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SUPPLEMENTARY MATERIAL OF

“OPTIMAL SCALING OF THE RANDOM WALK METROPOLIS

ALGORITHM UNDER Lp MEAN DIFFERENTIABILITY”

1. Proof of Theorem 4

The proof of this theorem follows the same steps as the the proof of The-

orem 2. Note that ξθ and ξ0, given by (12), are well defined on I ∩ {x ∈

R | x+ rθ ∈ I}. Let the function υ : R2 → R be defined for x, θ ∈ R by

υ(x, θ) = 1I(x+ rθ)1I(x+ (1− r)θ) . (S1)

Lemma S1. Assume G 1 holds. Then, there exists C > 0 such that for all

θ ∈ R, (∫
I

(
{ξθ(x)− ξ0(x)} υ(x, θ) + θV̇ (x)ξ0(x)/2

)2
dx

)1/2

≤ C|θ|β .

Proof. The proof follows as Lemma 1 and is omitted.

Lemma S2. Assume that G1 holds. Let X be a random variable distributed

according to π and Z be a standard Gaussian random variable independent of

X. Define

DI = {X + r`d−1/2Z ∈ I} ∩ {X + (1− r)`d−1/2Z ∈ I} .

Then,

(i) limd→+∞ d
∥∥∥1DIζd(X,Z) + `ZV̇ (X)/(2

√
d)
∥∥∥2
2

= 0.

(ii) Let p be given by G1(i). Then,

lim
d→+∞

√
d
∥∥∥1DI {V (X)− V (X + `Z/

√
d)
}

+ `ZV̇ (X)/
√
d
∥∥∥
p

= 0 .

1



2 Durmus et al.

(iii) limd→∞ d
∥∥1DI (log(1 + ζd(X,Z))− ζd(X,Z) + [ζd]2(X,Z)/2

)∥∥
1

= 0,

where ζd is given by (19).

Proof. Note by definition of ζd and ξθ (12), for x ∈ I and x+ r`d−1/2z ∈ I,

ζd(x, z) = ξ`zd−1/2(x)/ξ0(x)− 1 . (S2)

Using Lemma S1,∥∥∥1DIζd(X,Z) + `ZV̇ (X)/(2
√
d)
∥∥∥2
2

= E
[∫
I

(
υ(x, `Zd−1/2) {ξ`Zd−1/2(x)− ξ0(x)}+ `ZV̇ (x)ξ0(x)/(2

√
d)
)2

dx

]
≤ C`2βd−βE

[
|Z|2β

]
.

The proof of (i) is completed using β > 1. For (ii), write for all x ∈ I and

x+ `zd−1/2z ∈ I, ∆V (x, z) = V (x)− V (x+ `zd−1/2). By G1(i)∥∥∥1DI∆V (X,Z) + `ZV̇ (X)/
√
d
∥∥∥p
p

= E
[∫
I

(
υ(x, `Zd−1/2)∆V (X,Z) + `ZV̇ (x)/

√
d
)p
π(x)dx

]
≤ C`βpd−βp/2E

[
|Z|βp

]
and the proof of (ii) follows from β > 1. For (iii), note that for all x > 0,

u ∈ [0, x], |(x−u)(1+u)−1| ≤ |x|, and the same inequality holds for x ∈ (−1, 0]

and u ∈ [x, 0]. Then by (21) and (22), for all x > −1,

∣∣log(1 + x)− x+ x2/2
∣∣ = |R(x)| ≤ x2 |log(1 + x)| .

Then by (S2), for x ∈ I and x+ `d−1/2z ∈ I,∣∣∣log(1 + ζd(x, z))− ζd(x, z) + [ζd]2(x, z)/2
∣∣∣

≤ (ξ`zd−1/2(x)/ξ0(x)− 1)2 |log(ξ`zd−1/2(x)/ξ0(x))| ,

≤ (ξ`zd−1/2(x)/ξ0(x)− 1)2
∣∣∣V (x+ `zd−1/2)− V (x)

∣∣∣ /2 .
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Since for all x ∈ R, | exp(x)− 1| ≤ |x|(exp(x) + 1), this yields,∣∣∣log(1 + ζd(x, z))− ζd(x, z) + [ζd]2(x, z)/2
∣∣∣

≤
∣∣∣V (x+ `zd−1/2)− V (x)

∣∣∣3 (exp
(
V (x)− V (x+ `zd−1/2)

)
+ 1
)
/4 .

Therefore,∫
I
υ(x, `zd−1/2)

∣∣∣log(1 + ζd(x, z))− ζd(x, z) + [ζd]2(x, z)/2
∣∣∣π(x)dx

≤ (I1 + I2)/4 ,

where

I1 =

∫
I
υ(x, `zd−1/2)

∣∣∣V (x+ `zd−1/2)− V (x)
∣∣∣3 π(x)dx

I2 =

∫
I
υ(x, `zd−1/2)

∣∣∣V (x+ `zd−1/2)− V (x)
∣∣∣3 π(x+ `zd−1/2)dx .

By Hölder’s inequality, a change of variable and using G1(i),

I1 + I2 ≤ C

(∣∣∣`zd−1/2∣∣∣3(∫
I

∣∣∣V̇ (x)
∣∣∣4 π(x)dx

)3/4

+
∣∣∣`zd−1/2∣∣∣3β) .

The proof follows from G1(ii) and β > 1.

For ease of notation, write for all d ≥ 1 and i, j ∈ {1, . . . , d},

DdI,j =
{
Xd
j + r`d−1/2Zdj ∈ I

}
∩
{
Xd
j + (1− r)`d−1/2Zdj ∈ I

}
,

DdI,i:j =

j⋂
k=i

DdI,k . (S3)

Lemma S3. Assume that G1 holds. For all d ≥ 1, let Xd be distributed ac-

cording to πd, and Zd be d-dimensional Gaussian random variable independent

of Xd. Then, limd→+∞ JdI = 0 where

JdI =

∥∥∥∥∥1Dd
I,2:d

d∑
i=2

{(
∆V d

i +
`Zdi√
d
V̇ (Xd

i )

)
− 2E

[
1Dd
I,i
ζd(Xd

i , Z
d
i )
]

+
`2

4d
V̇ 2(Xd

i )

}∥∥∥∥∥
1

.
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Proof. The proof follows the same lines as the proof of Lemma 3 and is

omitted.

Define for all d ≥ 1,

EdI = E

[(
Zd1

)2 ∣∣∣∣∣1Dd
I,1:d

1 ∧ exp

{
d∑
i=1

∆V d
i

}

−1 ∧ exp

{
−`d−1/2Zd1 V̇ (Xd

1 ) +

d∑
i=2

bdI(X
d
i , Z

d
i )

}∣∣∣∣∣
]
,

where ∆V d
i is given by (5), for all x ∈ I, z ∈ R,

bdI(x, z) = − `z√
d
V̇ (x) + 2E

[
1Dd
I,1
ζd(Xd

1 , Z
d
1 )
]
− `2

4d
V̇ 2(x) , (S4)

and ζd is given by (19).

Proposition S1. Assume G1 holds. Let Xd be a random variable distributed

according to πd and Zd be a zero-mean standard Gaussian random variable,

independent of X. Then limd→+∞ EdI = 0.

Proof. Let Λd = −`d−1/2Zd1 V̇ (Xd
1 ) +

∑d
i=2 ∆V d

i . By the triangle inequality,

Ed ≤ Ed1 + Ed2 + Ed3 where

Ed1,I = E

[(
Zd1

)2
1Dd
I,1:d

∣∣∣∣∣1 ∧ exp

{
d∑
i=1

∆V d
i

}
− 1 ∧ exp

{
Λd
}∣∣∣∣∣
]
,

Ed2,I = E
[(
Zd1

)2
1Dd
I,2:d

∣∣∣1 ∧ exp
{

Λd
}

−1 ∧ exp

{
−`d−1/2Zd1 V̇ (Xd

1 ) +

d∑
i=2

bd(Xd
i , Z

d
i )

}∣∣∣∣∣
]
,

Ed3,I = E

[(
Zd1

)2
1(Dd

I,2:d)
c1 ∧ exp

{
−`d−1/2Zd1 V̇ (Xd

1 ) +

d∑
i=2

bd(Xd
i , Z

d
i )

}]
,

Since t 7→ 1 ∧ et is 1-Lipschitz, by the Cauchy-Schwarz inequality we get

Ed1,I ≤ E
[(
Zd1

)2
1Dd
I,1

∣∣∣∆V d
1 + `d−1/2Zd1 V̇ (Xd

1 )
∣∣∣]

≤ ‖Zd1‖24
∥∥∥1Dd

I,1
∆V d

1 + `d−1/2Zd1 V̇ (Xd
1 )
∥∥∥
2
.
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By Lemma 2(ii), Ed1,I goes to 0 as d goes to +∞. Using again that t 7→ 1 ∧ et

is 1-Lipschitz and Lemma S3, Ed2,I goes to 0 as well. Note that, as Zd1 and

1(Dd
I,2:d)

c are independent, by (15),

Ed3,I ≤ dP
({
DdI,1

}c)
≤ Cd1−γ/2 .

Therefore, Ed3,I goes to 0 as d goes to +∞ by G1(iii).

Lemma S4. Assume G1 holds. For all d ∈ N∗, let Xd be a random variable

distributed according to πd and Zd be a standard Gaussian random variable in

Rd, independent of X. Then,

lim
d→+∞

2dE
[
1Dd
I,1
ζd(Xd

1 , Z
d
1 )
]

= −`
2

4
I ,

where I is defined in (6) and ζd in (19).

Proof. Noting that for all θ ∈ R,∫
I
1I(x+rθ)1I(x+(1− r)θ)π(x+θ)dx =

∫
I
1I(x+(r−1)θ)1I(x− rθ)π(x)dx .

the proof follows the same steps as the the proof of Lemma 4 and is omitted.

Proof of Theorem 4. The proof follows the same lines as the proof of Theo-

rem 2 and is therefore omitted.

2. Proof of tightness

Lemma S5. Assume G1 holds. Then, the sequence (µd)d≥1 is tight in W.

As for the proof of Lemma 5, the proof follows from Lemma S6.

Lemma S6. Assume G1. Then, there exists C > 0 such that, for all 0 ≤ k1 <

k2,

E
[(
Xd
k2,1 −X

d
k1,1

)4]
≤ C

4∑
p=2

(k2 − k1)p

dp
.
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Proof. We use the same decomposition of E[(Xd
k2,1
−Xd

k1,1
)4] as in the proof

of Lemma 6 so that we only need to upper bound the following term:

d−2E

( k2∑
k=k1+1

Zdk,11(Ad
k)

c

)4
 = d−2

∑
E

[
4∏
i=1

Zdmi,11(Ad
mi

)
c

]
,

where the sum is over all the quadruplets (mp)
4
p=1 satisfying mp ∈ {k1 +

1, . . . , k2}, p = 1, . . . , 4. Let (m1,m2,m3,m4) ∈ {k1 + 1, . . . , k2}4 and (X̃d
k )k≥0

be defined as:

X̃d
0 = Xd

0 and X̃d
k+1 = X̃d

k + 1k/∈{m1−1,m2−1,m3−1,m4−1}`d
−1/2Zdk+11Ãd

k+1
,

where for all k ≥ 0 and all 1 ≤ i ≤ d,

Ãdk+1 =

{
Uk+1 ≤ exp

(
d∑
i=1

∆Ṽ d
k,i

)}
∆Ṽ d

k,i = V
(
X̃d
k,i

)
− V

(
X̃d
k,i + `d−1/2Zdk+1,i

)
.

Define, for all k1 + 1 ≤ k ≤ k2, 1 ≤ i, j ≤ d,

D̃d,kI,j =
{
X̃d
k,j + r`d−1/2Zdk+1,j ∈ I

}
∩
{
X̃d
k,j + (1− r)`d−1/2Zdk+1,j ∈ I

}
,

D̃d,kI,i:j =

j⋂
`=i

D̃d,kI,` .

Note that by convention V (x) = −∞ for all x /∈ I, Ãdk+1 ⊂ D̃
d,k
I,1:d so that(

Ãdk+1

)c
may be written

(
Ãdk+1

)c
=
(
D̃d,kI,1:d

)c⋃((
Ãdk+1

)c
∩ D̃d,kI,1:d

)
. Let F

be the σ-field generated by
(
X̃d
k

)
k≥0

. Consider the case #{m1, . . . ,m4} = 4.

The case #{m1, . . . ,m4} = 3 is dealt with similarly and the two other cases fol-

low the same lines as the proof of Lemma S6. As
{(
Umj

, Zdmj ,1, · · · , Z
d
mj ,d

)}
1≤j≤4

are independent conditionally to F ,

E

 4∏
j=1

Zdmj ,11
(
Ad

mj

)c

∣∣∣∣∣∣F


=

4∏
j=1

{
E
[
1(
D̃d,mj−1
I,1:d

)cZdmj ,1

∣∣∣∣F]+ E
[
1D̃d,mj−1
I,1:d

1(
Ãd

mj

)cZdmj ,1

∣∣∣∣F]} .
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As Umj
is independent of (Zdmj ,1, · · · , Z

d
mj ,d

) conditionally to F , the second

term may be written:

E
[
1D̃d,mj−1
I,1:d

1(
Ãd

mj

)cZdmj ,1

∣∣∣∣F]

= E

1D̃d,mj−1
I,1:d

Zdmj ,1

(
1− exp

{
d∑
i=1

∆Ṽ d
mj−1,i

})
+

∣∣∣∣∣∣F
 .

Since the function x 7→ (1− ex)+ is 1-Lipschitz, on D̃d,mj−1

I,1:d∣∣∣∣∣∣
(

1− exp

{
d∑
i=1

∆Ṽ d
mj−1,i

})
+

−Θmj

∣∣∣∣∣∣ ≤
∣∣∣∆Ṽ d

mj−1,1 + `d−1/2V̇ (X̃d
mj−1,1)Z

d
mj ,1

∣∣∣ ,
where Θmj

= (1− exp{−`d−1/2V̇ (X̃d
mj−1,1)Z

d
mj ,1 +

∑d
i=2 ∆Ṽ d

mj−1,i})+. Then,∣∣∣∣∣∣E
1D̃d,mj−1

I,1:d
Zdmj ,1

(
1− exp

{
d∑
i=1

∆Ṽ d
mj−1,i

})
+

∣∣∣∣∣∣F
∣∣∣∣∣∣ ≤ Admj

+Bd
mj
,

where

Admj
= E

[∣∣∣Zdmj ,1

∣∣∣ ∣∣∣1D̃d,mj−1
I,1

∆Ṽ d
mj−1,1 + `d−1/2V̇ (X̃d

mj−1,1)Z
d
mj ,1

∣∣∣∣∣∣F] ,
Bd
mj

=
∣∣∣E [1D̃d,mj−1

I,2:d
Zdmj ,1Θmj

∣∣∣F]∣∣∣ .
By Jensen inequality,∣∣∣∣∣∣E

 4∏
j=1

Zdmj ,11
(
Ad

mj

)c

∣∣∣∣∣∣ ≤ E

 4∏
j=1

{
E
[
1(
D̃d,mj−1
I,1:d

)c |Zdmj ,1|
∣∣∣∣F]+Admj

+Bd
mj

} ,
≤ CE

 4∑
j=1

E
[
1(
D̃d,mj−1
I,1:d

)c |Zdmj ,1|
4

∣∣∣∣F]+
(
Admj

)4
+
(
Bd
mj

)4 ,
By G1(iii) and Holder’s inequality applied with α = 1/(1 − 2/γ) > 1, for all

1 ≤ j ≤ 4,

E
[
1(
D̃d,mj−1
I,1:d

)c |Zdmj ,1|
4

]
≤ E

[
1(
D̃d,mj−1
I,1

)c |Zdmj ,1|
4

]
+

d∑
i=2

E
[
1(
D̃d,mj−1
I,i

)c

]
,

≤ E
[
|Zdmj ,1|

4α/(α−1)
](α−1)/α

d−γ/(2α) + d1−γ/2 ,

≤ Cd1−γ/2 .
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By Lemma S2(ii) and the Holder’s inequality, there exists C > 0 such that

E
[(
Admj

)4]
≤ Cd−2. On the other hand, by [1, Lemma 6] since Zdmj ,1 is

independent of F ,

Bd
mj

=
∣∣∣E [1D̃d,mj−1

I,2:d
`d−1/2V̇ (X̃d

mj−1,1)

× G

(
`2d−1V̇ (X̃d

mj−1,1)
2,−2

d∑
i=2

∆Ṽ d
mj−1,i

)∣∣∣∣∣F
]∣∣∣∣∣ ,

where the function G is defined in (24). By G1(ii) and since G is bounded,

E[(Bd
mj

)4] ≤ Cd−2. Since γ ≥ 6 in G1(iii), |E[
∏4
j=1 Z

d
mj ,11(Ad

mj
)c ]| ≤ Cd−2,

showing that ∑
(m1,m2,m3,m4)∈I4

∣∣∣∣∣E
[

4∏
i=1

Zdmi,11(Ad
mi

)
c

]∣∣∣∣∣ ≤ Cd−2
(
k2 − k1

4

)
. (S5)

3. Proof of Theorem 5

Lemma S7. Assume G 1 holds. Let Xd be distributed according to πd and

Zd be a d-dimensional standard Gaussian random variable, independent of Xd.

Then, limd→+∞ Ed = 0, where

Ed = E
[∣∣∣V̇ (Xd

1 )1Dd
I,2:d

{
G
(
`2V̇ (Xd

1 )2/d, 2Ȳd

)
− G

(
`2V̇ (Xd

1 )2/d, 2X̄d

)}∣∣∣] ,
where Ȳd =

∑d
i=2 ∆V d

i , ∆V d
i and DdI,2:d are given by (5) and (S3) and X̄d =∑d

i=2 b
d
I,i, b

d
I,i = bdI(X

d
i , Z

d
i ) with bdI given by (S4).

Proof. Set for all d ≥ 1, Ȳd =
∑d

i=2 ∆V d
i and X̄d =

∑d
i=2 b

d
I,i. By definition

of bdI (S4), X̄d may be expressed as X̄d = σdS̄d + µd, where

µd = 2(d− 1)E
[
1Dd
I,1
ζd(Xd

1 , Z
d
1 )
]
− `2(d− 1)

4d
E
[
V̇ (Xd

1 )2
]
,

σ2d = `2E
[
V̇ (Xd

1 )2
]

+
`4

16d
E
[(
V̇ (Xd

1 )2 − E
[
V̇ (Xd

1 )2
])2]

,

S̄d = (
√
dσd)

−1
d∑
i=2

βdi ,

βdi = −`Zdi V̇ (Xd
i )− `2

4
√
d

(
V̇ (Xd

i )2 − E
[
V̇ (Xd

i )2
])

.
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By G 1(ii) the Berry-Essen Theorem [2, Theorem 5.7] can be applied to S̄d.

Then, there exists a universal constant C such that for all d > 0,

sup
x∈R

∣∣∣∣∣P
[√

d

d− 1
S̄d ≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ C/√d .
It follows, with σ̃2d = (d− 1)σ2d/d, that

sup
x∈R

∣∣P [X̄d ≤ x
]
− Φ((x− µd)/σ̃d)

∣∣ ≤ C/√d .
By this result and (35), Lemma 7 can be applied to obtain a constant C ≥ 0,

independent of d, such that:

E
[
1Dd
I,2:d

∣∣∣G (`2V̇ (Xd
1 )2/d, 2Ȳd

)
− G

(
`2V̇ (Xd

1 )2/d, 2X̄d

) ∣∣∣Xd
1

∣∣∣]
≤ C

(
E
[
1Dd
I,2:d

∣∣X̄d − Ȳd
∣∣]+ d−1/2 +

√
2E
[
1Dd
I,2:d

∣∣X̄d − Ȳd
∣∣] (2πσ̃2d)

−1/2

+

√
`|V̇ (Xd

1 )|/(2πd1/2σ̃2d)
)
.

Using this result, we have

Ed ≤ C
{
`1/2E

[
|V̇ (Xd

1 )|3/2
]

(2πd1/2σ̃2d)
−1/2 + E

[
|V̇ (Xd

1 )|
]

(S6)

×

(
E
[
1Dd
I,2:d

∣∣X̄d − Ȳd
∣∣]+ d−1/2 +

√
2E
[
1Dd
I,2:d

∣∣X̄d − Ȳd
∣∣] (2πσ̃2d)

−1/2

)}
.

By Lemma S3, E[1Dd
I,2:d
|X̄d− Ȳd|] goes to 0 as d goes to infinity, and by G1(ii)

limd→+∞ σ̃
2
d = `2E

[
V̇ (X)2

]
. Combining these results with (S6), it follows that

Ed goes to 0 when d goes to infinity.

For all n ≥ 0, define Fdn = σ({Xd
k , k ≤ n}) and for all φ ∈ C∞c (R,R),

Md
n(φ) =

`√
d

n−1∑
k=0

φ′(Xd
k,1)

{
Zdk+1,11Ad

k+1
− E

[
Zdk+1,11Ad

k+1

∣∣∣Fdk]}
+
`2

2d

n−1∑
k=0

φ′′(Xd
k,1)

{
(Zdk+1,1)

2
1Ad

k+1
− E

[
(Zdk+1,1)

2
1Ad

k+1

∣∣∣Fdk]} . (S7)
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Proposition S2. Assume G 1 and G 2 hold. Then, for all s ≤ t and all

φ ∈ C∞c (R,R),

lim
d→+∞

E
[∣∣∣∣φ(Y d

t,1)− φ(Y d
s,1)−

∫ t

s
Lφ(Y d

r,1)dr −
(
Md
ddte(φ)−Md

ddse(φ)
)∣∣∣∣] = 0 .

Proof. Using the same decomposition as in the proof of Proposition 4, we

only need to prove that for all 1 ≤ i ≤ 5, limd→+∞ E[|T di |] = 0, where

T d1 =

∫ t

s
φ′(Xd

bdrc,1)

(
`
√
d E

[
Zdddre,11Ad

ddre

∣∣∣Fdbdrc]+
h(`)

2
V̇ (Xd

bdrc,1)

)
dr ,

T d2 =

∫ t

s
φ′′(Xd

bdrc,1)

(
`2

2
E
[
(Zdddre,1)

2
1Ad
ddre

∣∣∣Fdbdrc ]− h(`)

2

)
dr ,

T d3 =

∫ t

s

(
Lφ(Y d

bdrc/d,1)− Lφ(Y d
r,1)
)

dr ,

T d4 =
`(ddte − dt)√

d
φ′(Xd

bdtc,1)
(
Zdddte,11Ad

ddte
− E

[
Zdddte,11Ad

ddte

∣∣∣Fdbdtc ])
+
`2(ddte − dt)

2d
φ′′(Xd

bdtc,1)
(

(Zdddte,1)
2
1Ad
ddte
− E

[
(Zdddte,1)

2
1Ad
ddte

∣∣∣Fdbdtc ]) ,
T d5 =

`(ddse − ds)√
d

φ′(Xd
bdsc,1)

(
Zdddse,11Ad

ddse
− E

[
Zdddse,11Ad

ddse

∣∣∣Fdbdsc ])
+
`2(ddse − ds)

2d
φ′′(Xd

bdsc,1)
(

(Zdddse,1)
2
1Ad
ddse
− E

[
(Zdddse,1)

2
1Ad
ddse

∣∣∣Fdbdsc ]) .
First, as φ′ and φ′′ are bounded, E

[∣∣T d4 ∣∣+
∣∣T d5 ∣∣] ≤ Cd−1/2. Denote for all

r ∈ [s, t] and d ≥ 1,

∆V d
r,i = V

(
Xd
bdrc,i

)
− V

(
Xd
bdrc,i + `d−1/2Zdddre,i

)
Ξdr = 1 ∧ exp

{
−`Zdddre,1V̇ (Xd

bdrc,1)/
√
d+

d∑
i=2

b
d,bdrc
I,i

}
,

where for all k, i ≥ 0, bd,kI,i = bdI(X
d
k,i, Z

d
k+1,i), and for all x, z ∈ R, bdI(x, y) is

given by (S4). For all k ≥ 0, 1 ≤ i, j ≤ d, define

Dd,kI,j =
{
Xd
k,j + r`d−1/2Zdk+1,j ∈ I

}
∩
{
Xd
k,j + (1− r)`d−1/2Zdk+1,j ∈ I

}
Dd,kI,i:j =

j⋂
`=i

Dd,kI,` .
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By the triangle inequality,

|T1| ≤
∫ t

s

∣∣∣φ′(Xd
bdrc,1)

∣∣∣ (A1,r +A2,r +A3,r +A4,r)dr , (S8)

where

Πd
r = 1 ∧ exp

{
−`d−1/2Zdddre,1V̇ (Xd

bdrc,1) +

d∑
i=2

∆V d
r,i

}
,

A1,r =
∣∣∣`√dE [Zdddre,1 (1Ad

ddre
− 1Dd,bdrc

I,1:d
Πd
r

) ∣∣∣Fdbdrc ]∣∣∣ ,
A2,r =

∣∣∣`√d E
[
Zdddre,11Dd,bdrc

I,1:d

(
Πd
r − Ξdr

) ∣∣∣Fdbdrc ]∣∣∣ ,
A3,r =

∣∣∣`√d E
[
Zdddre,11(Dd,bdrc

I,1:d )
cΞdr

∣∣∣Fdbdrc ]∣∣∣ ,
A4,r =

∣∣∣`√d E
[
Zdddre,1Ξ

d
r

∣∣∣Fdbdrc ]+ V̇ (Xd
bdrc,1)h(`)/2

∣∣∣ .
Since t 7→ 1 ∧ exp(t) is 1-Lipschitz,

E
[∣∣∣Ad1,r∣∣∣] ≤ `√dE [1Dd,bdrc

I,1:d

∣∣∣Zdddre,1∣∣∣ ∣∣∣∆V d
r,1 − `d−1/2Zdddre,1V̇ (Xd

bdrc,1)
∣∣∣] ,

≤ `
√
dE
[
1Dd,bdrc
I,1

∣∣∣Zdddre,1∣∣∣ ∣∣∣∆V d
r,1 − `d−1/2Zdddre,1V̇ (Xd

bdrc,1)
∣∣∣] ,

≤ `
√
dE
[∣∣∣Zdddre,1∣∣∣ ∣∣∣1Dd,bdrc

I,1
∆V d

r,1 − `d−1/2Zdddre,1V̇ (Xd
bdrc,1)

∣∣∣]
and E[

∣∣Ad1,r∣∣] goes to 0 as d → +∞ for almost all r by Lemma S2(ii). So by

the Fubini theorem, the first term in (S8) goes to 0 as d→ +∞. For Ad2,r, note

that

A2,r ≤
∣∣∣`√d E

[
Zdddre,11Dd,bdrc

I,2:d

(
Πd
r − Ξdr

) ∣∣∣Fdbdrc ]∣∣∣ .
Then, by [1, Lemma 6],

E
[∣∣∣Ad2,r∣∣∣] ≤ E

[∣∣∣∣∣`2V̇ (Xd
bdrc,1)1Dd,bdrc

I,2:d

{
G

(
`2V̇ (Xd

bdrc,1)
2

d
, 2

d∑
i=2

∆V d
r,i

)

−G

(
`2V̇ (Xd

bdrc,1)
2

d
, 2

d∑
i=2

b
d,bdrc
I,i

)}∣∣∣∣∣
]
,

where G is defined in (24). By Lemma S7, this expectation goes to zero when

d goes to infinity. Then by the Fubini theorem and the Lebesgue dominated

convergence theorem, the second term of (S8) goes 0 as d→ +∞. On the other
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hand, by G1(iii) and Holder’s inequality applied with α = 1/(1− 2/γ) > 1, for

all 1 ≤ j ≤ 4,

E
[∣∣∣Ad3,r∣∣∣] ≤ `√d

(
E
[∣∣∣Zdddre,1∣∣∣1(Dd,bdrc

I,1 )
c

]
+

d∑
i=2

E
[
1(Dd,bdrc

I,i )
c

])
,

≤ `
√
d

(
E
[
|Zdmj ,1|

α/(α−1)
](α−1)/α

d−γ/(2α) + d1−γ/2
)
≤ Cd3/2−γ/2

and E[
∣∣Ad3,r∣∣] goes to 0 as d→ +∞ for almost all r. Define

V̄d,1 =

d∑
i=1

V̇ (Xd
bdrc,i)

2 and V̄d,2 = V̄d,1 − V̇ (Xd
bdrc,1)

2 .

For the last term, by [1, Lemma 6]:

`
√
d E

[
Zdddre,1Ξ

d
r

∣∣∣Fdbdrc ] = −`2V̇ (Xd
bdrc,1)

× G
(
`2

d
V̄d,1,

{
`2

2d
V̄d,2 − 4(d− 1)E

[
1DIζ

d(X,Z)
]})

, (S9)

where DI =
{
X + `d−1/2Z ∈ I

}
, X is distributed according to π and Z is a

standard Gaussian random variable independent of X. As G is continuous on

R+ × R \ {0, 0} (see [1, Lemma 2]), by G1(ii), Lemma S4 and the law of large

numbers, almost surely,

lim
d→+∞

`2G
(
`2V̄d,1/d, `

2V̄d,2/(2d)− 4(d− 1)E
[
1DIζ

d(X,Z)
])

= `2G
(
`2E[V̇ (X)2], `2E[V̇ (X)2]

)
= h(`)/2 , (S10)

where h(`) is defined in (11). Therefore by Fubini’s Theorem, (S9) and Lebesgue’s

dominated convergence theorem, the last term of (S8) goes to 0 as d goes to

infinity. The proof for T d2 follows the same lines. By the triangle inequality,∣∣∣T d2 ∣∣∣ ≤ ∣∣∣∣∫ t

s
φ′′(Xd

bdrc,1)(`
2/2) E

[
(Zdddre,1)

2
(
1Ad
ddre
− Ξdr

) ∣∣∣Fdbdrc ]dr

∣∣∣∣
+

∣∣∣∣∫ t

s
φ′′(Xd

bdrc,1)
(

(`2/2) E
[
(Zdddre,1)

2Ξdr

∣∣∣Fdbdrc ]− h(`)/2
)

dr

∣∣∣∣ . (S11)

By Fubini’s Theorem, Lebesgue’s dominated convergence theorem and Propo-

sition S1, the expectation of the first term goes to zero when d goes to infinity.
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For the second term, by [1, Lemma 6 (A.5)],

(`2/2)E

[
(Zdddre,1)

21 ∧ exp

{
−
`Zdddre,1√

d
V̇ (Xd

bdrc,1) +

d∑
i=2

b
d,bdrc
I,i

}∣∣∣Fdbdrc
]

= (B1 +B2 −B3)/2 , (S12)

where

B1 = `2Γ
(
`2V̄d,1/d, `

2V̄d,2/(2d)− 4(d− 1)E
[
1DIζ

d(X,Z)
])

,

B2 =
`4V̇ (Xd

bdrc,1)
2

d
G
(
`2V̄d,1/d, `

2V̄d,2/(2d)− 4(d− 1)E
[
1DIζ

d(X,Z)
])

,

B3 =
`4V̇ (Xd

bdrc,1)
2

d

(
2π`2V̄d,1/d

)−1/2
× exp

{
−
[
−2(d− 1)E[1DIζ

d(X,Z)] + (`2/(4d))V̄d,2
]2

2`2V̄d,1/d

}
,

where Γ is defined in (25). As Γ is continuous on R+×R\{0, 0} (see [1, Lemma

2]), by G1(ii), Lemma S4 and the law of large numbers, almost surely,

lim
d→+∞

`2Γ
(
`2V̄d,1/d,

{
`2V̄d,2/(2d)− 4(d− 1)E

[
1DIζ

d(X,Z)
]})

= `2Γ
(
`2E[V̇ (X)2], `2E[V̇ (X)2]

)
= h(`) . (S13)

By Lemma S4, by G1(ii) and the law of large numbers, almost surely,

lim
d→+∞

exp

{
−
[
−2(d− 1)E[1DIζ

d(X,Z)] + (`2/(4d))V̄d,2
]2

2`2V̄d,1/d

}

= exp

{
−`

2

8
E[V̇ (X)2]

}
.

Then, as G is bounded on R+ × R,

lim
d→+∞

E
[∣∣∣∣∫ t

s
φ′′(Xd

bdrc,1) (B2 −B3) dr

∣∣∣∣] = 0 . (S14)

Therefore, by Fubini’s Theorem, (S12), (S13), (S14) and Lebesgue’s dominated

convergence theorem, the second term of (S11) goes to 0 as d goes to infinity.

The proof for T d3 follows exactly the same lines as the proof of Proposition 4.
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Proof of Theorem 5. Using Lemma S5, Proposition 1 and Proposition S2,

the proof follows the same lines as the proof of Theorem 3.

4. Detailed computations for the Gamma distribution

This section provides the explicit computations to check G1(i) in Example 2.

The result is proved for θ < 0 (the proof for θ > 0 follows the same lines). For

all θ ∈ R using a1 > 6,∫
R∗+
|E1|5 πγ(x)dx ≤ C|θ|5

∫ 3|θ|/2

0

{
1/x5 + x5(a2−1)

}
xa1−1e−x

a2
dx ,

≤ C

(
|θ|a1

∫ 3/2

0
xa1−6e−(|θ|x)

a2
dx

+|θ|5a2+a1

∫ 3/2

0
x5(a2−1)+a1−1e−(|θ|x)

a2
dx

)
,

≤ C(|θ|a1 + |θ|5a2+a1) . (S15)

On the other hand, as for all x > −1, x/(x+ 1) ≤ log(1 + x) ≤ x, for all θ < 0,

and x ≥ 3|θ|/2,

|log(1 + θ/x)− θ/x| ≤ |θ|2

x2(1 + θ/x)
≤ 3|θ|2/x2 ,

where the last inequality come from |θ|/x ≤ 2/3. Then, it yields∫
R∗+
|E2(x)|5 πγ(x)dx ≤ C|θ|10

(∫ 1

3|θ|/2
xa1−11e−x

a2
dx+

∫ +∞

1
xa1−11e−x

a2
dx

)
,

≤ C(|θ|a1 + |θ|10) . (S16)

For the last term, for all θ < 0 and all x ≥ 3|θ|/2, using a Taylor expansion of

x 7→ xa2 , there exists ζ ∈ [x+ θ, x] such that∣∣(x+ θ)a2 − xa2 − a2θx
a2−1

∣∣ ≤ C|θ|2|ζ|a2−2 ≤ C|θ|2 |x|a2−2 .

Then,∫
R∗+
|E3(x)|5 πγ(x)dx ≤ C|θ|10

∫ +∞

3|θ|/2
x5(a2−2)+a1−1e−x

a2
dx ≤ C(|θ|5a2+a1+|θ|10) .

(S17)
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Combining (S15), (S16),(S17) and using that a1 > 6 concludes the proof of G

1(i) for p = 5.
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