SUPPLEMENTARY MATERIAL: BOUNDS FOR THE CHI-SQUARE APPROXIMATION OF THE POWER DIVERGENCE FAMILY OF STATISTICS

ROBERT E. GAUNT,* The University of Manchester

Proof of Lemma 3.6. (i) Without loss of generality, we let $a=1$; the general $a>0$ case follows by rescaling. We therefore need to prove that, for $x \geq 0$,

$$
\begin{equation*}
|f(x)| \leq|x-1|^{3}, \tag{1}
\end{equation*}
$$

where

$$
f(x):=2 x \log (x)-2(x-1)-(x-1)^{2} .
$$

It is readily checked that inequality (1) holds for $x=0$ and $x=2$. For $0<x<2$ (that is $|x-1|<1$), we can use a Taylor expansion to obtain the bound $|f(x)|=2|x-1|^{3}\left|\sum_{k=0}^{\infty} \frac{(-1)^{k}(x-1)^{k}}{(k+2)(k+3)}\right| \leq 2|x-1|^{3} \sum_{k=0}^{\infty} \frac{1}{(k+2)(k+3)}=|x-1|^{3}$, so inequality (1) is satisfied for $0<x<2$. Now, suppose $x>2$. We have that $f^{\prime}(x)=2 \log (x)-2(x-1)$ and $\frac{\mathrm{d}}{\mathrm{d} x}\left((x-1)^{3}\right)=3(x-1)^{2}$. By the inequality $\log (u) \leq u-1$, for $u \geq 1$, we get that

$$
\left|f^{\prime}(x)\right|=|2 \log (x)-2(x-1)|=2(x-1)-2 \log (x) \leq(x-1)^{2} \leq 3(x-1)^{2},
$$

where the final inequality holds because $x>2$. Therefore, for $x>2,(x-1)^{3}$ grows faster than $|f(x)|$. Since $|f(2)|=(2-1)^{3}=1$, it follows that inequality (1) holds for all $x>2$. We have now shown that inequality (1) is satisfied for all $x \geq 0$, as required.

[^0](ii) Again, without loss of generality, we may set $a=1$. We therefore need to prove that, for $x \geq 0$,
\[

$$
\begin{equation*}
\left|g_{\lambda}(x)\right| \leq \frac{(\lambda-1) \lambda(\lambda+1)}{6}\left(1+x^{\lambda-2}\right)|x-1|^{3}, \tag{2}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
g_{\lambda}(x):=x^{\lambda+1}-1-(\lambda+1)(x-1)-\frac{\lambda(\lambda+1)}{2}(x-1)^{2} . \tag{3}
\end{equation*}
$$

By a Taylor expansion of $x^{\lambda+1}$ about $x=1$ we have that

$$
\begin{equation*}
g_{\lambda}(x)=\frac{(\lambda-1) \lambda(\lambda+1)}{6} \xi^{\lambda-2}(x-1)^{3}, \tag{4}
\end{equation*}
$$

where $\xi>0$ is between 1 and x. Now, as ξ is between 1 and x and because $\lambda \geq 2$, we have that

$$
\xi^{\lambda-2} \leq(\max \{1, x\})^{\lambda-2} \leq 1+x^{\lambda-2}
$$

and applying this inequality to (4) gives us (2), as required.
(iii) Suppose now that $\lambda \in(-1,2) \backslash\{0\}$. Without loss of generality, we set $a=1$, and it therefore suffices to prove that, for $x \geq 0$,

$$
\begin{equation*}
\left|g_{\lambda}(x)\right| \leq \frac{|(\lambda-1) \lambda|}{2}|x-1|^{3} . \tag{5}
\end{equation*}
$$

We shall verify inequality (5) by treating the cases $0<x \leq 2$ and $x \geq 2$ separately (it is readily checked that the inequality holds at $x=0$). For $0<$ $x<2$ (that is $|x-1|<1$) we can use a Taylor expansion to write

$$
g_{\lambda}(x)=(x-1)^{3} G_{\lambda}(x),
$$

where

$$
G_{\lambda}(x)=\sum_{k=0}^{\infty}\binom{\lambda+1}{k+3}(x-1)^{k},
$$

and the generalised binomial coefficient is given by $\binom{a}{j}=[a(a-1)(a-2) \cdots(a-$ $j+1)] / j$!, for $a>0$ and $j \in \mathbb{N}$. We now observe that, since $\lambda<2$, the generalised binomial coefficients $\binom{\lambda+1}{k+3}$ are either positive for all even $k \geq 0$ and negative for all odd $k \geq 1$, or are negative for all even $k \geq 0$ and positive for all odd
$k \geq 1$ (or, exceptionally always equal to zero if $\lambda=1$, which is a trivial case in which $g_{\lambda}(x)=0$ for all $\left.x \geq 0\right)$. Hence, for $0<x<2, G_{\lambda}(x)$ is bounded above by $\left|G_{\lambda}(0)\right|$, and a short calculation using the expression (3) (note that $\left.G_{\lambda}(x)=g_{\lambda}(x) /(x-1)^{3}\right)$ shows that $G_{\lambda}(0)=|(\lambda-1) \lambda| / 2$. Thus, for $0 \leq x<2$, we have the bound

$$
\left|g_{\lambda}(x)\right| \leq \frac{|(\lambda-1) \lambda|}{2}|x-1|^{3}
$$

Suppose now that $x \geq 2$. Recall from (4) that

$$
g_{\lambda}(x)=\frac{(\lambda-1) \lambda(\lambda+1)}{6} \xi^{\lambda-2}(x-1)^{3}
$$

where $\xi>0$ is between 1 and x. In fact, because we are considering the case $x \geq 2$, we know that $\xi>1$. Therefore, since $\lambda<2$, we have that $\xi^{\lambda-2}<1$. Therefore, for $x \geq 2$,

$$
\left|g_{\lambda}(x)\right|=\frac{|(\lambda-1) \lambda(\lambda+1)|}{6}|x-1|^{3} \leq \frac{|(\lambda-1) \lambda|}{2}|x-1|^{3}
$$

where the second inequality follows because $\lambda \in(-1,2) \backslash\{0\}$. We have thus proved inequality (5), which completes the proof of the lemma.

[^0]: Received 10 August 2021; revision received 23 December 2021.

 * Postal address: Department of Mathematics, The University of Manchester, Oxford Road,

 Manchester M13 9PL, UK. Email: robert.gaunt@manchester.ac.uk

