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SUPPLEMENTARY MATERIAL OF
“OPTIMAL SCALING OF THE RANDOM WALK METROPOLIS
ALGORITHM UNDER L» MEAN DIFFERENTIABILITY”

1. Proof of Theorem [l

The proof of this theorem follows the same steps as the the proof of The-
orem Note that & and &y, given by , are well defined on Z N {x €
R | z +10 € T}. Let the function v : R? — R be defined for z,6 € R by

v(z,0) = 1z(z +1r0)1z(x + (1 —1)0). (S1)

Lemma S1. Assume G[I] holds. Then, there exists C > 0 such that for all
0 eR,

1/2

([ (196 - @) via.0) + 07 @o@)/2) ar) - < il
Proof. The proof follows as Lemma [I] and is omitted.

Lemma S2. Assume that Gl holds. Let X be a random variable distributed

according to ™ and Z be a standard Gaussian random variable independent of

X. Define
Dr={X+0ld?ZecT}n{X+ 1 —-1)d?2Z cT}.
Then,
(i) Timg_s o0 d HnDIgd(X, Z)+ EZV(X)/(2\/3)H2 ~0.
(it) Let p be given by G](i) Then,
lim Vd HI[DI {vix)-vx+ez/Va} + ezV(X)/\/&Hp ~0.

d—+o00
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2 Durmus et al.
(iii) 1img o0 d || 1p, (log(1+ Ca(X, 2)) = CUX, 2) + [C(X, 2)/2) ), =,
where (% is given by (19).
Proof. Note by definition of ¢¢ and & (12), for » € 7 and z + rld~ /2?2 € T,
(N, 2) = Epaq-r2 () Eo () — 1. (52)
Using Lemma [ST]
|10.¢70x, 2) + €27 (X) /(2Vd) Hz
=8 | [ (0600207 (Gza-1(0) = 6]} + 2V (06000 2VD) ]|
< CPPqPR [m%’] .

The proof of is completed using 5 > 1. For write for all x € Z and
x+lzd V22 €T, AV (z,2) = V(z) — V(x4 Lzd~Y/?). By G

HJLDIAV(X, 7)+ EZV(X)/x/&HZ
=K [ /I (U(x,zzarl/?)AV(X, Z) +LZV (z) /\/Zz)pw(x)dx]
< O¥Prq—Pr2R [’Z’ﬁp}

and the proof of follows from g > 1. For note that for all z > 0,
u € [0,z], |(x—u)(14+u)~Y < |z|, and the same inequality holds for = € (—1,0]
and u € [z,0]. Then by and (22), for all z > —1,

log(1 + 2) — z + 2*/2| = |R(z)| < 2° [log(1 + )| .
Then by , for x € 7 and z + 0d~Y?2 € T,

[log (1 + Culw, 2)) — ¢, 2) + [CP(,2)/2]

< (a2 (2) Eo() = 1) l0g(Egsa-1r2 () /€0 )
< (Epaamrra () o) = 1)? |V (@ + £2d7Y2) = V()] /2.



Optimal scaling under LP mean differentiability 3
Since for all z € R, |exp(z) — 1| < |z|(exp(x) + 1), this yields,
[lo5(1 + Ga(a. 2)) = (@ 2) + [, 2) 2|
1/2 3 1/2
< ‘V(az + 02d7V?) — V(x)‘ (exp (V(x) — V(x4 Lzd™ )) + 1) /4.

Therefore,

/Iv(a:,ﬁzd_l/Q) ’log(l + (o, 2)) — ¢z, 2) + [ (x, z)/Z‘ m(x)dz
< (I + 1) /4,
where

3
‘ m(x)dx

Lo

I = (
3
I = /v(m Czd Y2 ‘V x+lzd” 1/2) V(x)‘ 7T(£L‘+Ezd71/2)d$.
T

x, Lzd /2 ‘V (z+ Lzd V%) — V()

By Hélder’s inequality, a change of variable and using Gl1{1)]

Ezd_1/2’3 (/ (V(x)]47r(:c)dx>3/4+ Ezd_1/2‘3ﬁ> .
A

The proof follows from G{lj(ii){and 5 > 1.
For ease of notation, write for all d > 1 and i, € {1,...,d},

11+IQSC'<

Dd {Xd +rtd 278 e I} {Xj’ +(1—r)d 278 I} ,

J

D%,z’:j = ﬂ D%,k- <S3)

Lemma S3. Assume that G holds. For all d > 1, let X% be distributed ac-
cording to 7, and Z% be d-dimensional Gaussian random variable independent

of X®. Then, limgy 400 J% = 0 where

J¢ =

d d
1oy, S { (av+ Lovixt)) - 28 1oy i 2] + V00 )

=2

1



4 Durmus et al.

Proof. The proof follows the same lines as the proof of Lemma [3| and is

omitted.

Define for all d > 1,

(Z{l>2 Ipg 1Aexp {i AVid}

=1

El=E

d
—1 Aexp {—EdmZ{lV(X{l) +) (X zf) H

where AVid is given by , forallz € Z, z € R,

z 2 .
bh(w, 2) = —f/gV(a:) + 28 [1pg (XY, 20)] - i—diﬂ(x), (S4)

and (% is given by .

Proposition S1. Assume holds. Let X% be a random variable distributed
according to ©¢ and Z be a zero-mean standard Gaussian random variable,

independent of X. Then limg_, 1 E% =0.

Proof. Let A = —¢d='?Z¢V (X{) + Zgzz AVE. By the triangle inequality,
E? < E¢ + E¢ + E¢ where

d
2
(Z{l) Ipg |1 Aexp {Z AVid’} — 1 Aexp {Ad}
i=1

2
ES,I =E [(Zf) Ipg, ‘1 A exp {Ad}

Eg{z =K

Y

I

d
—1 Aexp {—Ed_l/QZ{lV(Xf) + Z bd(Xid, sz)}‘
i=2

Eg,_’[ — E

)

2 . d
(Zf) Lipy, )1 Aexp {—£d1/2Z{lV(X{l) +3 vl xy, zh
=2

Since t — 1 A e is 1-Lipschitz, by the Cauchy-Schwarz inequality we get
2 :
Ef; <E {(Zf) Lpg )AV{i + ed—l/QZ{lV(Xf)”

< 12815 | 1pg, AVE + a7 228V (1) |



Optimal scaling under LP mean differentiability 5

By Lemma Eiz goes to 0 as d goes to +oo. Using again that ¢ — 1 A el
is 1-Lipschitz and Lemma EgI goes to 0 as well. Note that, as Zii and

IL(Dd L)° are independent, by ,
c
Ef; < dP ({D%yl} ) < odi2,
Therefore, Eg’z goes to 0 as d goes to +co by G

Lemma S4. Assume G’ holds. For all d € N*, let X? be a random variable
distributed according to ¢ and Z% be a standard Gaussian random variable in

R?, independent of X. Then,

. 2
Jim 2dE [1py (XY, 20)| = =1,

where I is defined in @ and ¢ in .

Proof. Noting that for all 8 € R,

/Ilz(a:—i—rQ)III(JH—(1—r)9)7r(:v—|—0)d:v:/]11(;1:—1—(1"—1)9)111(x—r0)7r(33)dx.
A T

the proof follows the same steps as the the proof of Lemma [ and is omitted.

Proof of Theorem [} The proof follows the same lines as the proof of Theo-

rem [ and is therefore omitted.

2. Proof of tightness

Lemma S5. Assume holds. Then, the sequence (j1a)y> s tight in W.
As for the proof of Lemma [f] the proof follows from Lemma [S6}

Lemma S6. Assume Gl1 Then, there exists C > 0 such that, for all 0 < k; <
k27
d a \* (k2 — k1)?
E|(XLi-Xi,) =X -

p=2
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Proof. We use the same decomposition of 1[*3[()(,‘52’1 - Xghl)‘l] as in the proof

of Lemma [6] so that we only need to upper bound the following term:

ko 4
( > Zﬁﬂmz)@) =d?) E H Ll ]

k=ki+1
where the sum is over all the quadruplets (mp)ézl satisfying m, € {k1 +
koY, p=1,...,4 Let (m1,ma,m3,my) € {ky +1,..., k2}* and (X,‘j)kzo
be defined as:

X(C)l = Xg and Xlg+1 = Xl(ci + ]lkﬁﬁ{ml—1,mg—1,7713—1,7714—l}gd_l/QZI(iHﬂ,ﬁg+1 y

where for all k > 0 and all 1 <i <d,

d
Al = {Uk+1 < exp <Z Av]ji) }
i=1
AVl =V (Xg,i) -V (chcl,i + M—lmzlgﬂ,i) :
Define, for all k1 +1 < k < k9, 1<14,j <d,

Dk — {ij +rld 278 e I} {X,g{j + (1L —)d 27, € I} :

Izg mDIZ

Note that by convention V(z) = —oo for all © ¢ Z, 'Ak-i-l C ﬁ%’];:d so that

<Ak+1> may be written <¢‘Iz+1> = (D§:§:d> U ((Ak+1> sz’j;d) Let 7
be the o-field generated by ()N(g) o Consider the case #{mq,...,my} = 4.

The case #{mq,...,mg} = 3 is dealt with similarly and the two other cases fol-
low the same lines as the proof of Lemma As { (UmJ , Z Sy Zgl_ d) } -
7 1<5<

are independent conditionally to JF,

4
E Hfozj,l]l(Ag,)c F
=1 ’
4
_ H{E [1 e 22
i (DI,I:d ) A

Zld

}"] +IE[]1 “dm,; 1<A%j>chnj,1

7|}
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As U, is independent of (Zf%jyl,--- Z¢ ) conditionally to F, the second

’ m]‘,d
g

d
=K ]].ﬁ;,vlr:g,l Zg’bj,l (1 — €XpP {Z Af/?ij—l,i}> F
+

=1

term may be written:

E {ﬂﬁ;ﬂlﬂ(& )czgw

J

Since the function x + (1 —e”), is 1-Lipschitz, on f);’?é_l

)

d
<]. — eXp {Z AVT?”—I,i}) — @’I’I’Lj S ‘Av'nc’le—l,l + Ed_1/2V(X?€lnj_1’1)Zg,Lj’1
=1 +

where ©,,, = (1 — exp{—ﬁd_l/QV()N(glj_M)fo%l + 2?22 Af/rijq,i})% Then,
d ~
E 1113;,:7;_12;!%1 <1 — exp {Z Avgju}> Fl| <AL + B,
o =1 +

where

m

AL, =B (|28, 2| |1 gam AV yy o+ 0aPV(RE 78| F]

Bl = ’E [ 22 \Om,

tory alk
By Jensen inequality,

4

4
|7ty || =2 T oty
J i—1 ,l:d

J=1 J
. d 4 d 4
< CE ZE [ﬂ(ﬁd,mjl)c f] + (Amj) + (ij) ;
e Z,1:d
By GJlfii1)| and Holder’s inequality applied with o« = 1/(1 —2/v) > 1, for all
1<j<4,

Zd

mj,1|

f] +A§nj+B$j} ,

d
Z 171‘4

m

d
E|1 Admi—1)° Zd. 4:| SE |:IL Admg—1)° Zd, 4:| + E |:IL ~dsmg 1 C:| )
(Dz,m >| mg,1| (DI,I )| mJ,1’ ; (DI,i )
S E |:|Z;ln 1’4a/(a_1)i| (0471)/01 d_n//(Qa) + dl—"//2’

< Cd/2,
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By Lemma [S(ii)| and the Holder’s inequality, there exists C' > 0 such that
4

E [(Agna) ] < Cd~2. On the other hand, by [I, Lemma 6] since folj’l is

independent of F,

== ‘E |:1 ~d,mg ed_l/QV(Xgnj_Ll)

d
‘g <z2d—1v<xaj_1,l>2,—22@:1,_1,1») f]
=2

where the function G is defined in (24). By G[I[ii)] and since G is bounded,
E[(Bf,)*] < Cd2. Since v > 6 in GlI(iii)}, yE[H;;l Z3 1 ag )| < Cd2,

9

showing that

D

(m1,ma,m3,my4)€L,

H ml,lll Ad

< Cd? (’” ; kl) . (S5)

3. Proof of Theorem [5]

Lemma S7. Assume G holds. Let X9 be distributed according to 7@ and
Z% be a d-dimensional standard Gaussian random variable, independent of X¢.
Then, limg—s+c0 E¢ =0, where

B! =B [|V(X)1ne,, {6 (VXD /d 2Ya) - G (V(x1)?/d2%4) ]
where Yy = Zfﬁ AVid, AV;d and D% 9.9 are given by and and Xg =
SE o bd b = bd(XE, Z4) with bd given by (SA).

Proof. Set for alld > 1, Yy = ZLQ AVE and Xy = Zfzz b%i. By definition
of b% , X, may be expressed as Xg = 0454 + 14, where

o =2~ E [y ¢*(xt, 200 - 4 Vm [vxp)
0% = B |V (X{)?] + é—dE {(V(Xfﬁ —E [V(Xf)QDT ,

d
Sa = (Vdoa)™' Y51,
=2

g =~z (x — (Ve B [V xy])
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By G the Berry-Essen Theorem [2, Theorem 5.7] can be applied to Sy.

Then, there exists a universal constant C' such that for all d > 0,

<C/Vd.

sup — O(x)

zeR

d -
<
P[ d_lSdix

It follows, with 62 = (d — 1)02/d, that

sug P [Xq < 2] — ((x — pa)/6a)| < C/Vd.
S
By this result and , Lemma, [7| can be applied to obtain a constant C' > 0,

independent of d, such that:

E [Ipg,, ’g (Av(xt)?/d 2%s) - g (RV(xX1)?/d,2%,) ‘X{‘ H

<C (E [HD%,M | Xa — Ydu L dv2y \/QE []lp%m | X4 — Yd}} (2r52)~1/2

+\/£|V(Xf)|/(27rd1/25§)> .
Using this result, we have
Ed < C {51/21@ [|V(xf)|3/2} (2rd/252)"1/2 L B [|V(Xii)|} (6)

(e e T )

By Lemma E[1pa 2:d|Xd —Yy|] goes to 0 as d goes to infinity, and by H‘
limg 400 63 =(’E [V(X)Q} . Combining these results with , it follows that
E? goes to 0 when d goes to infinity.

/ n—1

For all n > 0, define F2¢ = o({XZ, k < n}) and for all ¢ € C2(R,R),
Mi(6) = = D (i) {Zaata, —E [ 2000,
k=0

7}
2l

5 00" XD {2 )M, —E [P, |7 - 7)
k=0

+
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Proposition S2. Assume G[I and G[Z hold. Then, for all s < t and all
¢ € C°(R,R),

i {00 — o0 - [ Lovar = (M 0) ~ M@ || =0,

d—+o0

Proof. Using the same decomposition as in the proof of Proposition [ we

only need to prove that for all 1 <i <5, limg_, o E[|T{[] = 0, where

h(f)
d d d
h(0)
d 2 d
T3 = / ¢ (X{ar) 1) < E [(Zferl) Lag,, derJ} - 2) r

14 = [ (160 00) ~ oY) ) o

(([dt] —dt) ,
Tf = T¢ (XLdtj 1) <Zfldﬂ 1]1A?dﬂ —E [Zfldt] 111,4%1

]'_fldtJD
([dt] — dt)
+ TWI(XWJ 1) ((Zfidt],l)2]lv4?m —E [(Zfldthl) ﬂA?dﬂ

([ds] —ds) ,
T= =g ¢l (#aiabats, — % [Zagatas,, [Pl ])

%([ds] — ds)
+ 2d

Flay)) -

&' (X ) (2 ) Las, ) — B (2 )P0, [Pl ]) -

First, as ¢’ and ¢” are bounded, E HTf’ + }Tglu < Cd~'/2. Denote for all

r € [s,t] and d > 1,
d_ d B d ~1/2 d
AVSL =V (XLer,i) 14 (XLer ;T ld Z]'dr] >

—_ d,|dr|
:le/\exp{ EZWTU ( dTJl/\f—i-ZbL }

where for all k,7 > 0, b%k = bZ(XgZ,Zk_HZ), and for all z,2 € R, bd(z,y) is
given by . For all £ >0, 1 <14,j <d, define

ng]; = {ng + rgd*1/221?+17j S I} N {XI?,] —+ (1 — r)gd*1/2Zg+1’j e Z}

d,k
Izy mDIZ



Optimal scaling under LP mean differentiability 11

By the triangle inequality,

t
71| <

(Xy )| (Av + Az + Ay + Ay )dr, (S8)

where

Hle/\exp{ ~d™ 2 21 1V (X +ZA } ’
Ay = [0VdE [Zfldrm (]lA?dﬂ ~ Loy HT) ‘IW‘J” ’

)

gy = VA E | 287 g o (H;‘f—E;‘f)

A377= - Ef E |:Z|'d,,,“ 1 (Dd LdTJ)

o ||

] + V(X RO/

Agy = VA E |28, 5

Since t — 1 A exp(t) is 1-Lipschitz,
:| S g\/gE |: d Ldv‘J
< VR 10

< (VaE Hz . 1‘ IHD;WAV |22 V(X 1)H

5[l

Zfi, 1‘ ’A 1 —td” I/QZ[dﬂ 1V(derj,1)H ;

Z[dr],l‘ ’AVTJ - ed_l/QZ[dﬂ,lv(derJ,l)H :

and IEHA%TH goes to 0 as d — +oo for almost all » by Lemma So by
the Fubini theorem, the first term in goes to 0 as d — +oo. For Ag’r, note
that

Asy < (VB [ 2 gy (T~ 21) [ Far ]

Then, by [I, Lemma 6],

2V(X
E HA%T €2V<XLer 1) ’Dd’éﬁj {g ( ( |_dr ZZA )

" (ﬁQV( far)1) 2Zbd W) }u

where G is defined in (24)). By Lemma this expectation goes to zero when

<

d goes to infinity. Then by the Fubini theorem and the Lebesgue dominated

convergence theorem, the second term of (S8)) goes 0 as d — +00. On the other
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hand, by G{li(iii)| and Holder’s inequality applied with « = 1/(1 —2/v) > 1, for
all 1 <5 <4,

d
a4 < (e [ K]+ 355 ey

1=2

< i <IE 128, a1/ )] =D/ ey d1—7/2> < OBIF?

and E[| 44 ,|] goes to 0 as d — +oo for almost all r. Define

d
Vd71 = Z V(Xde'rJ,i)2 and Vd72 = Vd71 — V(X‘LierJ)Z .
i=1

For the last term, by [I, Lemma 6]:

(VdE [Z(dﬂ 1=7 } = —CV(X{0)

xg<€2vd1,{fzvd2— 4d—1)E [ﬂpzcd<X,Z>]}> , (89)

where Dy = {X +0d1V?%7 ¢ I}, X is distributed according to w and Z is a
standard Gaussian random variable independent of X. As G is continuous on
Ry x R\ {0,0} (see [I, Lemma 2]), by G[I[ii)} Lemma [S4 and the law of large
numbers, almost surely,

lim %G (2Vy:1/d, (2Va/(2d) - 4(d — 1)E |1p,¢%(X, 7))

d—+o0

— %G <€2E[V(X)2],£2E[V(X)2]> — h(6)/2, (S10)

where h(?) is defined in . Therefore by Fubini’s Theorem, and Lebesgue’s
dominated convergence theorem, the last term of goes to 0 as d goes to

infinity. The proof for Tzd follows the same lines. By the triangle inequality,

18] <| [ Xty )12 B [(Zha ) (2, — =) [y ] 0

}-fldrj} - h(f)/2> dr| . (S11)

'/ ¢// XLdr (f /2) E [(Z?dr],l)QEg

By Fubini’s Theorem, Lebesgue’s dominated convergence theorem and Propo-

sition the expectation of the first term goes to zero when d goes to infinity.
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For the second term, by [I, Lemma 6 (A.5)],

0z
dr 1 d,|dr
(Z?dr1,1)21AeXP{ \[/g Xt 1) +Zb ; J} ’ﬂdq]

= (B1+ By — B3)/2, (S12)

(1?/2)E

where

By = 2T (Ezf/d 1/d, 2V5/(2d) — 4(d — 1)E [nngd(x, Z)D :

€4V( ldr], 1)2
g = ——

g (EQVd,l/da *Vya/(2d) — 4(d — 1)E [ﬂDICd(K Z)]) ;

d
4 d 2
By — Wdth (2n 2V /d) 2
o [ [F200= DED,CUX, 2)] + (2 (4d)) Vas]
exp 202V, /d ’

where I is defined in (25). As T is continuous on Ry x R\ {0, 0} (see [I, Lemma
2]), by G Lemma |S4] and the law of large numbers, almost surely,

lim (2T (ﬁvd \/d, {IZQde/@d) 4(d - 1)E [bzgd(x, Z)} })

d—+o0
= T (z2E[V(X)2],e2E[v(X)2]) = h(0). (S13)
By Lemma by Glli(ii) and the law of large numbers, almost surely,

[2(d = VE[1p,¢UX, Z)] + (2/(4d) Vo]
202V 1 /d

lim exp
d——+o0

Then, as G is bounded on Ry x R,

lim E H/ ¢ (X 1) (B2 —B3)dr} —0. (S14)

d—+o0

Therefore, by Fubini’s Theorem, (S12]), (S13), (S14) and Lebesgue’s dominated

convergence theorem, the second term of (S11)) goes to 0 as d goes to infinity.

The proof for T§ follows exactly the same lines as the proof of Proposition



14 Durmus et al.

Proof of Theorem[5 Using Lemma Proposition [I] and Proposition
the proof follows the same lines as the proof of Theorem

4. Detailed computations for the Gamma distribution

This section provides the explicit computations to check G@@ in Example
The result is proved for # < 0 (the proof for § > 0 follows the same lines). For
all 0 € R using a; > 6,

3161/2 .
/ 1% my(x)da < 0]9]5/ {1/x5 + :1:5(32_1)} e dr
R 0
3/2 .
<C |9’a1/ xal—ﬁe—(|9|m) 2 de
0

3/2 ,
[Pt /0 x5(a21)+alle(9x)“2da:> ;

< C(l0]* + [opPr). (S15)

On the other hand, as for all x > —1, z/(x+ 1) <log(1+x) < z, for all § < 0,
and = > 3|0]/2,

10>
z*(1+0/x)
where the last inequality come from |0|/x < 2/3. Then, it yields

1 ] +o00 N
E(z)° 7 (x)dz < C|9)|*° 2@ e 4y + g e g |,
Y
R* 310]/2 1

+

llog(1+0/z) — 0/z| < < 3|6)%/2?,

< C(oP +16'). (S16)

For the last term, for all § < 0 and all > 3|0|/2, using a Taylor expansion of

x — a2, there exists ¢ € [z + 6, z] such that
‘($ + 9)&2 . a20x32_1| < C|0|2‘<|a2—2 < C|9’2 ‘x|a272 )

Then,

J

+o00
|53(ZL')|57TY(SL‘)dZE < C|0|10/ $5(a2_2)+al_le_$32d$ < C(|9|5az+a1+|9‘10) )
1 31012

(S17)
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Combining (S15)), (S16)),(S17) and using that a; > 6 concludes the proof of G
for p=5.
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