such that the star

tree generating the basis C is rooted at v0. We refer to edges of the form (vi, vj)

where i, j ̸= 0 as peripheral edges. We refer to edges of the form (v0, vi) as rooted

edges.

First, consider a rooted edge (v0, vi). Exactly (n−2) edges in the complement

T of T have vi as an endpoint. Each of these edges correspond to their own

unique basis element in C. No other basis elements in C contain (v0, vi). Thus,

r = n− 2 basis elements contain (v0, vi). On the other hand, each peripheral

edge is in T and is thus contained in only r = 1 basis element due to the bijection

between edges in T and elements of C. The required result for a given T now

follows from Proposition 3.

For the result marginalising over the uniform distribution over all star trees,

note that there are n star trees on n vertices. Each edge is rooted in 2 of these

trees and peripheral in the other (n − 2). Thus, the marginal edge inclusion

probability follows as

P{(i, j) ∈ E} =

P{(i, j) is peripheral}P{(i, j) ∈ E | (i, j) is peripheral}

+ P{(i, j) is rooted}P{(i, j) ∈ E | (i, j) is rooted}

=
n− 2

n
p+

2

n
{1− (1− 2p)n−2}/2

which simplifies to the required result. □

Proof of Proposition 4. Using the independence of the cycle inclusions, it is

seen that for any I ⊂ {1, . . . , r} the joint inclusion probability of the cycles
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CI = {ci : i ∈ I} is given by the coefficient of
∏

i∈I ti in f . The inclusion

of CI leads to the inclusion of the edges {ea(i), eb(i) : i ∈ I}, notwithstanding

cancellations due to intersecting cycles. The probability generating function

h ∈ R[x1, . . . , xm] for the edge inclusions (with numerosity and ignoring binary

cancellations) is therefore given by replacing each ti in f with xa(i)xb(i). Binary

cancellations are then handled by reducing all exponents modulo 2, which is

equivalent to taking the image of h in the quotient ring. □

Proof of Proposition 5. For odd k, P{deg(vi) = k} = 0 by Property P2. The

remainder of this proof thus considers even k.

Note that each edge (vi, vj), i, j ̸= 0, is present in exactly one cycle basis

element whose vertices are {v0, vi, vj}. Therefore, the inclusion of edge (vi, vj)

is equivalent to the inclusion of the cycle {v0, vi, vj}. Fix i > 0. If vi has degree

k > 0, then it is connected to either (i) k other vertices that are not the root

vertex, or (ii) the root vertex and k − 1 other vertices.

(i) Consider the first case. For each of the k vertices connected to vi via an

edge, we must have the inclusion of the corresponding cycle, and for each

of the n− 2− k vertices not connected to vi via an edge, the corresponding

cycle cannot be included. This happens with probability pk(1− p)n−2−k

where p is the inclusion probability for any cycle basis element. The

inclusion of exactly k cycles containing the edge (v0, vi) ensures that this

edge is not included since k is even. Since there are
(
n−2
k

)
ways to pick

k non-root vertices that are connected to vi, the probability of vi being

connected to k non-root vertices is
(
n−2
k

)
pk(1− p)n−2−k.

(ii) In the second case, by a similar argument to the above, there are exactly

k − 1 cycles of the form {v0, vi, vj} that are included. This happens with

probability
(
n−2
k−1

)
pk−1(1− p)n−k−1. Since k is even, this results in the edge

{v0, vi} being included.

Adding the probabilities of (i) and (ii) yields the required result for k ≥ 2. For
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k = 0, only (i) is possible such that P{deg(vi) = k} =
(
n−2
k

)
pk(1− p)n−2−k =

(1− p)n−2. □

Proof of Proposition 6. Recall the definition of peripheral and rooted edges

from the proof of Corollary 1. The lower bound |E| ≥ q follows from the

observation that there are exactly q peripheral edges included in G. The

remainder of this proof thus considers the upper bound.

The maximum of three edges per cycle (|E| = 3q) is attained when there

are no intersections between the included cycles. Including a cycle {v0, vi, vj}

corresponds to choosing a pair {vi, vj} from the (n − 1) non-root vertices.

Avoiding intersections between included cycles corresponds to choosing all such

pairs disjoint. By the pigeonhole principle, there can be at most m mutually

disjoint pairs. Thus, |E| = 3q is attainable if and only if q ≤ m. Also, |E| ≤ 3q

for q ≤ m.

By Property P2, the degree of v0 and thus the number of rooted edges in G

must be even. The largest even number less than the number (n−1) of non-root

vertices is 2m. Additionally, there are q peripheral edges. Thus, |E| ≤ q + 2m.

□

S2. Edge union of spanning trees

We explore the prior induced by edge unions of spanning trees in this section.

As seen in Højsgaard et al. (2012), Schwaller et al. (2019) and Duan & Dunson

(2021), the spanning tree structure has proved relevant in graphical model

inference. We thus consider defining a graph prior p(G | k) where the graph

G = (V,E) is an edge union of k spanning trees, i.e. E = ∪k
i=1Ti where Ti

is the set of edges of a spanning tree. We assume that the inclusion of each

spanning tree is equally likely and independent a priori. Then, to infer the

induced posterior distribution of the graphical model using Metropolis-Hastings,
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the following ratio needs to be computed:

p(E′ = ∪k′

i=1Ti | k′)
p(E = ∪k

i=1Ti | k)
=

|Y (G′, k′)|/
(|τ(G′)|

k′

)
|Y (G, k)|/

(|τ(G)|
k

)
where the prime marks proposed values in the MCMC, |Y (G, k)| is the number of

ways to write G as the edge union of k distinct spanning trees, k′ ∈ {k−1, k+1},

and |τ(G)| is the number of all spanning trees of G. Note that by Kirchoff’s

matrix tree theorem (Theorem S1 on page 7), |τ(G)| can be computed in O(n3)

time. Hence, the term left to be computed is the ratio |Y (G′, k′)|/|Y (G, k)|.

The remainder of this section is structured as follows. Section S2.1 introduces

notation. Then, Sections S2.2, S2.3 and S2.4 compute, lower bound and upper

bound the ratio |Y (G′, k′)|/|Y (G, k)|, respectively.

S2.1. Notation

In this Section S2, all graphs considered are connected. Let K ∈ Gn be the

complete graph on the vertex set V . For any graph G, denote the set of spanning

trees of G by τ(G). For any e ∈ E, denote the set of spanning trees of G that

contain e by τe(G) ⊂ τ(G). Let
(τ(K)

k

)
be the set with the

(|τ(K)|
k

)
subsets of

τ(K) of size k. There is a map

Φk :

(
τ(K)

k

)
→ Gn

given by taking the edge union of the k trees in each element of
(τ(K)

k

)
. For

G ∈ im(Φk) = {Φk(T ) : T ∈
(τ(K)

k

)
}, define the set of combinations of k

spanning trees that yield G as Y (G, k) = Φ−1
k (G) = {T : Φk(T ) = G}. Let

G1 +G2 denote the graph obtained by taking the edge union of graphs G1 and

G2. Our main aim is to estimate the ratio

|Y (G′, k′)|
|Y (G, k)|

=
|Y (G+ T0, k + 1)|

|Y (G, k)|
(S1)

for a fixed G ∈ im(Φk) and T0 ∈ τ(K). Note that here we define G′ = G+ T0

and k′ = k + 1.
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S2.2. Direct approach

One approach to estimate this ratio is to compute |Y (G, k)| and |Y (G′, k′)|

separately. First, consider the brute force strategy that enumerates every tree

in G. This is infeasible given how the number of spanning trees |τ(G)| grows

super-exponentially with m = |E| (Greenhill et al., 2017) and the enumeration

algorithm has complexity O(n + m + |τ(G)|) (Kapoor & Ramesh, 2000). In

this section, we show an algorithm that improves on the super-exponential

brute-force algorithm by counting the number of ways to write G as a union of

its spanning trees in O(2m n3) time.

Lemma 1. Every edge union of k spanning trees of G is either equal to G or

is an edge-induced subgraph of G that spans V and is connected.

Proof. This follows by contradiction since the negation would mean that the

spanning tree union contains an edge not in G. □

Proposition 1. Let GC denote any connected graph with as set of edges a

proper subset of the edge set E of G. Then,

|Y (G, k)| =
(
|τ(G)|

k

)
−
∑
GC

|Y (GC , k)|

if |τ(G)| ≥ k and |Y (G, k)| = 0 otherwise.

Proof. Note that
(|τ(G)|

k

)
is the number of possible combinations of k distinct

spanning trees of G. Further, by Lemma 1, any union of spanning trees of G

that is connected and not equal to G is a connected edge-induced subset of G.

□

Hence, having proved the recursive formula in (1), we analyse the complexity

of its calculation. We recall the following proposition due to Kirchoff (see

Chaiken & Kleitman (1978) for a reference).

Theorem S1. (Matrix tree theorem.) The number |τ(G)| of spanning trees of

G is equal to any cofactor of the Laplacian matrix of G.
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This theorem implies that counting τ(G) is equivalent to finding the determinant

of an (n− 1)× (n− 1) matrix which has complexity O(n3).

Now, we prove that we can compute |Y (G, k)| in O(2m n3) time.

Proposition 2. |Y (G, k)| can be calculated in O(2m n3) time.

Proof. Consider the recursive scheme implied by Proposition 1. Since every

connected edge-induced subgraph of every GC is also an edge-induced subgraph

of G, using dynamic programming and memoisation, we only need to calculate

every unique |Y (GC , k)| of which there are at most 2m. Calculating |τ(G)| at

each step involves calculating a determinant, per Theorem S1, which is O(n3).

Hence, the overall complexity is O(2m n3). □

Since G is constrained to be the union of only k spanning trees with each

(n− 1) edges, m ≤ k(n− 1). Hence, the algorithm is O(2kn n3).

S2.3. Lower bound

In this section, we derive a lower bound for (S1). Consider the equation

G′ = G+ T0 = G+ T (S2)

for unknown T ∈ τ(K) and known T0. Let the set of solutions T of (S2) be

λ(G,T0). It is clear that

Y (G+ T0, k + 1) ⊃ {S ∪ {T} : S ∈ Y (G, k), T ∈ λ(G,T0)}

and hence

|Y (G+ T0, k + 1)| ≥ |Y (G, k)||λ(G,T0)| =⇒ |Y (G+ T0, k + 1)|
|Y (G, k)|

≥ |λ(G,T0)|.

We therefore start by computing |λ(G,T0)|. Consider the equivalence relation

∼ on V given by two edges being connected in G′ −G (whose vertices are V

and edges are E′ \ E). Let G′′ = (V, E) be the quotient graph G′/ ∼. Let

π : G′ → G′′ denote the quotient map.

Lemma 2. Suppose C is a simple cycle of G′. Then, π(C) is either a single

point, a single edge connecting a pair of vertices, or a simple cycle of G′′.
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Lemma 3. Suppose

|λ(G,T0)| =
∑

T ∈τ(G′′)

∏
e∈E(T )

|π−1(e)|

where E(T ) is the edge set of T .

Proof. Let T ∈ τ(G′′). We construct a spanning tree T ∈ λ(G,T0) as follows.

For each edge e = (v, w) ∈ T choose a representative (v′, w′) ∈ π−1(e) and set

(v′, w′) to be an edge in T . We then add in all the edges of G′ − G. Clearly

the resulting graph satisfies (S2) because it contains every edge of G′ −G. It

is spanning and connected because it connects every connected component of

G′ −G and contains every edge in G′ −G. We show that it is acyclic. Suppose

C is a cycle of T ; without loss of generality we can assume it is simple. Note

that G′ − G must be acyclic because its edge set is a subset of edges of the

tree T0, so C cannot be a subgraph of G′ −G. Therefore π(C) is not a single

vertex. If π(C) is a single edge, then C contains two distinct edges joining two

components of G′−G, which is not possible by our construction of T . Therefore

by the previous lemma π(C) is a simple cycle of T which is a contradiction.

Every T ∈ λ(G,T0) can be constructed in this manner. Since T is a tree it

must descend to a tree T in G′′. An edge (v, w) ∈ T corresponds to the edge

([v], [w]) ∈ T ; by choosing v and w as the representatives in the construction

above we get back the edge (v, w).

It is also clear that distinct trees T1 and T2 in H will give different trees in

G′. For a single T , each distinct choice of representatives for each edge will give

a distinct tree T . Therefore |λ(G,T0)| is the number of ways to carry out the

above construction, which is given by the formula above. □

We now give weights to the edges of G′′: let each edge e ∈ E(G′′) have the

weight |π−1(e)|. The weight of a tree T ∈ τ(G′′) is defined as the product of

the weight of its edges:

w(T ) =
∏

e∈E(T )

w(e).
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Then

λ(G,T0) =
∑

T ∈τ(G′′)

w(T ).

The expression above is called the weighted tree enumerator of G′′. The weighted

Kirchoff matrix tree theorem gives a way to compute this quantity.

Theorem S2. (Formula for λ(G,T0).) Let L be the Laplacian of G′′ taking

into account the weights of the edges, i.e.

L = D −A

where A is the weighted adjancency matrix and D is the diagonal matrix whose

ith entry is the sum of weights of edges incident to vertex i. Then |λ(G,T0)| is

the absolute value of any cofactor of L.

Example 1. If G and G′ have the same edges then G′ −G has no edges and

G = G′ = G′′. In this case λ(G,T0) is the number of trees of G and this agrees

with the formula above (the empty product is defined as 1).

S2.4. Upper bound

In this section, we derive an upper bound for (S1) by bounding |λ(G,T0)|.

Suppose G = (V,E) ∈ im(Φk), so that for 1 ≤ j ≤ k there exists Tj ∈ τ(K) such

that E =
⋃k

j=1 E(Tj). Define Gj = (V,Ej) by Ej =
⋃j

i=1 E(Ti). We therefore

have

G = Tk +Gk−1.

Using the results from above we get

|Y (G, k)| ≥ |Y (Gk−1, k − 1)| |λ(Gk−1, Tk)|.

By iterating we get

|Y (G, k)| ≥
k−1∏
j=1

|λ(Gj , Tj+1)|.
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Now note that the ordering of the Tj does not matter to the argument. Let Sk

denote the kth permutation group and for σ ∈ Sk let Gjσ denote
⋃j

1 Tσ(i). Then

|Y (G, k)| ≥ max
σ∈Sk

k−1∏
j=1

|λ(Gjσ, Tσ(j+1))|. (S3)

This bounds the denominator in (S1). Next we address the numerator. Suppose

S ∈ Y (G′, k + 1). For each edge e ∈ G′, at least one of the trees in S must

contain e. Therefore,

Y (G′, k + 1) ⊂
{
{T} ∪ S : T ∈ τe(G

′), S ∈
(
τ(K)

k

)}
.

This gives the inequality

|Y (G′, k + 1)| ≤ min
e∈E(G′)

|τe(G′)| |τ(K)|k. (S4)

The computation of τe(G
′) can be carried out as follows: let G/e be the graph

obtained by contracting the edge e, let π be the quotient, and for any edge e′ in

G/e assign the weight π−1(e′) to e′. Then |τe(G)| is simply the weighted tree

enumerator of G/e; the proof is similar to the proof for Lemma 3. Equations S3

and S4 together give an upper bound:

|Y (G′, k + 1)|
|Y (G, k)|

≤
mine∈E(G′) |τe(G′)||τ(K)|k

maxσ∈Sk

∏k−1
j=1 |λ(Gjσ, Tσ(j+1))|

.

Altogether, we have:

Theorem S3.

|λ(G,T0)| ≤
|Y (G′, k + 1)|
|Y (G, k)|

≤
mine∈E(G′) |τe(G′)||τ(K)|k

maxσ∈Sk

∏k−1
j=1 |λ(Gjσ, Tσ(j+1))|

.

Figure S1 shows that the lower and upper bounds derived here for |Y (G′, k +

1)|/|Y (G, k)| can be multiple orders of magnitude different from |Y (G′, k +

1)|/|Y (G, k)|. As such, they do not provide usable approximations for a

Metropolis-Hastings acceptance ratio.



12 A. NATARAJAN et al.

S3. Posterior inference on the cycle space using MCMC

We describe two different MCMC algorithms for posterior inference on

the cycle space. Firstly, we consider general posteriors arising from prior

distributions on spanning trees and associated cycle bases. Secondly, we consider

the uniform prior over the cycle space which allows for computationally less

expensive MCMC.

S3.1. General spanning tree prior p(T )

We consider the following prior construction for the cycle space Cn. Note

that the distribution over Cn can change with the basis C used: see for instance

Corollary 1. Thus, we do not constrain our inference to a single C. Let p(T ) be

the prior distribution on spanning trees which each correspond to a C. Then, a

prior distribution on basis element inclusions induces a prior p(G | T ) over Cn.

The joint posterior of G and T follows then from the likelihood p(X | G) in (3)

as p(G,T | X) ∝ p(T ) p(G | T ) p(X | G).

We use Metropolis-Hastings within Gibbs to sample from p(G,T | X).

Specifically, we update the graph G using a Metropolis proposal q(G′ | G,T )

that involves flipping one random basis element in G, i.e. flipping all edges in one

uniformly sampled element of C. Thus, this is a multiple-edge update. Also, the

proposal is guaranteed to be in Cn because the latter is a vector space. Note that

the support of q(G′ | G,T ) varies with T which determines the basis elements

C to choose from. In other words, which graphs are in the “neighbourhood” of

G varies with T , resulting in differing exploration of the graph space depending

on the current value of T .

For the spanning tree T , we use its prior distribution as an independent

Metropolis-Hastings proposal, q(T ′ | T ) = p(T ′). A change in T corresponds to

a change in basis C and thus requires the decomposition of G in terms of this

new basis. This decomposition involves a matrix inverse over the field Z2 which

is computationally expensive for a large number of vertices n as the size of the
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matrix to invert is super-exponential in n. Therefore, we repeat the update of

G multiple times for each update of T . Algorithm S1 summarises the resulting

MCMC algorithm.

Algorithm S1 MCMC step for p(G,T | X) for a general spanning tree prior p(T )

1. Perform the Metropolis update for G a fixed number of times:

(a) Sample a proposed G′ from q(G′ | G,T ).

(b) Set G = G′ with probability min(1, αG) where

αG =
p(G′, T | X) q(G | G′, T )

p(G,T | X) q(G′ | G,T )
=

p(G′ | T ) p(X | G′)

p(G | T ) p(X | G)

2. Perform the Metropolis-Hastings update for T :

(a) Sample a proposed T ′ from q(T ′ | T ) = p(T ′).

(b) Compute the decomposition of G in terms of the basis generated by T ′ for

the evaluation of p(G | T ′).

(c) Set T ′ = T with probability min(1, αT ) where

αT =
p(G,T ′ | X) q(T | T ′)

p(G,T | X) q(T ′ | T )
=

p(G | T ′)

p(G | T )

To compute p(X|G′)
p(X|G) = IG′ (δ+N,D+U)

IG(δ+N,D+U)
IG(δ,D)
IG′ (δ,D) in Step 1b of Algorithm S1, we

use two different approximations. For IG′(δ +N,D+U) and IG(δ +N,D+U),

we use the Laplace approximation from Lenkoski & Dobra (2011). For IG(δ,D)
IG′ (δ,D) ,

we use the approximation for the ratio of G-Wishart normalising constants from

Mohammadi et al. (2021). This is because the Laplace approximation is known

to be inaccurate when the degrees of freedom δ is small (Lenkoski & Dobra,

2011). In our case, G and G′ differ by at least three edges while Mohammadi

et al. (2021) consider single edge updates. We therefore approximate IG(δ,D)
IG′ (δ,D)

as the product of a sequence of (at least three) ratio approximations from

Mohammadi et al. (2021) each involving a single edge change.
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S3.2. Uniform prior over the cycle space

We now discuss the case with p(G | T ) being the uniform prior over Cn as it

allows for simplifications. Then, the choice of spanning tree T is irrelevant per

Proposition 2, negating the need for the expensive decomposition in Step 2b in

Algorithm S1. Also, sampling a cycle of three vertices uniformly at random and

flipping the corresponding edges in G as proposal yields p(G′ | G) = p(G | G′).

Note that p(G′)/p(G) = 1 by construction. Thus, the Metropolis acceptance

ratio follows as α = p(X | G′)/p(X | G). We use this MCMC algorithm that

proposes to change a uniformly sampled 3-cycle in Section 5.

We use this MCMC algorithm also for the uniform prior over all graphs

Gn and over all decomposable graphs with the modification that the proposal

p(G′ | G) follows from randomly flipping one instead of three edges for the

results in Section 5. We run this algorithm for 106 iterations with 105 burn-in

iterations for Cn and Gn, and for 107 iterations with 106 burn-in iterations for

the decomposable graphs: we use more MCMC iterations for the decomposable

graphs since many Metropolis proposals G′ resulting from flipping an edge

are rejected because they are not decomposable, and thus have no prior nor

posterior mass, resulting in worse mixing of the MCMC chain. Implementation

of the MCMC algorithms and code used to generate the results in Section 5 are

available from https://github.com/kristoforusbryant/cbmcmc.
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Figure S1: The value, lower bound from Section S2.3 and upper bound from Section S2.4

of |Y (G′, k + 1)|/|Y (G, k)| on a logarithmic scale for fixed number of vertices n and number

of spanning trees k. Here, the replicates consider randomly sampled G and G′ where G is a

union of k uniformly sampled spanning trees and G′ = G+ T0 with T0 a uniformly sampled

spanning tree.


