Applied Probability Trust (January 19, 2017)

SUPPLEMENTARY MATERIAL OF "OPTIMAL SCALING OF THE RANDOM WALK METROPOLIS ALGORITHM UNDER L^p MEAN DIFFERENTIABILITY"

1. Proof of Theorem 4

The proof of this theorem follows the same steps as the the proof of Theorem 2. Note that ξ_{θ} and ξ_{0} , given by (12), are well defined on $\mathcal{I} \cap \{x \in \mathbb{R} \mid x + r\theta \in \mathcal{I}\}$. Let the function $v : \mathbb{R}^{2} \to \mathbb{R}$ be defined for $x, \theta \in \mathbb{R}$ by

$$\upsilon(x,\theta) = \mathbb{1}_{\mathcal{I}}(x+\mathbf{r}\theta)\mathbb{1}_{\mathcal{I}}(x+(1-\mathbf{r})\theta).$$
(S1)

Lemma S1. Assume G1 holds. Then, there exists C > 0 such that for all $\theta \in \mathbb{R}$,

$$\left(\int_{\mathcal{I}} \left(\left\{\xi_{\theta}(x) - \xi_{0}(x)\right\} \upsilon(x,\theta) + \theta \dot{V}(x)\xi_{0}(x)/2\right)^{2} \mathrm{d}x\right)^{1/2} \leq C|\theta|^{\beta}.$$

Proof. The proof follows as Lemma 1 and is omitted.

Lemma S2. Assume that G1 holds. Let X be a random variable distributed according to π and Z be a standard Gaussian random variable independent of X. Define

$$\mathcal{D}_{\mathcal{I}} = \{ X + r\ell d^{-1/2} Z \in \mathcal{I} \} \cap \{ X + (1 - r)\ell d^{-1/2} Z \in \mathcal{I} \}.$$

Then,

(*i*)
$$\lim_{d \to +\infty} d \left\| \mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^d(X, Z) + \ell Z \dot{V}(X) / (2\sqrt{d}) \right\|_2^2 = 0.$$

(ii) Let p be given by G1(i). Then,

$$\lim_{d \to +\infty} \sqrt{d} \left\| \mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \left\{ V(X) - V(X + \ell Z/\sqrt{d}) \right\} + \ell Z \dot{V}(X)/\sqrt{d} \right\|_p = 0.$$

Durmus et al.

(*iii*) $\lim_{d\to\infty} d \| \mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \left(\log(1 + \zeta_d(X, Z)) - \zeta^d(X, Z) + [\zeta^d]^2(X, Z)/2 \right) \|_1 = 0,$ where ζ^d is given by (19).

Proof. Note by definition of ζ^d and ξ_θ (12), for $x \in \mathcal{I}$ and $x + r\ell d^{-1/2}z \in \mathcal{I}$,

$$\zeta^d(x,z) = \xi_{\ell z d^{-1/2}}(x) / \xi_0(x) - 1.$$
(S2)

Using Lemma S1,

$$\begin{split} \left\| \mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X,Z) + \ell Z \dot{V}(X) / (2\sqrt{d}) \right\|_{2}^{2} \\ &= \mathbb{E} \left[\int_{\mathcal{I}} \left(\upsilon(x,\ell Z d^{-1/2}) \left\{ \xi_{\ell Z d^{-1/2}}(x) - \xi_{0}(x) \right\} + \ell Z \dot{V}(x) \xi_{0}(x) / (2\sqrt{d}) \right)^{2} \mathrm{d}x \right] \\ &\leq C \ell^{2\beta} d^{-\beta} \mathbb{E} \left[|Z|^{2\beta} \right] . \end{split}$$

The proof of (i) is completed using $\beta > 1$. For (ii), write for all $x \in \mathcal{I}$ and $x + \ell z d^{-1/2} z \in \mathcal{I}$, $\Delta V(x, z) = V(x) - V(x + \ell z d^{-1/2})$. By **G**1(i)

$$\begin{split} \left| \mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \Delta V(X, Z) + \ell Z \dot{V}(X) / \sqrt{d} \right\|_{p}^{p} \\ &= \mathbb{E} \left[\int_{\mathcal{I}} \left(\upsilon(x, \ell Z d^{-1/2}) \Delta V(X, Z) + \ell Z \dot{V}(x) / \sqrt{d} \right)^{p} \pi(x) \mathrm{d}x \right] \\ &\leq C \ell^{\beta p} d^{-\beta p/2} \mathbb{E} \left[|Z|^{\beta p} \right] \end{split}$$

and the proof of (ii) follows from $\beta > 1$. For (iii), note that for all x > 0, $u \in [0, x]$, $|(x-u)(1+u)^{-1}| \leq |x|$, and the same inequality holds for $x \in (-1, 0]$ and $u \in [x, 0]$. Then by (21) and (22), for all x > -1,

$$\left|\log(1+x) - x + x^2/2\right| = |R(x)| \le x^2 \left|\log(1+x)\right|$$

Then by (S2), for $x \in \mathcal{I}$ and $x + \ell d^{-1/2} z \in \mathcal{I}$,

$$\begin{aligned} \left| \log(1 + \zeta_d(x, z)) - \zeta^d(x, z) + [\zeta^d]^2(x, z)/2 \right| \\ &\leq (\xi_{\ell z d^{-1/2}}(x)/\xi_0(x) - 1)^2 \left| \log(\xi_{\ell z d^{-1/2}}(x)/\xi_0(x)) \right| , \\ &\leq (\xi_{\ell z d^{-1/2}}(x)/\xi_0(x) - 1)^2 \left| V(x + \ell z d^{-1/2}) - V(x) \right| /2 . \end{aligned}$$

Optimal scaling under L^p mean differentiability

Since for all $x \in \mathbb{R}$, $|\exp(x) - 1| \le |x|(\exp(x) + 1)$, this yields,

$$\left| \log(1 + \zeta_d(x, z)) - \zeta^d(x, z) + [\zeta^d]^2(x, z)/2 \right|$$

$$\leq \left| V(x + \ell z d^{-1/2}) - V(x) \right|^3 \left(\exp\left(V(x) - V(x + \ell z d^{-1/2}) \right) + 1 \right) / 4 .$$

Therefore,

$$\int_{\mathcal{I}} \upsilon(x, \ell z d^{-1/2}) \left| \log(1 + \zeta_d(x, z)) - \zeta^d(x, z) + [\zeta^d]^2(x, z)/2 \right| \pi(x) dx$$

$$\leq (I_1 + I_2)/4,$$

where

$$I_{1} = \int_{\mathcal{I}} \upsilon(x, \ell z d^{-1/2}) \left| V(x + \ell z d^{-1/2}) - V(x) \right|^{3} \pi(x) dx$$

$$I_{2} = \int_{\mathcal{I}} \upsilon(x, \ell z d^{-1/2}) \left| V(x + \ell z d^{-1/2}) - V(x) \right|^{3} \pi(x + \ell z d^{-1/2}) dx.$$

By Hölder's inequality, a change of variable and using G1(i),

$$I_1 + I_2 \le C\left(\left|\ell z d^{-1/2}\right|^3 \left(\int_{\mathcal{I}} \left|\dot{V}(x)\right|^4 \pi(x) \mathrm{d}x\right)^{3/4} + \left|\ell z d^{-1/2}\right|^{3\beta}\right).$$

The proof follows from $\mathbf{G1}(ii)$ and $\beta > 1$.

For ease of notation, write for all $d \ge 1$ and $i, j \in \{1, \ldots, d\}$,

$$\mathcal{D}_{\mathcal{I},j}^{d} = \left\{ X_{j}^{d} + \mathbf{r}\ell d^{-1/2} Z_{j}^{d} \in \mathcal{I} \right\} \cap \left\{ X_{j}^{d} + (1-\mathbf{r})\ell d^{-1/2} Z_{j}^{d} \in \mathcal{I} \right\} ,$$
$$\mathcal{D}_{\mathcal{I},i:j}^{d} = \bigcap_{k=i}^{j} \mathcal{D}_{\mathcal{I},k}^{d} .$$
(S3)

Lemma S3. Assume that G1 holds. For all $d \ge 1$, let X^d be distributed according to π^d , and Z^d be d-dimensional Gaussian random variable independent of X^d . Then, $\lim_{d\to+\infty} J^d_{\mathcal{I}} = 0$ where

$$\mathbf{J}_{\mathcal{I}}^{d} = \left\| \mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}} \sum_{i=2}^{d} \left\{ \left(\Delta V_{i}^{d} + \frac{\ell Z_{i}^{d}}{\sqrt{d}} \dot{V}(X_{i}^{d}) \right) - 2\mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I},i}^{d}} \zeta^{d}(X_{i}^{d}, Z_{i}^{d}) \right] + \frac{\ell^{2}}{4d} \dot{V}^{2}(X_{i}^{d}) \right\} \right\|_{1}$$

Proof. The proof follows the same lines as the proof of Lemma 3 and is omitted.

Define for all $d \ge 1$,

$$\begin{split} \mathbf{E}_{\mathcal{I}}^{d} &= \mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \left| \mathbbm{1}_{\mathcal{D}_{\mathcal{I},1:d}^{d}} \mathbbm{1} \wedge \exp\left\{\sum_{i=1}^{d} \Delta V_{i}^{d}\right\} \right. \\ &\left. -1 \wedge \exp\left\{-\ell d^{-1/2} Z_{1}^{d} \dot{V}(X_{1}^{d}) + \sum_{i=2}^{d} b_{\mathcal{I}}^{d}(X_{i}^{d}, Z_{i}^{d})\right\} \right| \right] \,, \end{split}$$

where ΔV_i^d is given by (5), for all $x \in \mathcal{I}, z \in \mathbb{R}$,

$$b_{\mathcal{I}}^{d}(x,z) = -\frac{\ell z}{\sqrt{d}} \dot{V}(x) + 2\mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I},1}^{d}} \zeta^{d}(X_{1}^{d}, Z_{1}^{d}) \right] - \frac{\ell^{2}}{4d} \dot{V}^{2}(x) , \qquad (S4)$$

and ζ^d is given by (19).

Proposition S1. Assume G1 holds. Let X^d be a random variable distributed according to π^d and Z^d be a zero-mean standard Gaussian random variable, independent of X. Then $\lim_{d\to+\infty} E_{\mathcal{I}}^d = 0$.

Proof. Let $\Lambda^d = -\ell d^{-1/2} Z_1^d \dot{V}(X_1^d) + \sum_{i=2}^d \Delta V_i^d$. By the triangle inequality, $\mathbf{E}^d \leq \mathbf{E}_1^d + \mathbf{E}_2^d + \mathbf{E}_3^d$ where

$$\begin{split} \mathbf{E}_{1,\mathcal{I}}^{d} &= \mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\mathcal{D}_{\mathcal{I},1:d}^{d}} \left| 1 \wedge \exp\left\{\sum_{i=1}^{d} \Delta V_{i}^{d}\right\} - 1 \wedge \exp\left\{\Lambda^{d}\right\} \right| \right],\\ \mathbf{E}_{2,\mathcal{I}}^{d} &= \mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}} \left| 1 \wedge \exp\left\{\Lambda^{d}\right\} \right. \\ &\left. -1 \wedge \exp\left\{-\ell d^{-1/2} Z_{1}^{d} \dot{V}(X_{1}^{d}) + \sum_{i=2}^{d} b^{d}(X_{i}^{d}, Z_{i}^{d})\right\} \right| \right],\\ \mathbf{E}_{3,\mathcal{I}}^{d} &= \mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\left(\mathcal{D}_{\mathcal{I},2:d}^{d}\right)^{c}} 1 \wedge \exp\left\{-\ell d^{-1/2} Z_{1}^{d} \dot{V}(X_{1}^{d}) + \sum_{i=2}^{d} b^{d}(X_{i}^{d}, Z_{i}^{d})\right\} \right], \end{split}$$

Since $t \mapsto 1 \wedge e^t$ is 1-Lipschitz, by the Cauchy-Schwarz inequality we get

$$\begin{split} \mathbf{E}_{1,\mathcal{I}}^{d} &\leq \mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\mathcal{D}_{\mathcal{I},1}^{d}} \left| \Delta V_{1}^{d} + \ell d^{-1/2} Z_{1}^{d} \dot{V}(X_{1}^{d}) \right| \right] \\ &\leq \|Z_{1}^{d}\|_{4}^{2} \left\| \mathbb{1}_{\mathcal{D}_{\mathcal{I},1}^{d}} \Delta V_{1}^{d} + \ell d^{-1/2} Z_{1}^{d} \dot{V}(X_{1}^{d}) \right\|_{2} \,. \end{split}$$

By Lemma 2(ii), $E_{1,\mathcal{I}}^d$ goes to 0 as d goes to $+\infty$. Using again that $t \mapsto 1 \wedge e^t$ is 1-Lipschitz and Lemma S3, $E_{2,\mathcal{I}}^d$ goes to 0 as well. Note that, as Z_1^d and $\mathbb{1}_{(\mathcal{D}_{\mathcal{I},2:d}^d)^c}$ are independent, by (15),

$$\mathbf{E}_{3,\mathcal{I}}^{d} \leq d\mathbb{P}\left(\left\{\mathcal{D}_{\mathcal{I},1}^{d}\right\}^{c}\right) \leq Cd^{1-\gamma/2}.$$

Therefore, $\mathbf{E}_{3,\mathcal{I}}^d$ goes to 0 as d goes to $+\infty$ by $\mathbf{G1}(\mathrm{iii})$.

Lemma S4. Assume G1 holds. For all $d \in \mathbb{N}^*$, let X^d be a random variable distributed according to π^d and Z^d be a standard Gaussian random variable in \mathbb{R}^d , independent of X. Then,

$$\lim_{d \to +\infty} 2d \mathbb{E} \left[\mathbb{1}_{\mathcal{D}^d_{\mathcal{I},1}} \zeta^d(X^d_1, Z^d_1) \right] = -\frac{\ell^2}{4} I,$$

where I is defined in (6) and ζ^d in (19).

Proof. Noting that for all $\theta \in \mathbb{R}$,

$$\int_{\mathcal{I}} \mathbb{1}_{\mathcal{I}}(x+\mathbf{r}\theta) \mathbb{1}_{\mathcal{I}}(x+(1-\mathbf{r})\theta)\pi(x+\theta)dx = \int_{\mathcal{I}} \mathbb{1}_{\mathcal{I}}(x+(\mathbf{r}-1)\theta)\mathbb{1}_{\mathcal{I}}(x-\mathbf{r}\theta)\pi(x)dx.$$

the proof follows the same steps as the the proof of Lemma 4 and is omitted.

Proof of Theorem 4. The proof follows the same lines as the proof of Theorem 2 and is therefore omitted.

2. Proof of tightness

Lemma S5. Assume G1 holds. Then, the sequence $(\mu_d)_{d\geq 1}$ is tight in W.

As for the proof of Lemma 5, the proof follows from Lemma S6.

Lemma S6. Assume **G**1. Then, there exists C > 0 such that, for all $0 \le k_1 < k_2$,

$$\mathbb{E}\left[\left(X_{k_{2},1}^{d}-X_{k_{1},1}^{d}\right)^{4}\right] \leq C \sum_{p=2}^{4} \frac{(k_{2}-k_{1})^{p}}{d^{p}}.$$

Proof. We use the same decomposition of $\mathbb{E}[(X_{k_2,1}^d - X_{k_1,1}^d)^4]$ as in the proof of Lemma 6 so that we only need to upper bound the following term:

$$d^{-2}\mathbb{E}\left[\left(\sum_{k=k_{1}+1}^{k_{2}} Z_{k,1}^{d} \mathbb{1}_{(\mathcal{A}_{k}^{d})^{c}}\right)^{4}\right] = d^{-2} \sum \mathbb{E}\left[\prod_{i=1}^{4} Z_{m_{i},1}^{d} \mathbb{1}_{(\mathcal{A}_{m_{i}}^{d})^{c}}\right],$$

where the sum is over all the quadruplets $(m_p)_{p=1}^4$ satisfying $m_p \in \{k_1 + 1, \ldots, k_2\}$, $p = 1, \ldots, 4$. Let $(m_1, m_2, m_3, m_4) \in \{k_1 + 1, \ldots, k_2\}^4$ and $(\tilde{X}_k^d)_{k \ge 0}$ be defined as:

$$\tilde{X}_0^d = X_0^d$$
 and $\tilde{X}_{k+1}^d = \tilde{X}_k^d + \mathbb{1}_{k \notin \{m_1 - 1, m_2 - 1, m_3 - 1, m_4 - 1\}} \ell d^{-1/2} Z_{k+1}^d \mathbb{1}_{\tilde{\mathcal{A}}_{k+1}^d}$,

where for all $k \ge 0$ and all $1 \le i \le d$,

$$\tilde{\mathcal{A}}_{k+1}^d = \left\{ U_{k+1} \le \exp\left(\sum_{i=1}^d \Delta \tilde{V}_{k,i}^d\right) \right\}$$
$$\Delta \tilde{V}_{k,i}^d = V\left(\tilde{X}_{k,i}^d\right) - V\left(\tilde{X}_{k,i}^d + \ell d^{-1/2} Z_{k+1,i}^d\right).$$

Define, for all $k_1 + 1 \le k \le k_2$, $1 \le i, j \le d$,

$$\begin{split} \tilde{\mathcal{D}}_{\mathcal{I},j}^{d,k} &= \left\{ \tilde{X}_{k,j}^d + \mathbf{r}\ell d^{-1/2} Z_{k+1,j}^d \in \mathcal{I} \right\} \cap \left\{ \tilde{X}_{k,j}^d + (1-\mathbf{r})\ell d^{-1/2} Z_{k+1,j}^d \in \mathcal{I} \right\} ,\\ \tilde{\mathcal{D}}_{\mathcal{I},i:j}^{d,k} &= \bigcap_{\ell=i}^j \tilde{\mathcal{D}}_{\mathcal{I},\ell}^{d,k} . \end{split}$$

Note that by convention $V(x) = -\infty$ for all $x \notin \mathcal{I}$, $\tilde{\mathcal{A}}_{k+1}^d \subset \tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,k}$ so that $\left(\tilde{\mathcal{A}}_{k+1}^d\right)^c$ may be written $\left(\tilde{\mathcal{A}}_{k+1}^d\right)^c = \left(\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,k}\right)^c \cup \left(\left(\tilde{\mathcal{A}}_{k+1}^d\right)^c \cap \tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,k}\right)$. Let \mathcal{F} be the σ -field generated by $\left(\tilde{X}_k^d\right)_{k\geq 0}$. Consider the case $\#\{m_1,\ldots,m_4\} = 4$. The case $\#\{m_1,\ldots,m_4\} = 3$ is dealt with similarly and the two other cases follow the same lines as the proof of Lemma S6. As $\left\{\left(U_{m_j}, Z_{m_j,1}^d, \cdots, Z_{m_j,d}^d\right)\right\}_{1\leq j\leq 4}$ are independent conditionally to \mathcal{F} ,

$$\mathbb{E}\left[\prod_{j=1}^{4} Z_{m_{j},1}^{d} \mathbb{1}_{\left(\mathcal{A}_{m_{j}}^{d}\right)^{c}} \middle| \mathcal{F}\right]$$
$$=\prod_{j=1}^{4} \left\{ \mathbb{E}\left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}\right)^{c}} Z_{m_{j},1}^{d} \middle| \mathcal{F}\right] + \mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}} \mathbb{1}_{\left(\tilde{\mathcal{A}}_{m_{j}}^{d}\right)^{c}} Z_{m_{j},1}^{d} \middle| \mathcal{F}\right] \right\}.$$

As U_{m_j} is independent of $(Z^d_{m_j,1}, \cdots, Z^d_{m_j,d})$ conditionally to \mathcal{F} , the second term may be written:

$$\mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}}\mathbb{1}_{\left(\tilde{\mathcal{A}}_{m_{j}}^{d}\right)^{c}}Z_{m_{j},1}^{d}\middle|\mathcal{F}\right]$$
$$=\mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}}Z_{m_{j},1}^{d}\left(1-\exp\left\{\sum_{i=1}^{d}\Delta\tilde{V}_{m_{j}-1,i}^{d}\right\}\right)_{+}\middle|\mathcal{F}\right].$$

Since the function $x \mapsto (1 - e^x)_+$ is 1-Lipschitz, on $\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}$

$$\left| \left(1 - \exp\left\{ \sum_{i=1}^{d} \Delta \tilde{V}_{m_{j}-1,i}^{d} \right\} \right)_{+} - \Theta_{m_{j}} \right| \leq \left| \Delta \tilde{V}_{m_{j}-1,1}^{d} + \ell d^{-1/2} \dot{V}(\tilde{X}_{m_{j}-1,1}^{d}) Z_{m_{j},1}^{d} \right| ,$$
where $\Theta_{m_{j}} = (1 - \exp\{-\ell d^{-1/2} \dot{V}(\tilde{X}_{m_{j}-1,1}^{d}) Z_{m_{j},1}^{d} + \sum_{i=2}^{d} \Delta \tilde{V}_{m_{j}-1,i}^{d} \})_{+}.$ Then,
$$\left| \mathbb{E} \left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j}-1}} Z_{m_{j},1}^{d} \left(1 - \exp\left\{ \sum_{i=1}^{d} \Delta \tilde{V}_{m_{j}-1,i}^{d} \right\} \right)_{+} \right| \mathcal{F} \right] \right| \leq A_{m_{j}}^{d} + B_{m_{j}}^{d},$$
where

where

$$\begin{aligned} A_{m_{j}}^{d} &= \mathbb{E}\left[\left| Z_{m_{j},1}^{d} \right| \left| \mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I},1}^{d,m_{j-1}}} \Delta \tilde{V}_{m_{j}-1,1}^{d} + \ell d^{-1/2} \dot{V}(\tilde{X}_{m_{j}-1,1}^{d}) Z_{m_{j},1}^{d} \right| \right| \mathcal{F} \right] ,\\ B_{m_{j}}^{d} &= \left| \mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I},2:d}^{d,m_{j-1}}} Z_{m_{j},1}^{d} \Theta_{m_{j}} \right| \mathcal{F} \right] \right| . \end{aligned}$$

By Jensen inequality,

$$\begin{aligned} \left| \mathbb{E} \left[\prod_{j=1}^{4} Z_{m_{j},1}^{d} \mathbb{1}_{\left(\mathcal{A}_{m_{j}}^{d}\right)^{c}} \right] \right| &\leq \mathbb{E} \left[\prod_{j=1}^{4} \left\{ \mathbb{E} \left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}\right)^{c}} |Z_{m_{j},1}^{d}| \middle| \mathcal{F} \right] + A_{m_{j}}^{d} + B_{m_{j}}^{d} \right\} \right] , \\ &\leq C \mathbb{E} \left[\sum_{j=1}^{4} \mathbb{E} \left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}\right)^{c}} |Z_{m_{j},1}^{d}|^{4} \middle| \mathcal{F} \right] + \left(A_{m_{j}}^{d}\right)^{4} + \left(B_{m_{j}}^{d}\right)^{4} \right] , \end{aligned}$$

By **G**1(iii) and Holder's inequality applied with $\alpha = 1/(1 - 2/\gamma) > 1$, for all $1 \le j \le 4$,

$$\mathbb{E}\left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I},1:d}^{d,m_{j-1}}\right)^{c}}|Z_{m_{j},1}^{d}|^{4}\right] \leq \mathbb{E}\left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I},1}^{d,m_{j-1}}\right)^{c}}|Z_{m_{j},1}^{d}|^{4}\right] + \sum_{i=2}^{d}\mathbb{E}\left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I},i}^{d,m_{j-1}}\right)^{c}}\right],$$
$$\leq \mathbb{E}\left[|Z_{m_{j},1}^{d}|^{4\alpha/(\alpha-1)}\right]^{(\alpha-1)/\alpha}d^{-\gamma/(2\alpha)} + d^{1-\gamma/2},$$
$$\leq Cd^{1-\gamma/2}.$$

By Lemma S2(ii) and the Holder's inequality, there exists C > 0 such that $\mathbb{E}\left[\left(A_{m_j}^d\right)^4\right] \leq Cd^{-2}$. On the other hand, by [1, Lemma 6] since $Z_{m_j,1}^d$ is independent of \mathcal{F} ,

$$\begin{split} B^{d}_{m_{j}} &= \left| \mathbb{E} \left[\mathbbm{1}_{\tilde{\mathcal{D}}^{d,m_{j-1}}_{\mathcal{I},2:d}} \ell d^{-1/2} \dot{V}(\tilde{X}^{d}_{m_{j}-1,1}) \right. \\ & \times \left. \mathcal{G} \left(\ell^{2} d^{-1} \dot{V}(\tilde{X}^{d}_{m_{j}-1,1})^{2}, -2 \sum_{i=2}^{d} \Delta \tilde{V}^{d}_{m_{j}-1,i} \right) \right| \mathcal{F} \right] \right| \,, \end{split}$$

where the function \mathcal{G} is defined in (24). By $\mathbf{G} 1(\mathrm{ii})$ and since \mathcal{G} is bounded, $\mathbb{E}[(B_{m_j}^d)^4] \leq Cd^{-2}$. Since $\gamma \geq 6$ in $\mathbf{G} 1(\mathrm{iii})$, $|\mathbb{E}[\prod_{j=1}^4 Z_{m_j,1}^d \mathbb{1}_{(\mathcal{A}_{m_j}^d)^c}]| \leq Cd^{-2}$, showing that

$$\sum_{(m_1,m_2,m_3,m_4)\in\mathcal{I}_4} \left| \mathbb{E}\left[\prod_{i=1}^4 Z^d_{m_i,1} \mathbb{1}_{\left(\mathcal{A}^d_{m_i}\right)^c}\right] \right| \le Cd^{-2} \binom{k_2-k_1}{4}.$$
(S5)

3. Proof of Theorem 5

Lemma S7. Assume **G**1 holds. Let X^d be distributed according to π^d and Z^d be a d-dimensional standard Gaussian random variable, independent of X^d . Then, $\lim_{d\to+\infty} E^d = 0$, where

$$\mathbf{E}^{d} = \mathbb{E}\left[\left|\dot{V}(X_{1}^{d})\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}}\left\{\mathcal{G}\left(\ell^{2}\dot{V}(X_{1}^{d})^{2}/d, 2\bar{Y}_{d}\right) - \mathcal{G}\left(\ell^{2}\dot{V}(X_{1}^{d})^{2}/d, 2\bar{X}_{d}\right)\right\}\right|\right],$$

where $\bar{Y}_{d} = \sum_{i=2}^{d} \Delta V_{i}^{d}$, ΔV_{i}^{d} and $\mathcal{D}_{\mathcal{I},2:d}^{d}$ are given by (5) and (S3) and \bar{X}_{d} =

where $Y_d = \sum_{i=2}^{a} \Delta V_i^a$, ΔV_i^a and $\mathcal{D}_{\mathcal{I},2:d}^a$ are given by (5) and (S3) and X_d $\sum_{i=2}^{d} b_{\mathcal{I},i}^d$, $b_{\mathcal{I},i}^d = b_{\mathcal{I}}^d(X_i^d, Z_i^d)$ with $b_{\mathcal{I}}^d$ given by (S4).

Proof. Set for all $d \ge 1$, $\bar{Y}_d = \sum_{i=2}^d \Delta V_i^d$ and $\bar{X}_d = \sum_{i=2}^d b_{\mathcal{I},i}^d$. By definition of $b_{\mathcal{I}}^d$ (S4), \bar{X}_d may be expressed as $\bar{X}_d = \sigma_d \bar{S}_d + \mu_d$, where

$$\begin{split} \mu_{d} &= 2(d-1)\mathbb{E}\left[\mathbbm{1}_{\mathcal{D}_{\mathcal{I},1}^{d}}\zeta^{d}(X_{1}^{d},Z_{1}^{d})\right] - \frac{\ell^{2}(d-1)}{4d}\mathbb{E}\left[\dot{V}(X_{1}^{d})^{2}\right] \\ \sigma_{d}^{2} &= \ell^{2}\mathbb{E}\left[\dot{V}(X_{1}^{d})^{2}\right] + \frac{\ell^{4}}{16d}\mathbb{E}\left[\left(\dot{V}(X_{1}^{d})^{2} - \mathbb{E}\left[\dot{V}(X_{1}^{d})^{2}\right]\right)^{2}\right], \\ \bar{S}_{d} &= (\sqrt{d}\sigma_{d})^{-1}\sum_{i=2}^{d}\beta_{i}^{d}, \\ \beta_{i}^{d} &= -\ell Z_{i}^{d}\dot{V}(X_{i}^{d}) - \frac{\ell^{2}}{4\sqrt{d}}\left(\dot{V}(X_{i}^{d})^{2} - \mathbb{E}\left[\dot{V}(X_{i}^{d})^{2}\right]\right). \end{split}$$

By **G**1(ii) the Berry-Essen Theorem [2, Theorem 5.7] can be applied to \bar{S}_d . Then, there exists a universal constant C such that for all d > 0,

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}\left[\sqrt{\frac{d}{d-1}} \bar{S}_d \le x \right] - \Phi(x) \right| \le C/\sqrt{d} \,.$$

It follows, with $\tilde{\sigma}_d^2 = (d-1)\sigma_d^2/d$, that

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}\left[\bar{X}_d \le x \right] - \Phi((x - \mu_d) / \tilde{\sigma}_d) \right| \le C / \sqrt{d} \,.$$

By this result and (35), Lemma 7 can be applied to obtain a constant $C \ge 0$, independent of d, such that:

$$\begin{split} \mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}} \left| \mathcal{G} \left(\ell^{2} \dot{V}(X_{1}^{d})^{2}/d, 2\bar{Y}_{d} \right) - \mathcal{G} \left(\ell^{2} \dot{V}(X_{1}^{d})^{2}/d, 2\bar{X}_{d} \right) \left| X_{1}^{d} \right| \right] \\ \leq C \left(\mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}} \left| \bar{X}_{d} - \bar{Y}_{d} \right| \right] + d^{-1/2} + \sqrt{2\mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}} \left| \bar{X}_{d} - \bar{Y}_{d} \right| \right] (2\pi \tilde{\sigma}_{d}^{2})^{-1/2}} \\ + \sqrt{\ell |\dot{V}(X_{1}^{d})| / (2\pi d^{1/2} \tilde{\sigma}_{d}^{2})} \right) \,. \end{split}$$

Using this result, we have

$$\mathbf{E}^{d} \leq C \left\{ \ell^{1/2} \mathbb{E} \left[|\dot{V}(X_{1}^{d})|^{3/2} \right] (2\pi d^{1/2} \tilde{\sigma}_{d}^{2})^{-1/2} + \mathbb{E} \left[|\dot{V}(X_{1}^{d})| \right]$$

$$\times \left(\mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}} \left| \bar{X}_{d} - \bar{Y}_{d} \right| \right] + d^{-1/2} + \sqrt{2\mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d}} \left| \bar{X}_{d} - \bar{Y}_{d} \right| \right] (2\pi \tilde{\sigma}_{d}^{2})^{-1/2}} \right) \right\}.$$
(S6)

By Lemma S3, $\mathbb{E}[\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^d} | \bar{X}_d - \bar{Y}_d |]$ goes to 0 as d goes to infinity, and by **G**1(ii) $\lim_{d \to +\infty} \tilde{\sigma}_d^2 = \ell^2 \mathbb{E}\left[\dot{V}(X)^2\right]$. Combining these results with (S6), it follows that \mathbf{E}^d goes to 0 when d goes to infinity.

For all $n \ge 0$, define $\mathcal{F}_n^d = \sigma(\{X_k^d, k \le n\})$ and for all $\phi \in C_c^{\infty}(\mathbb{R}, \mathbb{R})$,

$$M_{n}^{d}(\phi) = \frac{\ell}{\sqrt{d}} \sum_{k=0}^{n-1} \phi'(X_{k,1}^{d}) \left\{ Z_{k+1,1}^{d} \mathbb{1}_{\mathcal{A}_{k+1}^{d}} - \mathbb{E} \left[Z_{k+1,1}^{d} \mathbb{1}_{\mathcal{A}_{k+1}^{d}} \middle| \mathcal{F}_{k}^{d} \right] \right\} + \frac{\ell^{2}}{2d} \sum_{k=0}^{n-1} \phi''(X_{k,1}^{d}) \left\{ (Z_{k+1,1}^{d})^{2} \mathbb{1}_{\mathcal{A}_{k+1}^{d}} - \mathbb{E} \left[(Z_{k+1,1}^{d})^{2} \mathbb{1}_{\mathcal{A}_{k+1}^{d}} \middle| \mathcal{F}_{k}^{d} \right] \right\}.$$
 (S7)

Proposition S2. Assume **G** 1 and **G** 2 hold. Then, for all $s \leq t$ and all $\phi \in C_c^{\infty}(\mathbb{R}, \mathbb{R})$,

$$\lim_{d \to +\infty} \mathbb{E}\left[\left| \phi(Y_{t,1}^d) - \phi(Y_{s,1}^d) - \int_s^t \mathcal{L}\phi(Y_{r,1}^d) dr - \left(M_{\lceil dt \rceil}^d(\phi) - M_{\lceil ds \rceil}^d(\phi) \right) \right| \right] = 0.$$

Proof. Using the same decomposition as in the proof of Proposition 4, we only need to prove that for all $1 \le i \le 5$, $\lim_{d\to+\infty} \mathbb{E}[|T_i^d|] = 0$, where

$$\begin{split} T_1^d &= \int_s^t \phi'(X_{\lfloor dr \rfloor,1}^d) \left(\ell \sqrt{d} \ \mathbb{E} \left[Z_{\lceil dr \rceil,1}^d \mathbb{1}_{\mathcal{A}_{\lceil dr \rceil}^d} \left| \mathcal{F}_{\lfloor dr \rfloor}^d \right] + \frac{h(\ell)}{2} \dot{V}(X_{\lfloor dr \rfloor,1}^d) \right) \mathrm{d}r \,, \\ T_2^d &= \int_s^t \phi''(X_{\lfloor dr \rfloor,1}^d) \left(\frac{\ell^2}{2} \ \mathbb{E} \left[(Z_{\lceil dr \rceil,1}^d)^2 \mathbb{1}_{\mathcal{A}_{\lceil dr \rceil}^d} \left| \mathcal{F}_{\lfloor dr \rfloor}^d \right] - \frac{h(\ell)}{2} \right) \mathrm{d}r \,, \\ T_3^d &= \int_s^t \left(\mathrm{L}\phi(Y_{\lfloor dr \rfloor/d,1}^d) - \mathrm{L}\phi(Y_{r,1}^d) \right) \mathrm{d}r \,, \\ T_4^d &= \frac{\ell(\lceil dt \rceil - dt)}{\sqrt{d}} \phi'(X_{\lfloor dt \rfloor,1}^d) \left(Z_{\lceil dt \rceil,1}^d \mathbb{1}_{\mathcal{A}_{\lceil dt \rceil}^d} - \mathbb{E} \left[Z_{\lceil dt \rceil,1}^d \mathbb{1}_{\mathcal{A}_{\lceil dt \rceil}^d} \left| \mathcal{F}_{\lfloor dt \rfloor}^d \right] \right) \right. \\ &+ \frac{\ell^2(\lceil dt \rceil - dt)}{2d} \phi''(X_{\lfloor dt \rfloor,1}^d) \left((Z_{\lceil dt \rceil,1}^d)^2 \mathbb{1}_{\mathcal{A}_{\lceil dt \rceil}^d} - \mathbb{E} \left[(Z_{\lceil dt \rceil,1}^d)^2 \mathbb{1}_{\mathcal{A}_{\lceil dt \rceil}^d} \left| \mathcal{F}_{\lfloor dt \rfloor}^d \right] \right) \,, \\ T_5^d &= \frac{\ell(\lceil ds \rceil - ds)}{\sqrt{d}} \phi'(X_{\lfloor ds \rfloor,1}^d) \left(Z_{\lceil ds \rceil,1}^d \mathbb{1}_{\mathcal{A}_{\lceil ds \rceil}^d} - \mathbb{E} \left[Z_{\lceil ds \rceil,1}^d \mathbb{1}_{\mathcal{A}_{\lceil ds \rceil}^d} \left| \mathcal{F}_{\lfloor ds \rfloor}^d \right] \right) \right. \\ &+ \frac{\ell^2(\lceil ds \rceil - ds)}{2d} \phi''(X_{\lfloor ds \rfloor,1}^d) \left((Z_{\lceil ds \rceil,1}^d)^2 \mathbb{1}_{\mathcal{A}_{\lceil ds \rceil}^d} - \mathbb{E} \left[(Z_{\lceil ds \rceil,1}^d)^2 \mathbb{1}_{\mathcal{A}_{\lceil ds \rceil}^d} \left| \mathcal{F}_{\lfloor ds \rfloor}^d \right] \right) \right) \,. \end{split}$$

First, as ϕ' and ϕ'' are bounded, $\mathbb{E}\left[|T_4^d| + |T_5^d|\right] \leq Cd^{-1/2}$. Denote for all $r \in [s, t]$ and $d \geq 1$,

$$\begin{split} \Delta V_{r,i}^{d} &= V\left(X_{\lfloor dr \rfloor,i}^{d}\right) - V\left(X_{\lfloor dr \rfloor,i}^{d} + \ell d^{-1/2} Z_{\lceil dr \rceil,i}^{d}\right) \\ \Xi_{r}^{d} &= 1 \wedge \exp\left\{-\ell Z_{\lceil dr \rceil,1}^{d} \dot{V}(X_{\lfloor dr \rfloor,1}^{d}) / \sqrt{d} + \sum_{i=2}^{d} b_{\mathcal{I},i}^{d,\lfloor dr \rfloor}\right\}\,, \end{split}$$

where for all $k, i \geq 0$, $b_{\mathcal{I},i}^{d,k} = b_{\mathcal{I}}^d(X_{k,i}^d, Z_{k+1,i}^d)$, and for all $x, z \in \mathbb{R}$, $b_{\mathcal{I}}^d(x, y)$ is given by (S4). For all $k \geq 0$, $1 \leq i, j \leq d$, define

$$\mathcal{D}_{\mathcal{I},j}^{d,k} = \left\{ X_{k,j}^d + \mathbf{r}\ell d^{-1/2} Z_{k+1,j}^d \in \mathcal{I} \right\} \cap \left\{ X_{k,j}^d + (1-\mathbf{r})\ell d^{-1/2} Z_{k+1,j}^d \in \mathcal{I} \right\}$$
$$\mathcal{D}_{\mathcal{I},i;j}^{d,k} = \bigcap_{\ell=i}^j \mathcal{D}_{\mathcal{I},\ell}^{d,k}.$$

By the triangle inequality,

$$|T_1| \le \int_s^t \left| \phi'(X^d_{\lfloor dr \rfloor, 1}) \right| (A_{1,r} + A_{2,r} + A_{3,r} + A_{4,r}) \mathrm{d}r \,, \tag{S8}$$

where

$$\Pi_{r}^{d} = 1 \wedge \exp\left\{-\ell d^{-1/2} Z_{\lceil dr \rceil, 1}^{d} \dot{V}(X_{\lfloor dr \rfloor, 1}^{d}) + \sum_{i=2}^{d} \Delta V_{r, i}^{d}\right\},$$

$$A_{1,r} = \left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil dr \rceil, 1}^{d} \left(\mathbbm{1}_{\mathcal{A}_{\lceil dr \rceil}^{d}} - \mathbbm{1}_{\mathcal{D}_{\mathcal{I}, 1:d}^{d}} \mathbbm{1}_{r}^{d}\right) \left|\mathcal{F}_{\lfloor dr \rfloor}^{d}\right]\right|,$$

$$A_{2,r} = \left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil dr \rceil, 1}^{d} \mathbbm{1}_{\mathcal{D}_{\mathcal{I}, 1:d}^{d, \lfloor dr \rfloor}} \left(\mathbbm{1}_{r}^{d} - \Xi_{r}^{d}\right) \left|\mathcal{F}_{\lfloor dr \rfloor}^{d}\right]\right|,$$

$$A_{3,r} = \left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil dr \rceil, 1}^{d} \mathbbm{1}_{\left(\mathcal{D}_{\mathcal{I}, 1:d}^{d, \lfloor dr \rfloor}\right)^{c}} \Xi_{r}^{d} \left|\mathcal{F}_{\lfloor dr \rfloor}^{d}\right]\right|,$$

$$A_{4,r} = \left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil dr \rceil, 1}^{d} \Xi_{r}^{d} \left|\mathcal{F}_{\lfloor dr \rfloor}^{d}\right]\right] + \dot{V}(X_{\lfloor dr \rfloor, 1}^{d})h(\ell)/2\right|.$$

Since $t \mapsto 1 \wedge \exp(t)$ is 1-Lipschitz,

$$\begin{split} \mathbb{E}\left[\left|A_{1,r}^{d}\right|\right] &\leq \ell\sqrt{d}\mathbb{E}\left[\mathbbm{1}_{\mathcal{D}_{\mathcal{I},1:d}^{d,\lfloor dr\rfloor}}\left|Z_{\lceil dr\rceil,1}^{d}\right|\left|\Delta V_{r,1}^{d} - \ell d^{-1/2}Z_{\lceil dr\rceil,1}^{d}\dot{V}(X_{\lfloor dr\rfloor,1}^{d})\right|\right],\\ &\leq \ell\sqrt{d}\mathbb{E}\left[\mathbbm{1}_{\mathcal{D}_{\mathcal{I},1}^{d,\lfloor dr\rfloor}}\left|Z_{\lceil dr\rceil,1}^{d}\right|\left|\Delta V_{r,1}^{d} - \ell d^{-1/2}Z_{\lceil dr\rceil,1}^{d}\dot{V}(X_{\lfloor dr\rfloor,1}^{d})\right|\right],\\ &\leq \ell\sqrt{d}\mathbb{E}\left[\left|Z_{\lceil dr\rceil,1}^{d}\right|\left|\mathbbm{1}_{\mathcal{D}_{\mathcal{I},1}^{d,\lfloor dr\rfloor}}\Delta V_{r,1}^{d} - \ell d^{-1/2}Z_{\lceil dr\rceil,1}^{d}\dot{V}(X_{\lfloor dr\rfloor,1}^{d})\right|\right].\end{split}$$

and $\mathbb{E}[|A_{1,r}^d|]$ goes to 0 as $d \to +\infty$ for almost all r by Lemma S2(ii). So by the Fubini theorem, the first term in (S8) goes to 0 as $d \to +\infty$. For $A_{2,r}^d$, note that

$$A_{2,r} \leq \left| \ell \sqrt{d} \mathbb{E} \left[Z^d_{\lceil dr \rceil, 1} \mathbb{1}_{\mathcal{D}^{d, \lfloor dr \rfloor}_{\mathcal{I}, 2:d}} \left(\Pi^d_r - \Xi^d_r \right) \left| \mathcal{F}^d_{\lfloor dr \rfloor} \right] \right|.$$

Then, by [1, Lemma 6],

$$\mathbb{E}\left[\left|A_{2,r}^{d}\right|\right] \leq \mathbb{E}\left[\left|\ell^{2}\dot{V}(X_{\lfloor dr \rfloor,1}^{d})\mathbb{1}_{\mathcal{D}_{\mathcal{I},2:d}^{d,\lfloor dr \rfloor}}\left\{\mathcal{G}\left(\frac{\ell^{2}\dot{V}(X_{\lfloor dr \rfloor,1}^{d})^{2}}{d}, 2\sum_{i=2}^{d}\Delta V_{r,i}^{d}\right)\right. \\ \left.-\mathcal{G}\left(\frac{\ell^{2}\dot{V}(X_{\lfloor dr \rfloor,1}^{d})^{2}}{d}, 2\sum_{i=2}^{d}b_{\mathcal{I},i}^{d,\lfloor dr \rfloor}\right)\right\}\right|\right],$$

where \mathcal{G} is defined in (24). By Lemma S7, this expectation goes to zero when d goes to infinity. Then by the Fubini theorem and the Lebesgue dominated convergence theorem, the second term of (S8) goes 0 as $d \to +\infty$. On the other

hand, by **G**1(iii) and Holder's inequality applied with $\alpha = 1/(1-2/\gamma) > 1$, for all $1 \le j \le 4$,

$$\mathbb{E}\left[\left|A_{3,r}^{d}\right|\right] \leq \ell\sqrt{d} \left(\mathbb{E}\left[\left|Z_{\lceil dr\rceil,1}^{d}\right| \mathbb{1}_{\left(\mathcal{D}_{\mathcal{I},1}^{d,\lfloor dr\rfloor}\right)^{c}}\right] + \sum_{i=2}^{d} \mathbb{E}\left[\mathbb{1}_{\left(\mathcal{D}_{\mathcal{I},i}^{d,\lfloor dr\rfloor}\right)^{c}}\right]\right),$$
$$\leq \ell\sqrt{d} \left(\mathbb{E}\left[\left|Z_{m_{j},1}^{d}\right|^{\alpha/(\alpha-1)}\right]^{(\alpha-1)/\alpha} d^{-\gamma/(2\alpha)} + d^{1-\gamma/2}\right) \leq Cd^{3/2-\gamma/2}$$

and $\mathbb{E}[|A_{3,r}^d|]$ goes to 0 as $d \to +\infty$ for almost all r. Define

$$\bar{V}_{d,1} = \sum_{i=1}^{d} \dot{V}(X^d_{\lfloor dr \rfloor,i})^2 \quad \text{and} \quad \bar{V}_{d,2} = \bar{V}_{d,1} - \dot{V}(X^d_{\lfloor dr \rfloor,1})^2.$$

For the last term, by [1, Lemma 6]:

$$\ell\sqrt{d} \mathbb{E}\left[Z^{d}_{\lceil dr\rceil,1}\Xi^{d}_{r}\left|\mathcal{F}^{d}_{\lfloor dr\rfloor}\right] = -\ell^{2}\dot{V}(X^{d}_{\lfloor dr\rfloor,1}) \times \mathcal{G}\left(\frac{\ell^{2}}{d}\bar{V}_{d,1}, \left\{\frac{\ell^{2}}{2d}\bar{V}_{d,2} - 4(d-1)\mathbb{E}\left[\mathbbm{1}_{\mathcal{D}_{\mathcal{I}}}\zeta^{d}(X,Z)\right]\right\}\right), \quad (S9)$$

where $\mathcal{D}_{\mathcal{I}} = \{X + \ell d^{-1/2} Z \in \mathcal{I}\}, X$ is distributed according to π and Z is a standard Gaussian random variable independent of X. As \mathcal{G} is continuous on $\mathbb{R}_+ \times \mathbb{R} \setminus \{0, 0\}$ (see [1, Lemma 2]), by **G**1(ii), Lemma S4 and the law of large numbers, almost surely,

$$\lim_{d \to +\infty} \ell^2 \mathcal{G}\left(\ell^2 \bar{V}_{d,1}/d, \ell^2 \bar{V}_{d,2}/(2d) - 4(d-1)\mathbb{E}\left[\mathbbm{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^d(X, Z)\right]\right)$$
$$= \ell^2 \mathcal{G}\left(\ell^2 \mathbb{E}[\dot{V}(X)^2], \ell^2 \mathbb{E}[\dot{V}(X)^2]\right) = h(\ell)/2, \quad (S10)$$

where $h(\ell)$ is defined in (11). Therefore by Fubini's Theorem, (S9) and Lebesgue's dominated convergence theorem, the last term of (S8) goes to 0 as d goes to infinity. The proof for T_2^d follows the same lines. By the triangle inequality,

$$\begin{aligned} \left| T_2^d \right| &\leq \left| \int_s^t \phi''(X_{\lfloor dr \rfloor,1}^d) (\ell^2/2) \ \mathbb{E} \left[(Z_{\lceil dr \rceil,1}^d)^2 \left(\mathbbm{1}_{\mathcal{A}_{\lceil dr \rceil}^d} - \Xi_r^d \right) \left| \mathcal{F}_{\lfloor dr \rfloor}^d \right] \,\mathrm{d}r \right| \\ &+ \left| \int_s^t \phi''(X_{\lfloor dr \rfloor,1}^d) \left((\ell^2/2) \ \mathbb{E} \left[(Z_{\lceil dr \rceil,1}^d)^2 \Xi_r^d \left| \mathcal{F}_{\lfloor dr \rfloor}^d \right] - h(\ell)/2 \right) \,\mathrm{d}r \right| . \end{aligned}$$
(S11)

By Fubini's Theorem, Lebesgue's dominated convergence theorem and Proposition S1, the expectation of the first term goes to zero when d goes to infinity. Optimal scaling under L^p mean differentiability

For the second term, by [1, Lemma 6 (A.5)],

$$(\ell^2/2)\mathbb{E}\left[(Z^d_{\lceil dr\rceil,1})^2 1 \wedge \exp\left\{-\frac{\ell Z^d_{\lceil dr\rceil,1}}{\sqrt{d}}\dot{V}(X^d_{\lfloor dr\rfloor,1}) + \sum_{i=2}^d b^{d,\lfloor dr\rfloor}_{\mathcal{I},i}\right\} \left|\mathcal{F}^d_{\lfloor dr\rfloor}\right]\right]$$
$$= (B_1 + B_2 - B_3)/2, \quad (S12)$$

where

$$B_{1} = \ell^{2} \Gamma \left(\ell^{2} \bar{V}_{d,1}/d, \ell^{2} \bar{V}_{d,2}/(2d) - 4(d-1) \mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X, Z) \right] \right),$$

$$B_{2} = \frac{\ell^{4} \dot{V}(X_{\lfloor dr \rfloor, 1}^{d})^{2}}{d} \mathcal{G} \left(\ell^{2} \bar{V}_{d,1}/d, \ell^{2} \bar{V}_{d,2}/(2d) - 4(d-1) \mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X, Z) \right] \right),$$

$$B_{3} = \frac{\ell^{4} \dot{V}(X_{\lfloor dr \rfloor, 1}^{d})^{2}}{d} \left(2\pi \ell^{2} \bar{V}_{d,1}/d \right)^{-1/2} \times \exp \left\{ -\frac{\left[-2(d-1) \mathbb{E} \left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X, Z) \right] + (\ell^{2}/(4d)) \bar{V}_{d,2} \right]^{2}}{2\ell^{2} \bar{V}_{d,1}/d} \right\},$$

where Γ is defined in (25). As Γ is continuous on $\mathbb{R}_+ \times \mathbb{R} \setminus \{0, 0\}$ (see [1, Lemma 2]), by **G**1(ii), Lemma S4 and the law of large numbers, almost surely,

$$\lim_{d \to +\infty} \ell^2 \Gamma\left(\ell^2 \bar{V}_{d,1}/d, \left\{\ell^2 \bar{V}_{d,2}/(2d) - 4(d-1)\mathbb{E}\left[\mathbbm{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^d(X, Z)\right]\right\}\right)$$
$$= \ell^2 \Gamma\left(\ell^2 \mathbb{E}[\dot{V}(X)^2], \ell^2 \mathbb{E}[\dot{V}(X)^2]\right) = h(\ell) \,. \quad (S13)$$

By Lemma S4, by G1(ii) and the law of large numbers, almost surely,

$$\lim_{d \to +\infty} \exp\left\{-\frac{\left[-2(d-1)\mathbb{E}[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}}\zeta^{d}(X,Z)] + (\ell^{2}/(4d))\bar{V}_{d,2}\right]^{2}}{2\ell^{2}\bar{V}_{d,1}/d}\right\} = \exp\left\{-\frac{\ell^{2}}{8}\mathbb{E}[\dot{V}(X)^{2}]\right\}$$

Then, as \mathcal{G} is bounded on $\mathbb{R}_+ \times \mathbb{R}$,

$$\lim_{d \to +\infty} \mathbb{E}\left[\left| \int_{s}^{t} \phi''(X^{d}_{\lfloor dr \rfloor, 1}) \left(B_{2} - B_{3} \right) \mathrm{d}r \right| \right] = 0.$$
 (S14)

Therefore, by Fubini's Theorem, (S12), (S13), (S14) and Lebesgue's dominated convergence theorem, the second term of (S11) goes to 0 as d goes to infinity. The proof for T_3^d follows exactly the same lines as the proof of Proposition 4.

Proof of Theorem 5. Using Lemma S5, Proposition 1 and Proposition S2, the proof follows the same lines as the proof of Theorem 3.

4. Detailed computations for the Gamma distribution

This section provides the explicit computations to check G1(i) in Example 2. The result is proved for $\theta < 0$ (the proof for $\theta > 0$ follows the same lines). For all $\theta \in \mathbb{R}$ using $a_1 > 6$,

$$\begin{split} \int_{\mathbb{R}^{*}_{+}} |\mathcal{E}_{1}|^{5} \pi_{\gamma}(x) \mathrm{d}x &\leq C |\theta|^{5} \int_{0}^{3|\theta|/2} \left\{ 1/x^{5} + x^{5(a_{2}-1)} \right\} x^{a_{1}-1} \mathrm{e}^{-x^{a_{2}}} \mathrm{d}x \,, \\ &\leq C \left(|\theta|^{a_{1}} \int_{0}^{3/2} x^{a_{1}-6} \mathrm{e}^{-(|\theta|x)^{a_{2}}} \mathrm{d}x \right. \\ &\quad + |\theta|^{5a_{2}+a_{1}} \int_{0}^{3/2} x^{5(a_{2}-1)+a_{1}-1} \mathrm{e}^{-(|\theta|x)^{a_{2}}} \mathrm{d}x \right) \,, \\ &\leq C (|\theta|^{a_{1}} + |\theta|^{5a_{2}+a_{1}}) \,. \end{split}$$

$$(S15)$$

On the other hand, as for all x > -1, $x/(x+1) \le \log(1+x) \le x$, for all $\theta < 0$, and $x \ge 3|\theta|/2$,

$$|\log(1+\theta/x) - \theta/x| \le \frac{|\theta|^2}{x^2(1+\theta/x)} \le 3|\theta|^2/x^2$$

where the last inequality come from $|\theta|/x \le 2/3$. Then, it yields

$$\int_{\mathbb{R}^{*}_{+}} |\mathcal{E}_{2}(x)|^{5} \pi_{\gamma}(x) \mathrm{d}x \leq C |\theta|^{10} \left(\int_{3|\theta|/2}^{1} x^{\mathbf{a}_{1}-11} \mathrm{e}^{-x^{\mathbf{a}_{2}}} \mathrm{d}x + \int_{1}^{+\infty} x^{\mathbf{a}_{1}-11} \mathrm{e}^{-x^{\mathbf{a}_{2}}} \mathrm{d}x \right),$$

$$\leq C (|\theta|^{\mathbf{a}_{1}} + |\theta|^{10}).$$
(S16)

For the last term, for all $\theta < 0$ and all $x \ge 3|\theta|/2$, using a Taylor expansion of $x \mapsto x^{a_2}$, there exists $\zeta \in [x + \theta, x]$ such that

$$\left| (x+\theta)^{\mathbf{a}_2} - x^{\mathbf{a}_2} - \mathbf{a}_2 \theta x^{\mathbf{a}_2 - 1} \right| \le C |\theta|^2 |\zeta|^{\mathbf{a}_2 - 2} \le C |\theta|^2 |x|^{\mathbf{a}_2 - 2}$$

Then,

$$\int_{\mathbb{R}^*_+} |\mathcal{E}_3(x)|^5 \, \pi_{\gamma}(x) \mathrm{d}x \le C |\theta|^{10} \int_{3|\theta|/2}^{+\infty} x^{5(a_2-2)+a_1-1} \mathrm{e}^{-x^{a_2}} \mathrm{d}x \le C(|\theta|^{5a_2+a_1}+|\theta|^{10}) \,.$$
(S17)

Combining (S15), (S16), (S17) and using that $a_1 > 6$ concludes the proof of **G** 1(i) for p = 5.

References

- B. Jourdain, T. Lelievre, and B. Miasojedow. Optimal scaling for the transient phase of the random walk Metropolis algorithm: the mean-field limit. *The annals of Applied Probability*, 2015.
- [2] Valentin V. Petrov. Limit theorems of probability theory, volume 4 of Oxford Studies in Probability. The Clarendon Press, Oxford University Press, New York, 1995. Sequences of independent random variables, Oxford Science Publications.