SUPPLEMENTARY MATERIAL: TAIL ASYMPTOTICS OF AN INFINITELY DIVISIBLE SPACE-TIME MODEL WITH CONVOLUTION EQUIVALENT LÉVY MEASURE

MADS STEHR,, Aarhus University
ANDERS RØNN-NIELSEN,** Copenhagen Business School

SM1. Proofs of Section 3

Proof of Lemma 3.1. For sufficiently large x we find that

$$
\begin{aligned}
\mathbb{P}(Z \phi(U, S)>x)= & \frac{1}{\nu(A)} F\left(\left\{(u, s, z) \in \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}_{+}: z \phi(u, s)>x\right\}\right) \\
= & \frac{1}{\nu(A)} \int_{B^{\prime} \times T^{\prime}} L\left(\frac{x}{c}\right) \exp \left(-\beta \frac{x}{c}\right) m(\mathrm{~d} u, \mathrm{~d} s) \\
& +\frac{1}{\nu(A)} \int_{\left(B^{\prime} \times T^{\prime}\right)^{c}} L\left(\frac{x}{\phi(u, s)}\right) \exp \left(-\beta \frac{x}{\phi(u, s)}\right) m(\mathrm{~d} u, \mathrm{~d} s)
\end{aligned}
$$

where the first term equals $L(x / c) \exp (-\beta x / c)$ times the desired limit. The result follows when the latter integral is shown to be of order $o(L(x / c) \exp (-\beta x / c))$, as $x \rightarrow \infty$. Let $h(u, s ; x)$ denote the integrand. For all $(u, s) \notin B^{\prime} \times T^{\prime}$ we have $\phi(u, s)<c$. Combined with (2.4), this implies the existence of $\gamma>0$ and $C>0$ such that

$$
\frac{h(u, s ; x)}{L(x / c) \exp (-\beta x / c)} \leq C \exp (-\gamma x)
$$

for sufficiently large x. Thus, the integrand $h(u, s ; x)$ is $o(L(x / c) \exp (-\beta x / c))$ at infinity. By dominated convergence, the integral is of order $o(L(x / c) \exp (-\beta x / c))$ if we can find an integrable function $g: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\frac{h(u, s ; x)}{L(x / c) \exp (-\beta x / c)} \leq g(u, s)
$$

Received 2 September 2019; revision received 10 June 2020.

* Postal address: Centre for Stochastic Geometry and Advanced Bioimaging (CSGB), Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000 Aarhus C, Denmark
${ }^{* *}$ Postal address: Center for Statistics, Department of Finance, Copenhagen Business School, Solbjerg Pl. 3, 2000 Frederiksberg, Denmark
for all $(u, s) \in \mathbb{R}^{d} \times \mathbb{R}$. Returning to (2.5) we see that for all $0<\gamma<\beta / c$ there is $C>0$ and x_{0} such that

$$
\begin{equation*}
\frac{h(u, s ; x)}{L(x / c) \exp (-\beta x / c)} \leq C \exp \left(-x_{0}(\beta-\gamma c)\left(\frac{1}{\phi(u, s)}-\frac{1}{c}\right)\right) \tag{SM1.1}
\end{equation*}
$$

for all $x \geq x_{0}$. Independent of (u, s) we can find a finite constant \tilde{C} such that the right hand side of (SM1.1) is bounded by $\tilde{C} \phi(u, s)$, which is integrable by assumption. This shows the desired order of convergence.

From [4, Lemma 2.4(i)] the distribution of $Z \phi(U, S)$ is convolution equivalent with index β / c. The integrability result follows from [4, Corollary 2.1(ii)].

Corollary SM1.1. If V^{1}, V^{2}, \ldots are i.i.d. fields with distribution ν_{1}, then

$$
\mathbb{E}\left[\exp \left(\beta \sup _{u \in B} \sup _{s \in[0, T]} \lambda_{u, s}\left(\left(V_{v, t}^{1}+\cdots+V_{v, t}^{n}\right)_{(v, t)}\right)\right)\right]<\infty
$$

for all $n \in \mathbb{N}$.
Proof. Because each V^{i} can be represented by $\left(Z^{i} f\left(\left|v-U^{i}\right|, t-S^{i}\right)_{(v, t) \in B^{\prime} \times T^{\prime}}\right.$, the result follows from (3.8) and (3.10).

Proof of Theorem 3.2. We will show the claim by induction over n : We note that the case $n=1$ follows easily from Theorem 3.1. Now assume that the result holds true for some $n \in \mathbb{N}$ and let for convenience $V^{* n}=V^{1}+\cdots+V^{n}$. Also, let $y^{*}=$ $\sup _{(v, t) \in B^{\prime} \times T^{\prime}} y_{v, t}$. Using (3.7) and the representation $V^{i}=Z^{i} f\left(\left|v-U^{i}\right|, t-S^{i}\right)$, we find

$$
\begin{align*}
& \mathbb{P}\left(\Psi\left(V_{v, t}^{* n}+V_{v, t}^{n+1}+y_{v, t}\right)>x\right) \\
& \leq \\
& \quad \mathbb{P}\left(\sum_{i=1}^{n} Z^{i} \phi\left(U^{i}, S^{i}\right)>\frac{x-y^{*}}{2}, Z^{n+1} \phi\left(U^{n+1}, S^{n+1}\right)>\frac{x-y^{*}}{2},\right. \\
& \left.\quad \Psi\left(V_{v, t}^{* n}+V_{v, t}^{n+1}+y_{v, t}\right)>x\right) \tag{SM1.2}\\
& \quad+\mathbb{P}\left(\sum_{i=1}^{n} Z^{i} \phi\left(U^{i}, S^{i}\right) \leq \frac{x-y^{*}}{2}, \Psi\left(V_{v, t}^{* n}+V_{v, t}^{n+1}+y_{v, t}\right)>x\right) \\
& \quad+\mathbb{P}\left(Z^{n+1} \phi\left(U^{n+1}, S^{n+1}\right) \leq \frac{x-y^{*}}{2}, \Psi\left(V_{v, t}^{* n}+V_{v, t}^{n+1}+y_{v, t}\right)>x\right)
\end{align*} .
$$

The first term in (SM1.2) is bounded from above by

$$
\mathbb{P}\left(\sum_{i=1}^{n} Z^{i} \phi\left(U^{i}, S^{i}\right)>\frac{x-y^{*}}{2}\right) \mathbb{P}\left(Z^{n+1} \phi\left(U^{n+1}, S^{n+1}\right)>\frac{x-y^{*}}{2}\right)
$$

In Lemma 3.1 we showed that the distribution of $Z^{i} \phi\left(U^{i}, S^{i}\right)$ is convolution equivalent with index β / c, and hence, from [3, Corollary 2.11] and (3.9), both factors are asymptotically equivalent to $\rho_{1}((x /(2 c), \infty))$ as $x \rightarrow \infty$. Following the proof of [2, Lemma 2] we see that the product is $o\left(\left(\rho_{1} * \rho_{1}\right)((x / c, \infty))\right)$, and as such the first term in (SM1.2) is $o\left(\rho_{1}((x / c, \infty))\right)$ due to the convolution equivalence of ρ_{1}. By Theorem 3.1 it is of order $o\left(\mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)\right)$ as $x \rightarrow \infty$.

By independence, the two remaining terms in (SM1.2) divided by $\mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)$ are

$$
\begin{align*}
& \int_{C_{x}} \frac{\mathbb{P}\left(\Psi\left(\sum_{i=1}^{n} z^{i} f\left(\left|v-u^{i}\right|, t-s^{i}\right)+V_{v, t}^{n+1}+y_{v, t}\right)>x\right)}{\mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)} \\
& \quad \times F_{1}^{\otimes n}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right)\right) \tag{SM1.3}\\
& +\int_{\tilde{C}_{x}} \frac{\mathbb{P}\left(\Psi\left(V_{v, t}^{* n}+z^{1} f\left(\left|v-u^{1}\right|, t-s^{1}\right)+y_{v, t}\right)>x\right)}{\mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)} F_{1}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1}\right)\right)
\end{align*}
$$

where $F_{1}^{\otimes n}$ is the n-fold product measure of F_{1} and

$$
\begin{aligned}
& C_{x}=\left\{\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right): \sum_{i=1}^{n} z^{i} \phi\left(u^{i}, s^{i}\right) \leq \frac{x-y^{*}}{2}\right\} \\
& \tilde{C}_{x}=\left\{\left(u^{1}, s^{1}, z^{1}\right): z^{1} \phi\left(u^{1}, s^{1}\right) \leq \frac{x-y^{*}}{2}\right\}
\end{aligned}
$$

Above we used the representation $V^{i}=Z^{i} f\left(\left|v-U^{i}\right|, t-S^{i}\right)$ again. By Theorem 3.1 and the induction assumption, the integrands of (SM1.3) have the following limits as $x \rightarrow \infty$,

$$
\begin{aligned}
& f_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right) \\
& =\frac{\int_{B} \int_{0}^{T} \exp \left(\beta \lambda_{u, s}\left(\sum_{i=1}^{n} z^{i} f\left(\left|v-u^{i}\right|, t-s^{i}\right)+y_{v, t}\right)\right) \mathrm{d} s \mathrm{~d} u}{m(B \times[0, T])} \\
& f_{2}\left(u^{1}, s^{1}, z^{1}\right) \\
& =\frac{n \int_{B} \int_{0}^{T} \mathbb{E}\left[\exp \left(\beta \lambda_{u, s}\left(V_{v, t}^{1}+\cdots+V_{v, t}^{n-1}+z^{1} f\left(\left|v-u^{1}\right|, t-s^{1}\right)+y_{v, t}\right)\right)\right] \mathrm{d} s \mathrm{~d} u}{m(B \times[0, T])}
\end{aligned}
$$

respectively. When integrated with respect to the relevant measures we find

$$
\begin{aligned}
& \quad \int f_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right) F_{1}^{\otimes n}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right)\right) \\
& \quad+\int f_{2}\left(u^{1}, s^{1}, z^{1}\right) F_{1}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1}\right)\right) \\
& = \\
& \frac{n+1}{m(B \times[0, T])} \int_{B} \int_{0}^{T} \mathbb{E}\left[\exp \left(\beta \lambda_{u, s}\left(V_{v, t}^{1}+\cdots+V_{v, t}^{n}+y_{v, t}\right)\right)\right] \mathrm{d} s \mathrm{~d} u,
\end{aligned}
$$

which is the desired expression. To show convergence of the integrals in (SM1.3), using Fatou's lemma, it suffices to find integrable functions $g_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n} ; x\right)$ and $g_{2}\left(u^{1}, s^{1}, z^{1} ; x\right)$ that are upper bounds of the integrands such that their limits exist when $x \rightarrow \infty$ and such that

$$
\begin{aligned}
& \quad \int g_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n} ; x\right) F_{1}^{\otimes n}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right)\right) \\
& \quad+\int g_{2}\left(u^{1}, s^{1}, z^{1} ; x\right) F_{1}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1}\right)\right) \\
& \rightarrow \int \lim _{x \rightarrow \infty} g_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n} ; x\right) F_{1}^{\otimes n}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right)\right) \\
& \quad+\int \lim _{x \rightarrow \infty} g_{2}\left(u^{1}, s^{1}, z^{1} ; x\right) F_{1}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1}\right)\right)
\end{aligned}
$$

as $x \rightarrow \infty$. Using (3.7) and properties of Ψ, we can choose the functions

$$
g_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n} ; x\right)=\mathbf{1}_{C_{x}} \frac{\mathbb{P}\left(Z^{1} \phi\left(U^{1}, Z^{1}\right)>x-y^{*}-\sum_{i=1}^{n} z^{i} \phi\left(u^{i}, s^{i}\right)\right)}{\mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)}
$$

and

$$
g_{2}\left(u^{1}, s^{1}, z^{1} ; x\right)=\mathbf{1}_{\tilde{C}_{x}} \frac{\mathbb{P}\left(\sum_{i=1}^{n} Z^{i} \phi\left(U^{i}, Z^{i}\right)>x-y^{*}-z^{1} \phi\left(u^{1}, s^{1}\right)\right)}{\mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)}
$$

From Theorem 3.1 and (3.9) we find that

$$
\begin{equation*}
\mathbb{P}\left(Z^{1} \phi\left(U^{1}, S^{1}\right)>x\right) \sim \frac{m\left(B^{\prime} \times T^{\prime}\right)}{m(B \times[0, T])} \mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right) \tag{SM1.4}
\end{equation*}
$$

as $x \rightarrow \infty$. The fact that the distribution of $Z^{1} \phi\left(U^{1}, S^{1}\right)$ is convolution equivalent and in particular has an exponential tail implies

$$
g_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n} ; x\right) \rightarrow \frac{m\left(B^{\prime} \times T^{\prime}\right)}{m(B \times[0, T])} \exp \left(\frac{\beta}{c}\left(y^{*}+\sum_{i=1}^{n} z^{i} \phi\left(u^{i}, s^{i}\right)\right)\right)
$$

as $x \rightarrow \infty$. Similarly, (SM1.4) and an application of [3, Corollary 2.11] gives

$$
\begin{aligned}
& g_{2}\left(u^{1}, s^{1}, z^{1} ; x\right) \\
& \quad \rightarrow \frac{m\left(B^{\prime} \times T^{\prime}\right)}{m(B \times[0, T])} n \exp \left(\frac{\beta}{c}\left(y^{*}+z^{1} \phi\left(u^{1}, s^{1}\right)\right)\right)\left(\mathbb{E} \exp \left(\frac{\beta}{c} Z^{1} \phi\left(U^{1}, S^{1}\right)\right)\right)^{n-1}
\end{aligned}
$$

as $x \rightarrow \infty$, and we conclude that

$$
\begin{align*}
& \int \lim _{x \rightarrow \infty} g_{1}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n} ; x\right) F_{1}^{\otimes n}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1} ; \ldots ; u^{n}, s^{n}, z^{n}\right)\right) \\
& +\int \lim _{x \rightarrow \infty} g_{2}\left(u^{1}, s^{1}, z^{1} ; x\right) F_{1}\left(\mathrm{~d}\left(u^{1}, s^{1}, z^{1}\right)\right) \\
= & \frac{m\left(B^{\prime} \times T^{\prime}\right)}{m(B \times[0, T])}(n+1) \exp \left(\beta y^{*} / c\right)\left(\mathbb{E} \exp \left(\frac{\beta}{c} Z^{1} \phi\left(U^{1}, S^{1}\right)\right)\right)^{n} . \tag{SM1.5}
\end{align*}
$$

For notational convenience, we let μ denote the distribution of $Z^{i} \phi\left(U^{i}, S^{i}\right)$. Then, again by [3, Corollary 2.11] and (SM1.4), (SM1.5) equals

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{m\left(B^{\prime} \times T^{\prime}\right)}{m(B \times[0, T])} \frac{\mu^{*(n+1)}\left(\left(x-y^{*}, \infty\right)\right)}{\mu((x, \infty))}=\lim _{x \rightarrow \infty} \frac{\mu^{*(n+1)}\left(\left(x-y^{*}, \infty\right)\right)}{\mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)} \tag{SM1.6}
\end{equation*}
$$

Furthermore, we see

$$
\begin{aligned}
& \mathbb{P}\left(\Psi\left(V_{v, t}^{1}\right)>x\right)\left(\int g_{1}\left(z^{1} ; \ldots ; z^{n} ; x\right) \mu^{\otimes n}\left(\mathrm{~d}\left(z^{1} ; \ldots ; z^{n}\right)\right)+\int g_{2}(z ; x) \mu(\mathrm{d} z)\right) \\
& \quad=\int_{0}^{\left(x-y^{*}\right) / 2} \mu\left(\left(x-y^{*}-z, \infty\right)\right) \mu^{* n}(\mathrm{~d} z)+\int_{0}^{\left(x-y^{*}\right) / 2} \mu^{* n}\left(\left(x-y^{*}-z, \infty\right)\right) \mu(\mathrm{d} z)
\end{aligned}
$$

Since, in particular, the tails of μ and $\mu^{* n}$ are exponential with index β / c, we see from [2, Lemma 2] that the sum of integrals is asymptotically equivalent to $\mu^{*(n+1)}((x-$ $\left.y^{*}, \infty\right)$). Returning to (SM1.6) concludes the proof.

Before proving the theorem on the extremal behaviour of X^{1}, we need the following lemma for a dominated convergence argument.

Lemma SM1.1. Let V^{1}, V^{2}, \ldots be i.i.d. fields with distribution ν_{1}, and let (U, S, Z) be distributed according to F_{1}. There exist a constant K such that

$$
\mathbb{P}\left(\Psi\left(V_{v, t}^{1}+\cdots+V_{v, t}^{n}\right)>x\right) \leq K^{n} \mathbb{P}(Z \phi(U, S)>x)
$$

for all $n \in \mathbb{N}$ and all $x \geq 0$.
Proof. By Lemma 3.1 the distribution of $Z \phi(U, S)$ is convolution equivalent, and it follows from [3, Lemma 2.8] that there is a constant K such that

$$
\mathbb{P}\left(\sum_{i=1}^{n} Z^{i} \phi\left(U^{i}, S^{i}\right)>x\right) \leq K^{n} \mathbb{P}(Z \phi(U, S)>x)
$$

for i.i.d. variables $\left(U^{1}, S^{1}, Z^{1}\right),\left(U^{2}, S^{2}, Z^{2}\right), \ldots$ with distribution F_{1}. The result follows directly from (3.7).

Proof of Theorem 3.3. From (3.8) and the representation $V^{i}=\left(Z^{i} f\left(\left|v-U^{i}\right|, t-\right.\right.$ $\left.\left.S^{i}\right)\right)_{(v, t)}$, we see that

$$
\mathbb{E}\left[\exp \left(\beta \lambda_{u, s}\left(X_{v, t}^{1}\right)\right)\right] \leq \exp \left(\nu(A)\left(\mathbb{E}\left[\exp \left(\frac{\beta}{c} Z \phi(U, S)\right]-1\right)\right)\right.
$$

The first claim now follows from (3.10).

For the limit result, we find by independence and Lemma SM1.1,

$$
\begin{aligned}
& \mathbb{P}\left(\Psi\left(X_{v, t}^{1}+y_{v, t}\right)>x\right) \\
& \quad=\mathrm{e}^{-\nu(A)} \sum_{n=1}^{\infty} \frac{\nu(A)^{n}}{n!} \mathbb{P}\left(\Psi\left(V_{v, t}^{1}+\cdots+V_{v, t}^{n}+y_{v, t}\right)>x\right) \\
& \quad \leq \mathbb{P}\left(Z \phi(U, S)>x-y^{*}\right) \mathrm{e}^{-\nu(A)} \sum_{n=1}^{\infty} \frac{\nu(A)^{n} K^{n}}{n!},
\end{aligned}
$$

where $y^{*}=\sup _{(v, t)} y_{v, t}$ and $\mathrm{e}^{-\nu(A)} \sum_{n=1}^{\infty} \frac{\nu(A)^{n} K^{n}}{n!}<\infty$. With the convention that $V_{v, t}^{1}+\cdots+V_{v, t}^{n-1}=0$ for $n=1$, by dominated convergence, Theorems 3.1 and 3.2 and Lemma 3.1 yield

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\mathbb{P}\left(\Psi\left(X_{v, t}^{1}+y_{v, t}\right)>x\right)}{L(x / c) \exp (-\beta x / c)} \\
& =\frac{n}{\nu(A)} \mathrm{e}^{-\nu(A)} \sum_{n=1}^{\infty} \frac{\nu(A)^{n}}{n!} \int_{B} \int_{0}^{T} \mathbb{E}\left[\mathrm{e}^{\beta \lambda_{u, s}\left(V_{v, t}^{1}+\cdots+V_{v, t}^{n-1}+y_{v, t}\right)}\right] \mathrm{d} s \mathrm{~d} u \\
& =\mathrm{e}^{-\nu(A)} \sum_{n=0}^{\infty} \frac{\nu(A)^{n}}{n!} \int_{B} \int_{0}^{T} \mathbb{E}\left[\mathrm{e}^{\beta \lambda_{u, s}\left(V_{v, t}^{1}+\cdots+V_{v, t}^{n}+y_{v, t}\right)}\right] \mathrm{d} s \mathrm{~d} u \\
& \quad=\int_{B} \int_{0}^{T} \mathbb{E}\left[\mathrm{e}^{\beta \lambda_{u, s}\left(X_{v, t}^{1}+y_{v, t}\right)}\right] \mathrm{d} s \mathrm{~d} u .
\end{aligned}
$$

This concludes the proof.
Proof of Lemma 3.2. First we show that

$$
\begin{equation*}
\mathbb{E} \exp \left(\gamma \sup _{(v, t) \in B^{\prime} \times T^{\prime}} X_{v, t}^{2}\right)<\infty \tag{SM1.7}
\end{equation*}
$$

for all $\gamma>0$. Applying arguments as in Section 2, we write X^{2} as the independent $\operatorname{sum} X_{v, t}^{2}=Y_{v, t}^{1}+Y_{v, t}^{2}$. Here Y^{1} is a compound Poisson sum

$$
Y_{v, t}^{1}=\sum_{k=1}^{M} J_{v, t}^{k}
$$

with finite intensity $\nu\left(A^{c} \cap D\right)<\infty$ and jump distribution $\nu_{2}=\nu_{A^{c} \cap D} / \nu\left(A^{c} \cap D\right)$, where $D=\left\{z \in \mathbb{R}^{\mathbb{K}}: \inf _{(v, t) \in \mathbb{K}} z_{v, t}<-1\right\}$. Furthermore, Y^{2} is infinitely divisible with Lévy measure $\nu_{A^{c} \cap D^{c}}$, the restriction of ν to the set $A^{c} \cap D^{c}=\left\{z \in \mathbb{R}^{\mathbb{K}}\right.$: $\left.\sup _{(v, t) \in \mathbb{K}}\left|z_{v, t}\right| \leq 1\right\}$. By arguments as before, both fields have t-càdlàg extensions to $B^{\prime} \times T^{\prime}$. For each $k, J_{v, t}^{k} \leq 0$ for all $(v, t) \in B^{\prime} \times T^{\prime}$ almost surely, and in particular $\mathbb{E} \exp \left(\gamma \sup _{(v, t) \in B^{\prime} \times T^{\prime}} Y_{v, t}^{1}\right)<\infty$ for all $\gamma>0$. As $\left(Y_{v, t}^{2}\right)_{(v, t) \in B^{\prime} \times T^{\prime}}$ is t-càdlàg on
the compact set $B^{\prime} \times T^{\prime}$, we find that $\mathbb{P}\left(\sup _{(v, t) \in B^{\prime} \times T^{\prime}}\left|Y_{v, t}^{2}\right|<\infty\right)=1$. Since also $\nu_{A^{c} \cap D^{c}}\left(\left\{z \in \mathbb{R}^{\mathbb{K}}: \sup _{(v, t) \in \mathbb{K}}\left|z_{v, t}\right|>1\right\}\right)=0$, we obtain from [1, Lemma 2.1] that $\mathbb{E} \exp \left(\gamma \sup _{(v, t) \in B^{\prime} \times T^{\prime}}\left|Y_{v, t}^{2}\right|\right)<\infty$ for all $\gamma>0$, which yields the claim (SM1.7).

Appealing to properties of $\lambda_{u, s}$ we find that

$$
\lambda_{u, s}\left(X_{v, t}\right) \leq \lambda_{u, s}\left(X_{v, t}^{1}+\sup _{(v, t) \in B^{\prime} \times T^{\prime}} X_{v, t}^{2}\right)=\lambda_{u, s}\left(X_{v, t}^{1}\right)+\frac{\sup _{(v, t) \in B^{\prime} \times T^{\prime}} X_{v, t}^{2}}{c}
$$

The assertion now follows from (SM1.7) and the first claim of Theorem 3.3.

Proof of Theorem 3.4. Let π be the distribution of $\left(X_{v, t}^{2}\right)_{(v, t) \in B^{\prime} \times T^{\prime}}$. Conditioning on $\left(X_{v, t}^{2}\right)_{(v, t)}=\left(y_{v, t}\right)_{(v, t)}$ we find by independence that

$$
\frac{\mathbb{P}\left(\Psi\left(X_{v, t}\right)>x\right)}{\mathbb{P}\left(\Psi\left(X_{v, t}^{1}\right)>x\right)}=\int \frac{\mathbb{P}\left(\Psi\left(X_{v, t}^{1}+y_{v, t}\right)>x\right)}{\mathbb{P}\left(\Psi\left(X_{v, t}^{1}\right)>x\right)} \pi(\mathrm{d} y)=\int f(y ; x) \pi(\mathrm{d} y)
$$

with $f(y ; x)=\mathbb{P}\left(\Psi\left(X_{v, t}^{1}+y_{v, t}\right)>x\right) / \mathbb{P}\left(\Psi\left(X_{v, t}^{1}\right)>x\right)$, which, according to Theorem 3.3, satisfies

$$
f(y ; x) \rightarrow f(y)=\frac{\int_{B} \int_{0}^{T} \mathbb{E}\left[\exp \left(\beta \lambda_{u, s}\left(X_{v, t}^{1}+y_{v, t}\right)\right)\right] \mathrm{d} s \mathrm{~d} u}{\int_{B} \int_{0}^{T} \mathbb{E}\left[\exp \left(\beta \lambda_{u, s}\left(X_{v, t}^{1}\right)\right)\right] \mathrm{d} s \mathrm{~d} u}
$$

as $x \rightarrow \infty$. By another application of Theorem 3.3 and since

$$
\int f(y) \pi(\mathrm{d} y)=\frac{\int_{B} \int_{0}^{T} \mathbb{E}\left[\exp \left(\beta \lambda_{u, s}\left(X_{v, t}\right)\right)\right] \mathrm{d} s \mathrm{~d} u}{\int_{B} \int_{0}^{T} \mathbb{E}\left[\exp \left(\beta \lambda_{u, s}\left(X_{v, t}^{1}\right)\right)\right] \mathrm{d} s \mathrm{~d} u}
$$

the proof is completed if we can find non-negative and integrable functions $g(y ; x)$ and $g(y)=\lim _{x \rightarrow \infty} g(y ; x)$ such that $f(y ; x) \leq g(y ; x)$ and such that

$$
\int g(y ; x) \pi(\mathrm{d} y) \rightarrow \int g(y) \pi(\mathrm{d} y)
$$

as $x \rightarrow \infty$. With $y^{*}=\sup _{(v, t) \in B^{\prime} \times T^{\prime}} y_{v, t}$ we use the function

$$
g(y ; x)=\mathbb{P}\left(\Psi\left(X_{v, t}^{1}\right)+y^{*}>x\right) / \mathbb{P}\left(\Psi\left(X_{v, t}^{1}\right)>x\right)
$$

which, according to properties of $\lambda_{u, s}$ and Theorem 3.3, satisfies

$$
g(y ; x) \rightarrow g(y)=\exp \left(\beta y^{*} / c\right)
$$

as $x \rightarrow \infty$. From [4, Lemma 2.4(i)] and Theorem 3.3 the distribution of $\Psi\left(X_{v, t}^{1}\right)$ is convolution equivalent with index β / c. Now let G and H denote the distributions of
$\Psi\left(X_{v, t}^{1}\right)$ and $\sup _{(v, t) \in B^{\prime} \times T^{\prime}} X_{v, t}^{2}$, respectively. If $\bar{H}(x)=o(\bar{G}(x)), x \rightarrow \infty$, it follows from the integrability statement (SM1.7) and [4, Lemma 2.1] that

$$
\begin{aligned}
\int g(y ; x) \pi(\mathrm{d} y) & =\frac{\mathbb{P}\left(\Psi\left(X_{v, t}^{1}\right)+\sup _{(v, t) \in B^{\prime} \times T^{\prime}} X_{v, t}^{2}>x\right)}{\mathbb{P}\left(\Psi\left(X_{v, t}^{1}\right)>x\right)} \\
& \rightarrow \mathbb{E} \exp \left(\frac{\beta}{c} \sup _{(v, t) \in B^{\prime} \times T^{\prime}} X_{v, t}^{2}\right)=\int g(y) \pi(\mathrm{d} y)
\end{aligned}
$$

as $x \rightarrow \infty$. From (SM1.7) we find that $\lim _{x \rightarrow \infty} \mathrm{e}^{\gamma x} \mathbb{P}\left(\sup _{(v, t) \in B^{\prime} \times T^{\prime}} X_{v, t}^{2}>x\right)=0$ for all $\gamma>0$. Combined with the convolution equivalence of the distribution of $\Psi\left(X_{v, t}^{1}\right)$, this yields $\bar{H}(x)=o(\bar{G}(x))$ and the claim follows.

SM2. Proofs of Section 5

Proof of Lemma 5.2. Let $\omega \in \Omega_{1}^{\prime}$ and $\left(s_{n}\right) \subset \tilde{S}$ such that $s_{n} \downarrow t \in[0, S]$. For all $k \in \mathbb{N}$ there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|\boldsymbol{Z}_{s_{n}}(\omega)-\boldsymbol{Z}_{s_{N}}(\omega)\right\|_{\infty} \leq \frac{1}{k} \quad \text { for all } \quad n \geq N \tag{SM2.1}
\end{equation*}
$$

This is seen by contradiction as follows: Assume that for any $N \in \mathbb{N}$ there exists $n \geq N$ such that

$$
\left\|\boldsymbol{Z}_{s_{n}}(\omega)-\boldsymbol{Z}_{s_{N}}(\omega)\right\|_{\infty}>\frac{1}{k}
$$

Now fix $p \in \mathbb{N}$. By this there exist $n_{0}<n_{1}<n_{2}<\cdots<n_{p}$ such that

$$
\left\|\boldsymbol{Z}_{s_{n_{j}}}(\omega)-\boldsymbol{Z}_{s_{n_{j-1}}}(\omega)\right\|_{\infty}>\frac{1}{k} \quad \text { for } \quad j=1, \ldots, p
$$

and we conclude that $\boldsymbol{Z}(\omega)$ has $\frac{1}{k}$-oscillation p times in \tilde{S} for any p. Hence $\omega \in A_{k}^{c}$, which is a contradiction. From (SM2.1) and the fact that the metric space $(\mathcal{C}(K, \mathbb{R}), \|$. $\|_{\infty}$) is complete, we know that $\lim _{n \rightarrow \infty} \boldsymbol{Z}_{s_{n}}(\omega)$ exists with respect to $\|\cdot\|_{\infty}$ as a continuous function on K. To show uniqueness of the limit, let $\left(t_{n}\right) \subset \tilde{S}$ be another sequence such that $t_{n} \downarrow t$. Then $\lim _{n \rightarrow \infty} \boldsymbol{Z}_{s_{n}}(\omega)=\lim _{n \rightarrow \infty} \boldsymbol{Z}_{t_{n}}(\omega)$: Let $\left(r_{n}\right)$ be the union of $\left(s_{n}\right)$ and $\left(t_{n}\right)$ ordered such that $r_{n} \downarrow t$. Then similarly for any $\epsilon>0$ there is N^{\prime} such that

$$
\left\|\boldsymbol{Z}_{r_{n}}(\omega)-\boldsymbol{Z}_{r_{N^{\prime}}}(\omega)\right\|_{\infty}<\frac{\epsilon}{2} \quad \text { for } \quad n \geq N^{\prime}
$$

Also there is $N \in \mathbb{N}$ such that $\left(s_{n}\right)_{n \geq N},\left(t_{n}\right)_{n \geq N} \subseteq\left(r_{n}\right)_{n \geq N^{\prime}}$, and hence

$$
\left\|\boldsymbol{Z}_{s_{n}}(\omega)-\boldsymbol{Z}_{t_{n}}(\omega)\right\|_{\infty} \leq\left\|\boldsymbol{Z}_{s_{n}}(\omega)-\boldsymbol{Z}_{r_{N^{\prime}}}(\omega)\right\|_{\infty}+\left\|\boldsymbol{Z}_{t_{n}}(\omega)-\boldsymbol{Z}_{r_{N^{\prime}}}(\omega)\right\|_{\infty}<\epsilon
$$

for all $n \geq N$. Thus, the $\operatorname{limit} \lim _{s \in \mathbb{Q}, s \downarrow t} \boldsymbol{Z}_{s}(\omega)$ exists uniquely with respect to $\|\cdot\|_{\infty}$. Similarly for $\lim _{s \in \mathbb{Q}, s \uparrow t} \boldsymbol{Z}_{s}(\omega)$.

We let

$$
B(p, \epsilon, D)=\{\omega \in \Omega \mid \boldsymbol{Z}(\omega) \text { has } \epsilon \text {-oscillation } p \text { times in } D\}
$$

with $D \subseteq \mathbb{Q} \cap[0, \infty)$, and

$$
\alpha_{\epsilon}(r)=\sup \left\{\mathbb{P}\left(\left\|\boldsymbol{Z}_{t}\right\|_{\infty} \geq \epsilon\right) \mid t \in[0, r] \cap \mathbb{Q}\right\}
$$

Note that a direct consequence of the stochastic continuity from Lemma 5.1 is that $\alpha_{\epsilon}(r) \rightarrow 0$ as $r \rightarrow 0$ for all $\epsilon>0$.

Lemma SM2.1. Let p be a positive integer, $D=\left\{t_{1}, \ldots, t_{n}\right\} \subseteq \mathbb{Q} \cap[0, \infty)$ and $u, r \in$ \mathbb{Q} such that $0 \leq u \leq t_{1}<\cdots<t_{n} \leq r$. Then $\mathbb{P}(B(p, 4 \epsilon, D)) \leq\left(2 \alpha_{\epsilon}(r-u)\right)^{p}$.

Proof. We will show the statement by induction in p. For this, define

$$
\begin{aligned}
C_{k} & =\left\{\left\|\boldsymbol{Z}_{t_{j}}-\boldsymbol{Z}_{u}\right\|_{\infty} \leq 2 \epsilon, j=1, \ldots, k-1,\left\|\boldsymbol{Z}_{t_{k}}-\boldsymbol{Z}_{u}\right\|_{\infty}>2 \epsilon\right\}, \\
D_{k} & =\left\{\left\|\boldsymbol{Z}_{t_{k}}-\boldsymbol{Z}_{r}\right\|_{\infty}>\epsilon\right\}
\end{aligned}
$$

and note that C_{1}, \ldots, C_{n} are disjoint and

$$
\begin{aligned}
B(1,4 \epsilon, D) & \subseteq \bigcup_{k=1}^{n}\left\{\left\|\boldsymbol{Z}_{t_{k}}-\boldsymbol{Z}_{u}\right\|_{\infty}>2 \epsilon\right\}=\bigcup_{k=1}^{n} C_{k} \\
& =\bigcup_{k=1}^{n}\left(C_{k} \cap D_{k}^{c}\right) \cup\left(C_{k} \cap D_{k}\right) \subseteq\left\{\left\|\boldsymbol{Z}_{r}-\boldsymbol{Z}_{u}\right\|_{\infty} \geq \epsilon\right\} \cup \bigcup_{k=1}^{n}\left(C_{k} \cap D_{k}\right) .
\end{aligned}
$$

By the Lévy properties in Lemma 5.1 we have $\mathbb{P}\left(\left\|\boldsymbol{Z}_{r}-\boldsymbol{Z}_{u}\right\|_{\infty} \geq \epsilon\right) \leq \alpha_{\epsilon}(r-u)$ and furthermore that $\mathbb{P}\left(C_{k} \cap D_{k}\right)=\mathbb{P}\left(C_{k}\right) \mathbb{P}\left(D_{k}\right) \leq \mathbb{P}\left(C_{k}\right) \alpha_{\epsilon}(r-u)$. The fact that C_{1}, \ldots, C_{n} are disjoint then implies

$$
\mathbb{P}(B(1,4 \epsilon, D)) \leq \mathbb{P}\left(\left\|\boldsymbol{Z}_{r}-\boldsymbol{Z}_{u}\right\|_{\infty} \geq \epsilon\right)+\sum_{k=1}^{n} \mathbb{P}\left(C_{k} \cap D_{k}\right) \leq 2 \alpha_{\epsilon}(r-u)
$$

which is the desired expression for $p=1$. We now assume the result to be true for arbitrary $p \in \mathbb{N}$. We define the sets
$F_{k}=\left\{\omega: \boldsymbol{Z}(\omega)\right.$ has 4ϵ-oscillation p times in $\left\{t_{1}, \ldots, t_{k}\right\}$, but does not have 4ϵ-oscillation p times in $\left.\left\{t_{1}, \ldots, t_{k-1}\right\}\right\}$,
$G_{k}=\left\{\omega: \boldsymbol{Z}(\omega)\right.$ has 4ϵ-oscillation one time in $\left.\left\{t_{k}, \ldots, t_{n}\right\}\right\}$.

Then F_{1}, \ldots, F_{n} are disjoint, and $\mathbb{P}\left(F_{k} \cap G_{k}\right)=\mathbb{P}\left(F_{k}\right) \mathbb{P}\left(G_{k}\right)$ for all $k=1, \ldots, n$ due to the Lévy properties. Also $B(p, 4 \epsilon, D)=\cup_{k=1}^{n} F_{k}$, and furthermore

$$
B(p+1,4 \epsilon, D)=\bigcup_{k=1}^{n}\left(F_{k} \cap G_{k}\right)
$$

with the inclusion \subseteq seen as follows: If $\omega \in B(p+1,4 \epsilon, D)$ then $\boldsymbol{Z}(\omega)$ has 4ϵ-oscillation $p+1$ times in some $\left\{t_{n_{0}}, \ldots, t_{n_{p+1}}\right\} \subseteq D$ with $n_{0}<n_{1}<\cdots<n_{p+1}$. Hence there is $k \leq n_{p}$ such that $\omega \in F_{k}$. Also $\left\|\boldsymbol{Z}_{t_{n_{p+1}}}(\omega)-\boldsymbol{Z}_{t_{n_{p}}}(\omega)\right\|_{\infty}>4 \epsilon$ and as such also $\omega \in G_{k}$. From the induction assumption, the case $p=1$ and the fact that F_{1}, \ldots, F_{n} are disjoint we find that

$$
\begin{aligned}
\mathbb{P}(B(p+1,4 \epsilon, D)) & =\sum_{k=1}^{n} \mathbb{P}\left(G_{k}\right) \mathbb{P}\left(F_{k}\right) \leq 2 \alpha_{\epsilon}(r-u) \mathbb{P}\left(\bigcup_{k=1}^{n} F_{k}\right) \\
& =2 \alpha_{\epsilon}(r-u) \mathbb{P}(B(p, 4 \epsilon, M)) \leq\left(2 \alpha_{\epsilon}(r-u)\right)^{p+1}
\end{aligned}
$$

Proof of Lemma 5.3. To show that $\mathbb{P}\left(\Omega_{1}^{\prime}\right)=1$ it suffices to prove $\mathbb{P}\left(A_{k}^{c}\right)=0$ for any fixed $k \in \mathbb{N}$. Since $\alpha_{\epsilon}(r) \rightarrow 0$ as $r \downarrow 0$ for any $\epsilon>0$, we can choose $\ell \in \mathbb{N}$ such that $2 \alpha_{1 /(4 k)}(S / \ell)<1$. Then by continuity of \mathbb{P} we get

$$
\begin{aligned}
\mathbb{P}\left(A_{k}^{c}\right) & \leq \mathbb{P}\left(\boldsymbol{Z} \text { has } \frac{1}{k} \text {-oscillation infinitely often in } \tilde{S}\right) \\
& \leq \sum_{j=1}^{\ell} \mathbb{P}\left(\boldsymbol{Z} \text { has } \frac{1}{k} \text {-oscillation infinitely often in }\left[\frac{j-1}{\ell} S, \frac{j}{\ell} S\right] \cap \mathbb{Q}\right) \\
& =\sum_{j=1}^{\ell} \lim _{p \rightarrow \infty} \mathbb{P}\left(B\left(p, \frac{1}{k},\left[\frac{j-1}{\ell} S, \frac{j}{\ell} S\right] \cap \mathbb{Q}\right)\right) .
\end{aligned}
$$

Now fix $j=1, \ldots, \ell$, and enumerate the elements of $\left[\frac{j-1}{\ell} S, \frac{j}{\ell} S\right] \cap \mathbb{Q}$ by $\left(t_{m}\right)_{m \in \mathbb{N}}$. From Lemma SM2.1 we know that

$$
\mathbb{P}\left(B\left(p, \frac{1}{k},\left\{t_{1}, \ldots, t_{n}\right\}\right)\right) \leq\left(2 \alpha_{1 /(4 k)}\left(\frac{S}{\ell}\right)\right)^{p}
$$

for any $n \in \mathbb{N}$. By continuity of \mathbb{P} we see that

$$
\mathbb{P}\left(B\left(p, \frac{1}{k},\left[\frac{j-1}{\ell} S, \frac{j}{\ell} S\right] \cap \mathbb{Q}\right)\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(B\left(p, \frac{1}{k},\left\{t_{1}, \ldots, t_{n}\right\}\right)\right) \leq\left(2 \alpha_{1 /(4 k)}\left(\frac{S}{\ell}\right)\right)^{p}
$$

which tends to 0 as $p \rightarrow \infty$ since ℓ is chosen such that $2 \alpha_{1 /(4 k)}(S / \ell)<1$. As this holds for all $j=1, \ldots, \ell$ we conclude that $\mathbb{P}\left(A_{k}^{c}\right)=0$.

Acknowledgements

This work was supported by the Centre for Stochastic Geometry and Advanced Bioimaging, funded by a grant from the Villum Foundation.

References

[1] Braverman, M. and Samorodnitsky, G. (1995). Functionals of infinitely divisible stochastic processes with exponential tails. Stochastic Process. Appl. 56, 207-231.
[2] Cline, D. B. H. (1986). Convolution tails, product tails and domains of attraction. Probab. Theory Related Fields 72, 529-557.
[3] Cline, D. B. H. (1987). Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. 43, 347-365.
[4] Pakes, A. G. (2004). Convolution equivalence and infinite divisibility. J. Appl. Probab. 41, 407-424.

