SUPPLEMENTARY MATERIAL OF "OPTIMAL SCALING OF THE RANDOM WALK METROPOLIS ALGORITHM UNDER L^{p} MEAN DIFFERENTIABILITY"

1. Proof of Theorem 4

The proof of this theorem follows the same steps as the the proof of Theorem 2. Note that ξ_{θ} and ξ_{0}, given by (12), are well defined on $\mathcal{I} \cap\{x \in$ $\mathbb{R} \mid x+\mathrm{r} \theta \in \mathcal{I}\}$. Let the function $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined for $x, \theta \in \mathbb{R}$ by

$$
\begin{equation*}
v(x, \theta)=\mathbb{1}_{\mathcal{I}}(x+\mathrm{r} \theta) \mathbb{1}_{\mathcal{I}}(x+(1-\mathrm{r}) \theta) . \tag{S1}
\end{equation*}
$$

Lemma S1. Assume $G 1$ holds. Then, there exists $C>0$ such that for all $\theta \in \mathbb{R}$,

$$
\left(\int_{\mathcal{I}}\left(\left\{\xi_{\theta}(x)-\xi_{0}(x)\right\} v(x, \theta)+\theta \dot{V}(x) \xi_{0}(x) / 2\right)^{2} \mathrm{~d} x\right)^{1 / 2} \leq C|\theta|^{\beta} .
$$

Proof. The proof follows as Lemma 1 and is omitted.
Lemma S2. Assume that $G[1$ holds. Let X be a random variable distributed according to π and Z be a standard Gaussian random variable independent of X. Define

$$
\mathcal{D}_{\mathcal{I}}=\left\{X+\mathrm{r} \ell d^{-1 / 2} Z \in \mathcal{I}\right\} \cap\left\{X+(1-\mathrm{r}) \ell d^{-1 / 2} Z \in \mathcal{I}\right\} .
$$

Then,
(i) $\lim _{d \rightarrow+\infty} d\left\|\mathbb{1}_{\mathcal{D}_{I}} \zeta^{d}(X, Z)+\ell Z \dot{V}(X) /(2 \sqrt{d})\right\|_{2}^{2}=0$.
(ii) Let p be given by $G \| \mid(i)$. Then,

$$
\lim _{d \rightarrow+\infty} \sqrt{d} \|_{\mathbb{1}_{\mathcal{D}_{\mathcal{I}}}\{V(X)-V(X+\ell Z / \sqrt{d})\}+\ell Z \dot{V}(X) / \sqrt{d} \|_{p}=0}
$$

(iii) $\lim _{d \rightarrow \infty} d\left\|\mathbb{1}_{\mathcal{D}_{\mathcal{I}}}\left(\log \left(1+\zeta_{d}(X, Z)\right)-\zeta^{d}(X, Z)+\left[\zeta^{d}\right]^{2}(X, Z) / 2\right)\right\|_{1}=0$,
where ζ^{d} is given by (19).
Proof. Note by definition of ζ^{d} and ξ_{θ} (12], for $x \in \mathcal{I}$ and $x+\mathrm{r} \ell d^{-1 / 2} z \in \mathcal{I}$,

$$
\begin{equation*}
\zeta^{d}(x, z)=\xi_{\ell z d^{-1 / 2}}(x) / \xi_{0}(x)-1 \tag{S2}
\end{equation*}
$$

Using Lemma 51 ,

$$
\begin{aligned}
& \left\|\mathbb{1}_{\mathcal{D}_{I}} \zeta^{d}(X, Z)+\ell Z \dot{V}(X) /(2 \sqrt{d})\right\|_{2}^{2} \\
& \quad=\mathbb{E}\left[\int_{\mathcal{I}}\left(v\left(x, \ell Z d^{-1 / 2}\right)\left\{\xi_{\ell Z d^{-1 / 2}}(x)-\xi_{0}(x)\right\}+\ell Z \dot{V}(x) \xi_{0}(x) /(2 \sqrt{d})\right)^{2} \mathrm{~d} x\right] \\
& \quad \leq C \ell^{2 \beta} d^{-\beta} \mathbb{E}\left[|Z|^{2 \beta}\right] .
\end{aligned}
$$

The proof of (i) is completed using $\beta>1$. For (ii), write for all $x \in \mathcal{I}$ and $x+\ell z d^{-1 / 2} z \in \mathcal{I}, \Delta V(x, z)=V(x)-V\left(x+\ell z d^{-1 / 2}\right)$. By $\mathbf{G}[\|(\mathrm{i})$

$$
\begin{aligned}
& \left\|\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \Delta V(X, Z)+\ell Z \dot{V}(X) / \sqrt{d}\right\|_{p}^{p} \\
& \quad=\mathbb{E}\left[\int_{\mathcal{I}}\left(v\left(x, \ell Z d^{-1 / 2}\right) \Delta V(X, Z)+\ell Z \dot{V}(x) / \sqrt{d}\right)^{p} \pi(x) \mathrm{d} x\right] \\
& \quad \leq C \ell^{\beta p} d^{-\beta p / 2} \mathbb{E}\left[|Z|^{\beta p}\right]
\end{aligned}
$$

and the proof of (ii) follows from $\beta>1$. For (iii), note that for all $x>0$, $u \in[0, x],\left|(x-u)(1+u)^{-1}\right| \leq|x|$, and the same inequality holds for $x \in(-1,0]$ and $u \in[x, 0]$. Then by (21) and 22 , for all $x>-1$,

$$
\left|\log (1+x)-x+x^{2} / 2\right|=|R(x)| \leq x^{2}|\log (1+x)| .
$$

Then by (S2), for $x \in \mathcal{I}$ and $x+\ell d^{-1 / 2} z \in \mathcal{I}$,

$$
\begin{aligned}
& \left|\log \left(1+\zeta_{d}(x, z)\right)-\zeta^{d}(x, z)+\left[\zeta^{d}\right]^{2}(x, z) / 2\right| \\
& \quad \leq\left(\xi_{\ell z d^{-1 / 2}}(x) / \xi_{0}(x)-1\right)^{2}\left|\log \left(\xi_{\ell z d^{-1 / 2}}(x) / \xi_{0}(x)\right)\right| \\
& \quad \leq\left(\xi_{\ell z d^{-1 / 2}}(x) / \xi_{0}(x)-1\right)^{2}\left|V\left(x+\ell z d^{-1 / 2}\right)-V(x)\right| / 2 .
\end{aligned}
$$

Since for all $x \in \mathbb{R},|\exp (x)-1| \leq|x|(\exp (x)+1)$, this yields,

$$
\begin{aligned}
& \left|\log \left(1+\zeta_{d}(x, z)\right)-\zeta^{d}(x, z)+\left[\zeta^{d}\right]^{2}(x, z) / 2\right| \\
& \quad \leq\left|V\left(x+\ell z d^{-1 / 2}\right)-V(x)\right|^{3}\left(\exp \left(V(x)-V\left(x+\ell z d^{-1 / 2}\right)\right)+1\right) / 4
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{\mathcal{I}} v\left(x, \ell z d^{-1 / 2}\right)\left|\log \left(1+\zeta_{d}(x, z)\right)-\zeta^{d}(x, z)+\left[\zeta^{d}\right]^{2}(x, z) / 2\right| & \pi(x) \mathrm{d} x \\
& \leq\left(I_{1}+I_{2}\right) / 4
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1}=\int_{\mathcal{I}} v\left(x, \ell z d^{-1 / 2}\right)\left|V\left(x+\ell z d^{-1 / 2}\right)-V(x)\right|^{3} \pi(x) \mathrm{d} x \\
& I_{2}=\int_{\mathcal{I}} v\left(x, \ell z d^{-1 / 2}\right)\left|V\left(x+\ell z d^{-1 / 2}\right)-V(x)\right|^{3} \pi\left(x+\ell z d^{-1 / 2}\right) \mathrm{d} x
\end{aligned}
$$

By Hölder's inequality, a change of variable and using G[1](i),

$$
I_{1}+I_{2} \leq C\left(\left|\ell z d^{-1 / 2}\right|^{3}\left(\int_{\mathcal{I}}|\dot{V}(x)|^{4} \pi(x) \mathrm{d} x\right)^{3 / 4}+\left|\ell z d^{-1 / 2}\right|^{3 \beta}\right)
$$

The proof follows from $\mathbf{G}[1](\mathrm{ii})$ and $\beta>1$.
For ease of notation, write for all $d \geq 1$ and $i, j \in\{1, \ldots, d\}$,

$$
\begin{align*}
\mathcal{D}_{\mathcal{I}, j}^{d} & =\left\{X_{j}^{d}+\mathrm{r} \ell d^{-1 / 2} Z_{j}^{d} \in \mathcal{I}\right\} \cap\left\{X_{j}^{d}+(1-\mathrm{r}) \ell d^{-1 / 2} Z_{j}^{d} \in \mathcal{I}\right\}, \\
\mathcal{D}_{\mathcal{I}, i: j}^{d} & =\bigcap_{k=i}^{j} \mathcal{D}_{\mathcal{I}, k}^{d} . \tag{S3}
\end{align*}
$$

Lemma S3. Assume that $G 1$ holds. For all $d \geq 1$, let X^{d} be distributed according to π^{d}, and Z^{d} be d-dimensional Gaussian random variable independent of X^{d}. Then, $\lim _{d \rightarrow+\infty} \mathrm{J}_{\mathcal{I}}^{d}=0$ where
$\mathrm{J}_{\mathcal{I}}^{d}=\left\|\mathbb{1}_{\mathcal{D}_{\widetilde{X}, 2: d}^{d}} \sum_{i=2}^{d}\left\{\left(\Delta V_{i}^{d}+\frac{\ell Z_{i}^{d}}{\sqrt{d}} \dot{V}\left(X_{i}^{d}\right)\right)-2 \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{I, i}^{d}} \zeta^{d}\left(X_{i}^{d}, Z_{i}^{d}\right)\right]+\frac{\ell^{2}}{4 d} \dot{V}^{2}\left(X_{i}^{d}\right)\right\}\right\|_{1}$.

Proof. The proof follows the same lines as the proof of Lemma 3 and is omitted.

Define for all $d \geq 1$,

$$
\left.\left.\left.\begin{array}{rl}
\mathrm{E}_{\mathcal{I}}^{d}=\mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mid \mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1: d}^{d}}\right. & 1
\end{array}\right) \exp \left\{\sum_{i=1}^{d} \Delta V_{i}^{d}\right\}, \sum_{i=2}^{d} b_{\mathcal{I}}^{d}\left(X_{i}^{d}, Z_{i}^{d}\right)\right\} \mid\right], ~ \$-\ell d^{-1 / 2} Z_{1}^{d} \dot{V}\left(X_{1}^{d}\right)+\exp ^{d}\left\{\begin{array}{l}
\\
-1
\end{array}\right.
$$

where ΔV_{i}^{d} is given by (5), for all $x \in \mathcal{I}, z \in \mathbb{R}$,

$$
\begin{equation*}
b_{\mathcal{I}}^{d}(x, z)=-\frac{\ell z}{\sqrt{d}} \dot{V}(x)+2 \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1}^{d}} \zeta^{d}\left(X_{1}^{d}, Z_{1}^{d}\right)\right]-\frac{\ell^{2}}{4 d} \dot{V}^{2}(x) \tag{S4}
\end{equation*}
$$

and ζ^{d} is given by 19 .
Proposition S1. Assume $G 1$ holds. Let X^{d} be a random variable distributed according to π^{d} and Z^{d} be a zero-mean standard Gaussian random variable, independent of X. Then $\lim _{d \rightarrow+\infty} \mathrm{E}_{\mathcal{I}}^{d}=0$.

Proof. Let $\Lambda^{d}=-\ell d^{-1 / 2} Z_{1}^{d} \dot{V}\left(X_{1}^{d}\right)+\sum_{i=2}^{d} \Delta V_{i}^{d}$. By the triangle inequality, $\mathrm{E}^{d} \leq \mathrm{E}_{1}^{d}+\mathrm{E}_{2}^{d}+\mathrm{E}_{3}^{d}$ where

$$
\begin{aligned}
& \mathrm{E}_{1, \mathcal{I}}^{d}=\mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1: d}^{d}}\left|1 \wedge \exp \left\{\sum_{i=1}^{d} \Delta V_{i}^{d}\right\}-1 \wedge \exp \left\{\Lambda^{d}\right\}\right|\right] \\
& \mathrm{E}_{2, \mathcal{I}}^{d}=\mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\mathcal{D}_{\mathcal{I}, 2: d}^{d}} \mid 1 \wedge \exp \left\{\Lambda^{d}\right\}\right. \\
& \left.\quad-1 \wedge \exp \left\{-\ell d^{-1 / 2} Z_{1}^{d} \dot{V}\left(X_{1}^{d}\right)+\sum_{i=2}^{d} b^{d}\left(X_{i}^{d}, Z_{i}^{d}\right)\right\} \mid\right] \\
& \mathrm{E}_{3, \mathcal{I}}^{d}=\mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\left(\mathcal{D}_{\mathcal{I}, 2: d}^{d}\right)}{ }^{c} 1 \wedge \exp \left\{-\ell d^{-1 / 2} Z_{1}^{d} \dot{V}\left(X_{1}^{d}\right)+\sum_{i=2}^{d} b^{d}\left(X_{i}^{d}, Z_{i}^{d}\right)\right\}\right]
\end{aligned}
$$

Since $t \mapsto 1 \wedge \mathrm{e}^{t}$ is 1 -Lipschitz, by the Cauchy-Schwarz inequality we get

$$
\begin{aligned}
\mathrm{E}_{1, \mathcal{I}}^{d} \leq \mathbb{E}\left[\left(Z_{1}^{d}\right)^{2} \mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1}^{d}}\left|\Delta V_{1}^{d}+\ell d^{-1 / 2} Z_{1}^{d} \dot{V}\left(X_{1}^{d}\right)\right|\right] \\
\leq\left\|Z_{1}^{d}\right\|_{4}^{2}\left\|\mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1}^{d}} \Delta V_{1}^{d}+\ell d^{-1 / 2} Z_{1}^{d} \dot{V}\left(X_{1}^{d}\right)\right\|_{2}
\end{aligned}
$$

By Lemma 2 (ii), $\mathrm{E}_{1, \mathcal{I}}^{d}$ goes to 0 as d goes to $+\infty$. Using again that $t \mapsto 1 \wedge \mathrm{e}^{t}$ is 1-Lipschitz and Lemma $\mathrm{S3}, \mathrm{E}_{2, \mathcal{I}}^{d}$ goes to 0 as well. Note that, as Z_{1}^{d} and $\mathbb{1}_{\left(\mathcal{D}_{\mathcal{T}, 2: d}^{d}\right)^{c}}$ are independent, by (15),

$$
\mathrm{E}_{3, \mathcal{I}}^{d} \leq d \mathbb{P}\left(\left\{\mathcal{D}_{\mathcal{I}, 1}^{d}\right\}^{c}\right) \leq C d^{1-\gamma / 2}
$$

Therefore, $\mathrm{E}_{3, \mathcal{I}}^{d}$ goes to 0 as d goes to $+\infty$ by $\mathbf{G} 1$ (iii).

Lemma S4. Assume $G 1$ holds. For all $d \in \mathbb{N}^{*}$, let X^{d} be a random variable distributed according to π^{d} and Z^{d} be a standard Gaussian random variable in \mathbb{R}^{d}, independent of X. Then,

$$
\lim _{d \rightarrow+\infty} 2 d \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathbb{X}, 1}^{d}} \zeta^{d}\left(X_{1}^{d}, Z_{1}^{d}\right)\right]=-\frac{\ell^{2}}{4} I,
$$

where I is defined in (6) and ζ^{d} in (19).
Proof. Noting that for all $\theta \in \mathbb{R}$,
$\int_{\mathcal{I}} \mathbb{1}_{\mathcal{I}}(x+\mathrm{r} \theta) \mathbb{1}_{\mathcal{I}}(x+(1-\mathrm{r}) \theta) \pi(x+\theta) \mathrm{d} x=\int_{\mathcal{I}} \mathbb{1}_{\mathcal{I}}(x+(\mathrm{r}-1) \theta) \mathbb{1}_{\mathcal{I}}(x-\mathrm{r} \theta) \pi(x) \mathrm{d} x$. the proof follows the same steps as the the proof of Lemma 4 and is omitted.

Proof of Theorem 4. The proof follows the same lines as the proof of Theorem 2 and is therefore omitted.

2. Proof of tightness

Lemma S5. Assume $G \upharpoonleft 1$ holds. Then, the sequence $\left(\mu_{d}\right)_{d \geq 1}$ is tight in \mathbf{W}.
As for the proof of Lemma 5, the proof follows from Lemma 56 .
Lemma S6. Assume G[1. Then, there exists $C>0$ such that, for all $0 \leq k_{1}<$ k_{2},

$$
\mathbb{E}\left[\left(X_{k_{2}, 1}^{d}-X_{k_{1}, 1}^{d}\right)^{4}\right] \leq C \sum_{p=2}^{4} \frac{\left(k_{2}-k_{1}\right)^{p}}{d^{p}}
$$

Proof. We use the same decomposition of $\mathbb{E}\left[\left(X_{k_{2}, 1}^{d}-X_{k_{1}, 1}^{d}\right)^{4}\right]$ as in the proof of Lemma 6 so that we only need to upper bound the following term:

$$
d^{-2} \mathbb{E}\left[\left(\sum_{k=k_{1}+1}^{k_{2}} Z_{k, 1}^{d} \mathbb{1}_{\left(\mathcal{A}_{k}^{d}\right)^{c}}\right)^{4}\right]=d^{-2} \sum \mathbb{E}\left[\prod_{i=1}^{4} Z_{m_{i}, 1}^{d} \mathbb{1}_{\left(\mathcal{A}_{m_{i}}^{d}\right)^{c}}\right]
$$

where the sum is over all the quadruplets $\left(m_{p}\right)_{p=1}^{4}$ satisfying $m_{p} \in\left\{k_{1}+\right.$ $\left.1, \ldots, k_{2}\right\}, p=1, \ldots, 4$. Let $\left(m_{1}, m_{2}, m_{3}, m_{4}\right) \in\left\{k_{1}+1, \ldots, k_{2}\right\}^{4}$ and $\left(\tilde{X}_{k}^{d}\right)_{k \geq 0}$ be defined as:

$$
\tilde{X}_{0}^{d}=X_{0}^{d} \quad \text { and } \quad \tilde{X}_{k+1}^{d}=\tilde{X}_{k}^{d}+\mathbb{1}_{k \notin\left\{m_{1}-1, m_{2}-1, m_{3}-1, m_{4}-1\right\}} \ell d^{-1 / 2} Z_{k+1}^{d} \mathbb{1}_{\tilde{\mathcal{A}}_{k+1}^{d}}
$$

where for all $k \geq 0$ and all $1 \leq i \leq d$,

$$
\begin{aligned}
\tilde{\mathcal{A}}_{k+1}^{d} & =\left\{U_{k+1} \leq \exp \left(\sum_{i=1}^{d} \Delta \tilde{V}_{k, i}^{d}\right)\right\} \\
\Delta \tilde{V}_{k, i}^{d} & =V\left(\tilde{X}_{k, i}^{d}\right)-V\left(\tilde{X}_{k, i}^{d}+\ell d^{-1 / 2} Z_{k+1, i}^{d}\right)
\end{aligned}
$$

Define, for all $k_{1}+1 \leq k \leq k_{2}, 1 \leq i, j \leq d$,

$$
\begin{aligned}
\tilde{\mathcal{D}}_{\mathcal{I}, j}^{d, k} & =\left\{\tilde{X}_{k, j}^{d}+\mathrm{r} \ell d^{-1 / 2} Z_{k+1, j}^{d} \in \mathcal{I}\right\} \cap\left\{\tilde{X}_{k, j}^{d}+(1-\mathrm{r}) \ell d^{-1 / 2} Z_{k+1, j}^{d} \in \mathcal{I}\right\} \\
\tilde{\mathcal{D}}_{\mathcal{I}, i: j}^{d, k} & =\bigcap_{\ell=i}^{j} \tilde{\mathcal{D}}_{\mathcal{I}, \ell}^{d, k}
\end{aligned}
$$

Note that by convention $V(x)=-\infty$ for all $x \notin \mathcal{I}, \tilde{\mathcal{A}}_{k+1}^{d} \subset \tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, k}$ so that $\left(\tilde{\mathcal{A}}_{k+1}^{d}\right)^{c}$ may be written $\left(\tilde{\mathcal{A}}_{k+1}^{d}\right)^{c}=\left(\tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, k}\right)^{c} \cup\left(\left(\tilde{\mathcal{A}}_{k+1}^{d}\right)^{c} \cap \tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, k}\right)$. Let \mathcal{F} be the σ-field generated by $\left(\tilde{X}_{k}^{d}\right)_{k \geq 0}$. Consider the case $\#\left\{m_{1}, \ldots, m_{4}\right\}=4$. The case $\#\left\{m_{1}, \ldots, m_{4}\right\}=3$ is dealt with similarly and the two other cases follow the same lines as the proof of Lemma S6. As $\left\{\left(U_{m_{j}}, Z_{m_{j}, 1}^{d}, \cdots, Z_{m_{j}, d}^{d}\right)\right\}_{1 \leq j \leq 4}$ are independent conditionally to \mathcal{F},

$$
\begin{aligned}
& \mathbb{E}\left[\prod_{j=1}^{4} Z_{m_{j}, 1}^{d} \mathbb{1}_{\left(\mathcal{A}_{m_{j}}^{d}\right)^{c}} \mid \mathcal{F}\right] \\
& \quad=\prod_{j=1}^{4}\left\{\mathbb{E}\left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, m_{j}-1}\right)^{c}} Z_{m_{j}, 1}^{d} \mid \mathcal{F}\right]+\mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, m_{j-1}}} \mathbb{1}_{\left(\tilde{\mathcal{A}}_{m_{j}}^{d}\right)^{c}} Z_{m_{j}, 1}^{d} \mid \mathcal{F}\right]\right\}
\end{aligned}
$$

As $U_{m_{j}}$ is independent of $\left(Z_{m_{j}, 1}^{d}, \cdots, Z_{m_{j}, d}^{d}\right)$ conditionally to \mathcal{F}, the second term may be written:

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, m_{j-1}}} \mathbb{1}_{\left(\tilde{\mathcal{A}}_{m_{j}}^{d}\right)}{ }^{c} Z_{m_{j}, 1}^{d} \mid \mathcal{F}\right] \\
&=\mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\tilde{\mathcal{I}, 1: d}}^{d, m_{j-1}}} Z_{m_{j}, 1}^{d}\left(1-\exp \left\{\sum_{i=1}^{d} \Delta \tilde{V}_{m_{j}-1, i}^{d}\right\}\right) \mid \mathcal{F}\right]
\end{aligned}
$$

Since the function $x \mapsto\left(1-\mathrm{e}^{x}\right)_{+}$is 1-Lipschitz, on $\tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, m_{j-1}}$

$$
\left|\left(1-\exp \left\{\sum_{i=1}^{d} \Delta \tilde{V}_{m_{j}-1, i}^{d}\right\}\right)_{+}-\Theta_{m_{j}}\right| \leq\left|\Delta \tilde{V}_{m_{j}-1,1}^{d}+\ell d^{-1 / 2} \dot{V}\left(\tilde{X}_{m_{j}-1,1}^{d}\right) Z_{m_{j}, 1}^{d}\right|
$$

where $\Theta_{m_{j}}=\left(1-\exp \left\{-\ell d^{-1 / 2} \dot{V}\left(\tilde{X}_{m_{j}-1,1}^{d}\right) Z_{m_{j}, 1}^{d}+\sum_{i=2}^{d} \Delta \tilde{V}_{m_{j}-1, i}^{d}\right\}\right)_{+}$. Then,

$$
\left|\mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, m_{j-1}}} Z_{m_{j}, 1}^{d}\left(1-\exp \left\{\sum_{i=1}^{d} \Delta \tilde{V}_{m_{j}-1, i}^{d}\right\}\right)_{+} \mid \mathcal{F}\right]\right| \leq A_{m_{j}}^{d}+B_{m_{j}}^{d}
$$

where

$$
\begin{aligned}
A_{m_{j}}^{d} & =\mathbb{E}\left[\left|Z_{m_{j}, 1}^{d}\right|\left|\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I}, 1}^{d, m_{j-1}}} \Delta \tilde{V}_{m_{j}-1,1}^{d}+\ell d^{-1 / 2} \dot{V}\left(\tilde{X}_{m_{j}-1,1}^{d}\right) Z_{m_{j}, 1}^{d}\right| \mid \mathcal{F}\right] \\
B_{m_{j}}^{d} & =\left|\mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\mathcal{I}, 2: d}^{d, m_{j-1}}} Z_{m_{j}, 1}^{d} \Theta_{m_{j}} \mid \mathcal{F}\right]\right|
\end{aligned}
$$

By Jensen inequality,

$$
\begin{gathered}
\left|\mathbb{E}\left[\prod_{j=1}^{4} Z_{m_{j}, 1}^{d} \mathbb{1}_{\left.\left(\mathcal{A}_{m_{j}}^{d}\right)^{c}\right]}\right]\right| \leq \mathbb{E}\left[\prod _ { j = 1 } ^ { 4 } \left\{\mathbb { E } \left[\mathbb{1}_{\left.\left.\left.\left(\tilde{\mathcal{D}}_{\tilde{I}, 1: d}^{d, m_{j-1}}\right)^{c}\left|Z_{m_{j}, 1}^{d}\right| \mid \mathcal{F}\right]+A_{m_{j}}^{d}+B_{m_{j}}^{d}\right\}\right]} \leq C \mathbb{E}\left[\sum _ { j = 1 } ^ { 4 } \mathbb { E } \left[\mathbb{1}_{\left.\left.\left(\tilde{\mathcal{D}}_{\mathcal{T , 1 : d}}^{d, m_{j-1}}\right)^{c}\left|Z_{m_{j}, 1}^{d}\right|^{4} \mid \mathcal{F}\right]+\left(A_{m_{j}}^{d}\right)^{4}+\left(B_{m_{j}}^{d}\right)^{4}\right]} .\right.\right.\right.\right.\right.
\end{gathered}
$$

By $\mathbf{G}[1$ (iii) and Holder's inequality applied with $\alpha=1 /(1-2 / \gamma)>1$, for all $1 \leq j \leq 4$,

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{1}_{\left.\left(\tilde{\mathcal{D}}_{\mathcal{I}, 1: d}^{d, m_{j-1}}\right)^{c}\left|Z_{m_{j}, 1}^{d}\right|^{4}\right]} \leq \mathbb{E}\left[\mathbb{1}_{\left.\left(\tilde{\mathcal{D}}_{\mathcal{I}, 1}^{d, m_{j-1}}\right)^{c}\left|Z_{m_{j}, 1}^{d}\right|^{4}\right]+\sum_{i=2}^{d} \mathbb{E}\left[\mathbb{1}_{\left(\tilde{\mathcal{D}}_{\mathcal{I}, i}^{d, m_{j-1}}\right)^{c}}\right]}\right.\right. & \leq \mathbb{E}\left[\left|Z_{m_{j}, 1}^{d}\right|^{4 \alpha /(\alpha-1)}\right]^{(\alpha-1) / \alpha} d^{-\gamma /(2 \alpha)}+d^{1-\gamma / 2} \\
& \leq C d^{1-\gamma / 2}
\end{aligned}
$$

By Lemma S2(ii) and the Holder's inequality, there exists $C>0$ such that $\mathbb{E}\left[\left(A_{m_{j}}^{d}\right)^{4}\right] \leq C d^{-2}$. On the other hand, by [1, Lemma 6] since $Z_{m_{j}, 1}^{d}$ is independent of \mathcal{F},

$$
\begin{aligned}
& B_{m_{j}}^{d}=\mid \mathbb{E}\left[\mathbb{1}_{\tilde{\mathcal{D}}_{\tilde{T, 2: d}}^{d, m_{j-1}}} \ell d^{-1 / 2} \dot{V}\left(\tilde{X}_{m_{j}-1,1}^{d}\right)\right. \\
&\left.\times \mathcal{G}\left(\ell^{2} d^{-1} \dot{V}\left(\tilde{X}_{m_{j}-1,1}^{d}\right)^{2},-2 \sum_{i=2}^{d} \Delta \tilde{V}_{m_{j}-1, i}^{d}\right) \mid \mathcal{F}\right] \mid
\end{aligned}
$$

where the function \mathcal{G} is defined in (24). By $G[1]$ (ii) and since \mathcal{G} is bounded, $\mathbb{E}\left[\left(B_{m_{j}}^{d}\right)^{4}\right] \leq C d^{-2}$. Since $\gamma \geq 6$ in $\left.\mathbf{G}\right]\left(\right.$ iii),$\left|\mathbb{E}\left[\prod_{j=1}^{4} Z_{m_{j}, 1}^{d} \mathbb{1}_{\left(\mathcal{A}_{m_{j}}^{d}\right)^{c}}\right]\right| \leq C d^{-2}$, showing that

$$
\begin{equation*}
\sum_{\left(m_{1}, m_{2}, m_{3}, m_{4}\right) \in \mathcal{I}_{4}}\left|\mathbb{E}\left[\prod_{i=1}^{4} Z_{m_{i}, 1}^{d} \mathbb{1}_{\left(\mathcal{A}_{m_{i}}^{d}\right)^{c}}\right]\right| \leq C d^{-2}\binom{k_{2}-k_{1}}{4} . \tag{S5}
\end{equation*}
$$

3. Proof of Theorem 5

Lemma S7. Assume $G 1$ holds. Let X^{d} be distributed according to π^{d} and Z^{d} be a d-dimensional standard Gaussian random variable, independent of X^{d}. Then, $\lim _{d \rightarrow+\infty} \mathrm{E}^{d}=0$, where

$$
\mathrm{E}^{d}=\mathbb{E}\left[\left|\dot{V}\left(X_{1}^{d}\right) \mathbb{1}_{\mathcal{D}_{t, 2: d}^{d}}\left\{\mathcal{G}\left(\ell^{2} \dot{V}\left(X_{1}^{d}\right)^{2} / d, 2 \bar{Y}_{d}\right)-\mathcal{G}\left(\ell^{2} \dot{V}\left(X_{1}^{d}\right)^{2} / d, 2 \bar{X}_{d}\right)\right\}\right|\right],
$$

where $\bar{Y}_{d}=\sum_{i=2}^{d} \Delta V_{i}^{d}, \Delta V_{i}^{d}$ and $\mathcal{D}_{\mathcal{T}, 2: d}^{d}$ are given by (5) and (S3) and $\bar{X}_{d}=$ $\sum_{i=2}^{d} b_{\mathcal{I}, i}^{d}, b_{\mathcal{I}, i}^{d}=b_{\mathcal{I}}^{d}\left(X_{i}^{d}, Z_{i}^{d}\right)$ with $b_{\mathcal{I}}^{d}$ given by (S4).

Proof. Set for all $d \geq 1, \bar{Y}_{d}=\sum_{i=2}^{d} \Delta V_{i}^{d}$ and $\bar{X}_{d}=\sum_{i=2}^{d} b_{\mathcal{I}, i}^{d}$. By definition of $b_{\mathcal{I}}^{d}$ (S4), \bar{X}_{d} may be expressed as $\bar{X}_{d}=\sigma_{d} \bar{S}_{d}+\mu_{d}$, where

$$
\begin{aligned}
& \mu_{d}=2(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{工, 1}^{d}} \zeta^{d}\left(X_{1}^{d}, Z_{1}^{d}\right)\right]-\frac{\ell^{2}(d-1)}{4 d} \mathbb{E}\left[\dot{V}\left(X_{1}^{d}\right)^{2}\right], \\
& \sigma_{d}^{2}=\ell^{2} \mathbb{E}\left[\dot{V}\left(X_{1}^{d}\right)^{2}\right]+\frac{\ell^{4}}{16 d} \mathbb{E}\left[\left(\dot{V}\left(X_{1}^{d}\right)^{2}-\mathbb{E}\left[\dot{V}\left(X_{1}^{d}\right)^{2}\right]\right)^{2}\right], \\
& \bar{S}_{d}=\left(\sqrt{d} \sigma_{d}\right)^{-1} \sum_{i=2}^{d} \beta_{i}^{d}, \\
& \beta_{i}^{d}=-\ell Z_{i}^{d} \dot{V}\left(X_{i}^{d}\right)-\frac{\ell^{2}}{4 \sqrt{d}}\left(\dot{V}\left(X_{i}^{d}\right)^{2}-\mathbb{E}\left[\dot{V}\left(X_{i}^{d}\right)^{2}\right]\right) .
\end{aligned}
$$

By G [1](ii) the Berry-Essen Theorem [2, Theorem 5.7] can be applied to \bar{S}_{d}. Then, there exists a universal constant C such that for all $d>0$,

$$
\sup _{x \in \mathbb{R}}\left|\mathbb{P}\left[\sqrt{\frac{d}{d-1}} \bar{S}_{d} \leq x\right]-\Phi(x)\right| \leq C / \sqrt{d}
$$

It follows, with $\tilde{\sigma}_{d}^{2}=(d-1) \sigma_{d}^{2} / d$, that

$$
\sup _{x \in \mathbb{R}}\left|\mathbb{P}\left[\bar{X}_{d} \leq x\right]-\Phi\left(\left(x-\mu_{d}\right) / \tilde{\sigma}_{d}\right)\right| \leq C / \sqrt{d}
$$

By this result and (35), Lemma 7 can be applied to obtain a constant $C \geq 0$, independent of d, such that:

$$
\begin{array}{r}
\mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{I, 2: d}^{d}}\left|\mathcal{G}\left(\ell^{2} \dot{V}\left(X_{1}^{d}\right)^{2} / d, 2 \bar{Y}_{d}\right)-\mathcal{G}\left(\ell^{2} \dot{V}\left(X_{1}^{d}\right)^{2} / d, 2 \bar{X}_{d}\right)\right| X_{1}^{d} \mid\right] \\
\leq C\left(\mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{T}, 2: d}^{d}}\left|\bar{X}_{d}-\bar{Y}_{d}\right|\right]+d^{-1 / 2}+\sqrt{2 \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{X, 2: d}^{d}}\left|\bar{X}_{d}-\bar{Y}_{d}\right|\right]\left(2 \pi \tilde{\sigma}_{d}^{2}\right)^{-1 / 2}}\right. \\
\left.+\sqrt{\ell\left|\dot{V}\left(X_{1}^{d}\right)\right| /\left(2 \pi d^{1 / 2} \tilde{\sigma}_{d}^{2}\right)}\right) .
\end{array}
$$

Using this result, we have

$$
\begin{align*}
& \mathrm{E}^{d} \leq C\left\{\ell^{1 / 2} \mathbb{E}\left[\left|\dot{V}\left(X_{1}^{d}\right)\right|^{3 / 2}\right]\left(2 \pi d^{1 / 2} \tilde{\sigma}_{d}^{2}\right)^{-1 / 2}+\mathbb{E}\left[\left|\dot{V}\left(X_{1}^{d}\right)\right|\right]\right. \tag{S6}\\
& \left.\times\left(\mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{I, 2: d}^{d}}\left|\bar{X}_{d}-\bar{Y}_{d}\right|\right]+d^{-1 / 2}+\sqrt{2 \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{I, 2: d}^{d}}\left|\bar{X}_{d}-\bar{Y}_{d}\right|\right]\left(2 \pi \tilde{\sigma}_{d}^{2}\right)^{-1 / 2}}\right)\right\} .
\end{align*}
$$

By Lemmas3, $\mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{T}, 2: d}^{d}}\left|\bar{X}_{d}-\bar{Y}_{d}\right|\right]$ goes to 0 as d goes to infinity, and by $\mathbf{G}[$ (ii) $\lim _{d \rightarrow+\infty} \tilde{\sigma}_{d}^{2}=\ell^{2} \mathbb{E}\left[\dot{V}(X)^{2}\right]$. Combining these results with (S6), it follows that E^{d} goes to 0 when d goes to infinity.

For all $n \geq 0$, define $\mathcal{F}_{n}^{d}=\sigma\left(\left\{X_{k}^{d}, k \leq n\right\}\right)$ and for all $\phi \in C_{c}^{\infty}(\mathbb{R}, \mathbb{R})$,

$$
\begin{align*}
M_{n}^{d}(\phi) & =\frac{\ell}{\sqrt{d}} \sum_{k=0}^{n-1} \phi^{\prime}\left(X_{k, 1}^{d}\right)\left\{Z_{k+1,1}^{d} \mathbb{1}_{\mathcal{A}_{k+1}^{d}}-\mathbb{E}\left[Z_{k+1,1}^{d} \mathbb{1}_{\mathcal{A}_{k+1}^{d}} \mid \mathcal{F}_{k}^{d}\right]\right\} \\
& +\frac{\ell^{2}}{2 d} \sum_{k=0}^{n-1} \phi^{\prime \prime}\left(X_{k, 1}^{d}\right)\left\{\left(Z_{k+1,1}^{d}\right)^{2} \mathbb{1}_{\mathcal{A}_{k+1}^{d}}-\mathbb{E}\left[\left(Z_{k+1,1}^{d}\right)^{2} \mathbb{1}_{\mathcal{A}_{k+1}^{d}} \mid \mathcal{F}_{k}^{d}\right]\right\} \tag{S7}
\end{align*}
$$

Proposition S2. Assume $G 1$ and G hold. Then, for all $s \leq t$ and all $\phi \in C_{c}^{\infty}(\mathbb{R}, \mathbb{R})$,

$$
\lim _{d \rightarrow+\infty} \mathbb{E}\left[\left|\phi\left(Y_{t, 1}^{d}\right)-\phi\left(Y_{s, 1}^{d}\right)-\int_{s}^{t} \mathrm{~L} \phi\left(Y_{r, 1}^{d}\right) \mathrm{d} r-\left(M_{\lceil d t\rceil}^{d}(\phi)-M_{\lceil d s\rceil}^{d}(\phi)\right)\right|\right]=0
$$

Proof. Using the same decomposition as in the proof of Proposition 4 we only need to prove that for all $1 \leq i \leq 5, \lim _{d \rightarrow+\infty} \mathbb{E}\left[\left|T_{i}^{d}\right|\right]=0$, where

$$
\begin{aligned}
T_{1}^{d} & =\int_{s}^{t} \phi^{\prime}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\left(\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil d r\rceil, 1}^{d} \mathbb{1}_{\mathcal{A}_{\lceil d r\rceil}^{d}} \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right]+\frac{h(\ell)}{2} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\right) \mathrm{d} r, \\
T_{2}^{d} & =\int_{s}^{t} \phi^{\prime \prime}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\left(\frac{\ell^{2}}{2} \mathbb{E}\left[\left(Z_{\lceil d r\rceil, 1}^{d}\right)^{2} \mathbb{1}_{\mathcal{A}_{\lceil d r\rceil}^{d}} \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right]-\frac{h(\ell)}{2}\right) \mathrm{d} r, \\
T_{3}^{d} & =\int_{s}^{t}\left(\mathrm{~L} \phi\left(Y_{\lfloor d r\rfloor / d, 1}^{d}\right)-\mathrm{L} \phi\left(Y_{r, 1}^{d}\right)\right) \mathrm{d} r, \\
T_{4}^{d} & =\frac{\ell(\lceil d t\rceil-d t)}{\sqrt{d}} \phi^{\prime}\left(X_{\lfloor d t\rfloor, 1}^{d}\right)\left(Z_{\lceil d t\rceil, 1}^{d} \mathbb{1}_{\mathcal{A}_{\lceil d t\rceil}^{d}}-\mathbb{E}\left[Z_{\lceil d t\rceil, 1}^{d} \mathbb{1}_{\mathcal{A}_{\lceil d t\rceil}^{d}}^{d} \mid \mathcal{F}_{\lfloor d t\rfloor}^{d}\right\rceil\right) \\
& +\frac{\ell^{2}(\lceil d t\rceil-d t)}{2 d} \phi^{\prime \prime}\left(X_{\lfloor d t\rfloor, 1}^{d}\right)\left(\left(Z_{\lceil d t\rceil, 1}^{d}\right)^{2} \mathbb{1}_{\mathcal{A}_{\lceil d t\rceil}^{d}}-\mathbb{E}\left[\left(Z_{\lceil d t\rceil, 1}^{d}\right)^{2} \mathbb{1}_{\mathcal{A}_{\lceil d t\rceil}^{d}} \mid \mathcal{F}_{\lfloor d t\rfloor]}^{d}\right]\right), \\
T_{5}^{d} & =\frac{\ell(\lceil d s\rceil-d s)}{\sqrt{d}} \phi^{\prime}\left(X_{\lfloor d s\rfloor, 1}^{d}\right)\left(Z_{\lceil d s\rceil, 1}^{d} \mathbb{1}_{\mathcal{A}_{\lceil d s\rceil}^{d}}-\mathbb{E}\left[Z_{\lceil d s\rceil, 1}^{d} \mathbb{1}_{\mathcal{A}_{\lceil d s\rceil}^{d} \mid} \mid \mathcal{F}_{\lfloor d s\rfloor]}^{d}\right\rceil\right) \\
& +\frac{\ell^{2}(\lceil d s\rceil-d s)}{2 d} \phi^{\prime \prime}\left(X_{\lfloor d s\rfloor, 1}^{d}\right)\left(\left(Z_{\lceil d s\rceil, 1}^{d}\right)^{2} \mathbb{1}_{\mathcal{A}_{\lceil d s\rceil}^{d}}-\mathbb{E}\left[\left(Z_{\lceil d s\rceil, 1}^{d}\right)^{2} \mathbb{1}_{\mathcal{A}_{\lceil d s\rceil}^{d}} \mid \mathcal{F}_{\lfloor d s\rfloor}^{d}\right]\right) .
\end{aligned}
$$

First, as ϕ^{\prime} and $\phi^{\prime \prime}$ are bounded, $\mathbb{E}\left[\left|T_{4}^{d}\right|+\left|T_{5}^{d}\right|\right] \leq C d^{-1 / 2}$. Denote for all $r \in[s, t]$ and $d \geq 1$,

$$
\begin{aligned}
\Delta V_{r, i}^{d} & =V\left(X_{\lfloor d r\rfloor, i}^{d}\right)-V\left(X_{\lfloor d r\rfloor, i}^{d}+\ell d^{-1 / 2} Z_{\lceil d r\rceil, i}^{d}\right) \\
\Xi_{r}^{d} & =1 \wedge \exp \left\{-\ell Z_{\lceil d r\rceil, 1}^{d} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right) / \sqrt{d}+\sum_{i=2}^{d} b_{\mathcal{I}, i}^{d,\lfloor d r\rfloor}\right\},
\end{aligned}
$$

where for all $k, i \geq 0, b_{\mathcal{I}, i}^{d, k}=b_{\mathcal{I}}^{d}\left(X_{k, i}^{d}, Z_{k+1, i}^{d}\right)$, and for all $x, z \in \mathbb{R}, b_{\mathcal{I}}^{d}(x, y)$ is given by (S4). For all $k \geq 0,1 \leq i, j \leq d$, define

$$
\begin{aligned}
\mathcal{D}_{\mathcal{I}, j}^{d, k} & =\left\{X_{k, j}^{d}+\mathrm{r} \ell d^{-1 / 2} Z_{k+1, j}^{d} \in \mathcal{I}\right\} \cap\left\{X_{k, j}^{d}+(1-\mathrm{r}) \ell d^{-1 / 2} Z_{k+1, j}^{d} \in \mathcal{I}\right\} \\
\mathcal{D}_{\mathcal{I}, i: j}^{d, k} & =\bigcap_{\ell=i}^{j} \mathcal{D}_{\mathcal{I}, \ell}^{d, k}
\end{aligned}
$$

By the triangle inequality,

$$
\begin{equation*}
\left|T_{1}\right| \leq \int_{s}^{t}\left|\phi^{\prime}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\right|\left(A_{1, r}+A_{2, r}+A_{3, r}+A_{4, r}\right) \mathrm{d} r \tag{S8}
\end{equation*}
$$

where

$$
\begin{aligned}
\Pi_{r}^{d} & =1 \wedge \exp \left\{-\ell d^{-1 / 2} Z_{\lceil d r\rceil, 1}^{d} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)+\sum_{i=2}^{d} \Delta V_{r, i}^{d}\right\}, \\
A_{1, r} & =\left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil d r\rceil, 1}^{d}\left(\mathbb{1}_{\mathcal{A}_{\lceil d r\rceil}^{d}}-\mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1: d}^{d,\lfloor d r\rfloor}} \Pi_{r}^{d}\right) \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right]\right| \\
A_{2, r} & =\left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil d r\rceil, 1}^{d} \mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1: d}^{d,\lfloor d r\rfloor}}\left(\Pi_{r}^{d}-\Xi_{r}^{d}\right) \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right]\right| \\
A_{3, r} & \left.=\left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil d r\rceil, 1}^{d} \mathbb{1}_{\left(\mathcal{D}_{\mathcal{I}, 1: d}^{d,\lfloor d r\rfloor}\right.}\right)^{c} \Xi_{r}^{d}\right| \mathcal{F}_{\lfloor d r\rfloor}^{d}\right] \mid \\
A_{4, r} & =\left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil d r\rceil, 1}^{d} \Xi_{r}^{d} \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right]+\dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right) h(\ell) / 2\right|
\end{aligned}
$$

Since $t \mapsto 1 \wedge \exp (t)$ is 1 -Lipschitz,

$$
\begin{aligned}
\mathbb{E}\left[\left|A_{1, r}^{d}\right|\right] & \leq \ell \sqrt{d} \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1: d}^{d,\lfloor d r\rfloor}}\left|Z_{\lceil d r\rceil, 1}^{d}\right|\left|\Delta V_{r, 1}^{d}-\ell d^{-1 / 2} Z_{\lceil d r\rceil, 1}^{d} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\right|\right] \\
& \leq \ell \sqrt{d} \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1}^{d,\lfloor d r\rfloor}}\left|Z_{\lceil d r\rceil, 1}^{d}\right|\left|\Delta V_{r, 1}^{d}-\ell d^{-1 / 2} Z_{\lceil d r\rceil, 1}^{d} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\right|\right] \\
& \leq \ell \sqrt{d} \mathbb{E}\left[\left|Z_{\lceil d r\rceil, 1}^{d}\right|\left|\mathbb{1}_{\mathcal{D}_{\mathcal{I}, 1}^{d,\lfloor d r\rfloor}} \Delta V_{r, 1}^{d}-\ell d^{-1 / 2} Z_{\lceil d r\rceil, 1}^{d} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\right|\right]
\end{aligned}
$$

and $\mathbb{E}\left[\left|A_{1, r}^{d}\right|\right]$ goes to 0 as $d \rightarrow+\infty$ for almost all r by Lemma $\operatorname{S2}$ (ii). So by the Fubini theorem, the first term in $(\mathrm{S} 8)$ goes to 0 as $d \rightarrow+\infty$. For $A_{2, r}^{d}$, note that

$$
A_{2, r} \leq\left|\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil d r\rceil, 1}^{d} \mathbb{1}_{\mathcal{D}_{\mathcal{I}, 2: d}^{d,\lfloor d r\rfloor}}\left(\Pi_{r}^{d}-\Xi_{r}^{d}\right) \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right]\right|
$$

Then, by [1, Lemma 6],

$$
\begin{aligned}
\mathbb{E}\left[\left|A_{2, r}^{d}\right|\right] \leq \mathbb{E}\left[\mid \ell^{2} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right) \mathbb{1}_{\mathcal{D}_{\mathcal{I}, 2: d}^{d,\lfloor d r\rfloor}}\right. & \left\{\mathcal{G}\left(\frac{\ell^{2} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)^{2}}{d}, 2 \sum_{i=2}^{d} \Delta V_{r, i}^{d}\right)\right. \\
& \left.\left.-\mathcal{G}\left(\frac{\ell^{2} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)^{2}}{d}, 2 \sum_{i=2}^{d} b_{\mathcal{I}, i}^{d,\lfloor d r\rfloor}\right)\right\} \mid\right]
\end{aligned}
$$

where \mathcal{G} is defined in (24). By Lemma S7, this expectation goes to zero when d goes to infinity. Then by the Fubini theorem and the Lebesgue dominated convergence theorem, the second term of $(\mathrm{S} 8)$ goes 0 as $d \rightarrow+\infty$. On the other
hand, by $\mathbf{G}[1](\mathrm{iii})$ and Holder's inequality applied with $\alpha=1 /(1-2 / \gamma)>1$, for all $1 \leq j \leq 4$,

$$
\begin{aligned}
\mathbb{E}\left[\left|A_{3, r}^{d}\right|\right] & \leq \ell \sqrt{d}\left(\mathbb{E}\left[\left|Z_{\lceil d r\rceil, 1}^{d}\right|_{\left.\left.\mathbb{D}_{\left(\mathcal{D}_{X, 1}^{d,\lfloor d r\rfloor}\right.}\right)^{c}\right]}+\sum_{i=2}^{d} \mathbb{E}\left[\mathbb{1}_{\left(\mathcal{D}_{\Psi, i}^{d,\lfloor d r\rfloor}\right)^{c}}\right]\right)\right. \\
& \leq \ell \sqrt{d}\left(\mathbb{E}\left[\left|Z_{m_{j}, 1}^{d}\right|^{\alpha /(\alpha-1)}\right]^{(\alpha-1) / \alpha} d^{-\gamma /(2 \alpha)}+d^{1-\gamma / 2}\right) \leq C d^{3 / 2-\gamma / 2}
\end{aligned}
$$

and $\mathbb{E}\left[\left|A_{3, r}^{d}\right|\right]$ goes to 0 as $d \rightarrow+\infty$ for almost all r. Define

$$
\bar{V}_{d, 1}=\sum_{i=1}^{d} \dot{V}\left(X_{\lfloor d r\rfloor, i}^{d}\right)^{2} \quad \text { and } \quad \bar{V}_{d, 2}=\bar{V}_{d, 1}-\dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)^{2} .
$$

For the last term, by [1, Lemma 6]:

$$
\begin{align*}
\ell \sqrt{d} \mathbb{E}\left[Z_{\lceil d r\rceil, 1}^{d} \Xi_{r}^{d} \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right] & =-\ell^{2} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right) \\
& \times \mathcal{G}\left(\frac{\ell^{2}}{d} \bar{V}_{d, 1},\left\{\frac{\ell^{2}}{2 d} \bar{V}_{d, 2}-4(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X, Z)\right]\right\}\right) \tag{S9}
\end{align*}
$$

where $\mathcal{D}_{\mathcal{I}}=\left\{X+\ell d^{-1 / 2} Z \in \mathcal{I}\right\}, X$ is distributed according to π and Z is a standard Gaussian random variable independent of X. As \mathcal{G} is continuous on $\mathbb{R}_{+} \times \mathbb{R} \backslash\{0,0\}$ (see [1, Lemma 2]), by $\mathbf{G}[1](\mathrm{ii)}$, Lemma $S 4$ and the law of large numbers, almost surely,

$$
\begin{align*}
& \lim _{d \rightarrow+\infty} \ell^{2} \mathcal{G}\left(\ell^{2} \bar{V}_{d, 1} / d, \ell^{2} \bar{V}_{d, 2} /(2 d)-4(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X, Z)\right]\right) \\
&= \ell^{2} \mathcal{G}\left(\ell^{2} \mathbb{E}\left[\dot{V}(X)^{2}\right], \ell^{2} \mathbb{E}\left[\dot{V}(X)^{2}\right]\right)=h(\ell) / 2 \tag{S10}
\end{align*}
$$

where $h(\ell)$ is defined in (11). Therefore by Fubini's Theorem, (S9) and Lebesgue's dominated convergence theorem, the last term of (S8) goes to 0 as d goes to infinity. The proof for T_{2}^{d} follows the same lines. By the triangle inequality,

$$
\begin{align*}
\left|T_{2}^{d}\right| & \leq\left|\int_{s}^{t} \phi^{\prime \prime}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\left(\ell^{2} / 2\right) \mathbb{E}\left[\left(Z_{\lceil d r\rceil, 1}^{d}\right)^{2}\left(\mathbb{1}_{\mathcal{A}_{\lceil d r\rceil}^{d}}-\Xi_{r}^{d}\right) \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right] \mathrm{d} r\right| \\
& +\left|\int_{s}^{t} \phi^{\prime \prime}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\left(\left(\ell^{2} / 2\right) \mathbb{E}\left[\left(Z_{\lceil d r\rceil, 1}^{d}\right)^{2} \Xi_{r}^{d} \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right]-h(\ell) / 2\right) \mathrm{d} r\right| . \tag{S11}
\end{align*}
$$

By Fubini's Theorem, Lebesgue's dominated convergence theorem and Proposition S1, the expectation of the first term goes to zero when d goes to infinity.

For the second term, by [1, Lemma 6 (A.5)],

$$
\begin{align*}
\left(\ell^{2} / 2\right) \mathbb{E}\left[(Z _ { \lceil d r \rceil , 1 } ^ { d }) ^ { 2 } 1 \wedge \operatorname { e x p } \left\{-\frac{\ell Z_{\lceil d r\rceil, 1}^{d}}{\sqrt{d}} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\right.\right. & \left.\left.+\sum_{i=2}^{d} b_{\mathcal{\mathcal { I }}, i}^{d, \mid d r\rfloor}\right\} \mid \mathcal{F}_{\lfloor d r\rfloor}^{d}\right] \\
& =\left(B_{1}+B_{2}-B_{3}\right) / 2 \tag{S12}
\end{align*}
$$

where

$$
\begin{aligned}
B_{1}= & \ell^{2} \Gamma\left(\ell^{2} \bar{V}_{d, 1} / d, \ell^{2} \bar{V}_{d, 2} /(2 d)-4(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{I}} \zeta^{d}(X, Z)\right]\right) \\
B_{2}= & \frac{\ell^{4} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)^{2}}{d} \mathcal{G}\left(\ell^{2} \bar{V}_{d, 1} / d, \ell^{2} \bar{V}_{d, 2} /(2 d)-4(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X, Z)\right]\right) \\
B_{3}= & \frac{\ell^{4} \dot{V}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)^{2}}{d}\left(2 \pi \ell^{2} \bar{V}_{d, 1} / d\right)^{-1 / 2} \\
& \quad \times \exp \left\{-\frac{\left[-2(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{I}} \zeta^{d}(X, Z)\right]+\left(\ell^{2} /(4 d)\right) \bar{V}_{d, 2}\right]^{2}}{2 \ell^{2} \bar{V}_{d, 1} / d}\right\},
\end{aligned}
$$

where Γ is defined in (25). As Γ is continuous on $\mathbb{R}_{+} \times \mathbb{R} \backslash\{0,0\}$ (see [1, Lemma 2]), by G[1](ii), Lemma 54 and the law of large numbers, almost surely,

$$
\begin{align*}
& \lim _{d \rightarrow+\infty} \ell^{2} \Gamma\left(\ell^{2} \bar{V}_{d, 1} / d,\left\{\ell^{2} \bar{V}_{d, 2} /(2 d)-4(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{\mathcal{I}}} \zeta^{d}(X, Z)\right]\right\}\right) \\
&=\ell^{2} \Gamma\left(\ell^{2} \mathbb{E}\left[\dot{V}(X)^{2}\right], \ell^{2} \mathbb{E}\left[\dot{V}(X)^{2}\right]\right)=h(\ell) . \tag{S13}
\end{align*}
$$

By Lemma S4, by G[1](ii) and the law of large numbers, almost surely,

$$
\begin{aligned}
& \lim _{d \rightarrow+\infty} \exp \left\{-\frac{\left[-2(d-1) \mathbb{E}\left[\mathbb{1}_{\mathcal{D}_{I}} \zeta^{d}(X, Z)\right]+\left(\ell^{2} /(4 d)\right) \bar{V}_{d, 2}\right]^{2}}{2 \ell^{2} \bar{V}_{d, 1} / d}\right\} \\
&=\exp \left\{-\frac{\ell^{2}}{8} \mathbb{E}\left[\dot{V}(X)^{2}\right]\right\}
\end{aligned}
$$

Then, as \mathcal{G} is bounded on $\mathbb{R}_{+} \times \mathbb{R}$,

$$
\begin{equation*}
\lim _{d \rightarrow+\infty} \mathbb{E}\left[\left|\int_{s}^{t} \phi^{\prime \prime}\left(X_{\lfloor d r\rfloor, 1}^{d}\right)\left(B_{2}-B_{3}\right) \mathrm{d} r\right|\right]=0 . \tag{S14}
\end{equation*}
$$

Therefore, by Fubini's Theorem, (S12), (S13), (S14) and Lebesgue's dominated convergence theorem, the second term of (S11) goes to 0 as d goes to infinity. The proof for T_{3}^{d} follows exactly the same lines as the proof of Proposition 4 .

Proof of Theorem 5. Using Lemma S5, Proposition 1 and Proposition S2, the proof follows the same lines as the proof of Theorem 3 .

4. Detailed computations for the Gamma distribution

This section provides the explicit computations to check $\mathbf{G}[$ (i) in Example 2 , The result is proved for $\theta<0$ (the proof for $\theta>0$ follows the same lines). For all $\theta \in \mathbb{R}$ using $\mathrm{a}_{1}>6$,

$$
\begin{align*}
\int_{\mathbb{R}_{+}^{*}}\left|\mathcal{E}_{1}\right|^{5} \pi_{\gamma}(x) \mathrm{d} x & \leq C|\theta|^{5} \int_{0}^{3|\theta| / 2}\left\{1 / x^{5}+x^{5\left(\mathrm{a}_{2}-1\right)}\right\} x^{\mathrm{a}_{1}-1} \mathrm{e}^{-x^{\mathrm{a}_{2}}} \mathrm{~d} x \\
& \leq C\left(|\theta|^{\mathrm{a}_{1}} \int_{0}^{3 / 2} x^{\mathrm{a}_{1}-6} \mathrm{e}^{-(|\theta| x)^{\mathrm{a}_{2}}} \mathrm{~d} x\right. \\
& \left.+|\theta|^{5 \mathrm{a}_{2}+\mathrm{a}_{1}} \int_{0}^{3 / 2} x^{5\left(\mathrm{a}_{2}-1\right)+\mathrm{a}_{1}-1} \mathrm{e}^{-(|\theta| x)^{\mathrm{a}_{2}}} \mathrm{~d} x\right) \\
& \leq C\left(|\theta|^{\mathrm{a}_{1}}+|\theta|^{5 \mathrm{a}_{2}+\mathrm{a}_{1}}\right) \tag{S15}
\end{align*}
$$

On the other hand, as for all $x>-1, x /(x+1) \leq \log (1+x) \leq x$, for all $\theta<0$, and $x \geq 3|\theta| / 2$,

$$
|\log (1+\theta / x)-\theta / x| \leq \frac{|\theta|^{2}}{x^{2}(1+\theta / x)} \leq 3|\theta|^{2} / x^{2}
$$

where the last inequality come from $|\theta| / x \leq 2 / 3$. Then, it yields

$$
\begin{align*}
\int_{\mathbb{R}_{+}^{*}}\left|\mathcal{E}_{2}(x)\right|^{5} \pi_{\gamma}(x) \mathrm{d} x & \leq C|\theta|^{10}\left(\int_{3|\theta| / 2}^{1} x^{\mathrm{a}_{1}-11} \mathrm{e}^{-x^{a_{2}}} \mathrm{~d} x+\int_{1}^{+\infty} x^{\mathrm{a}_{1}-11} \mathrm{e}^{-x^{a_{2}}} \mathrm{~d} x\right), \\
& \leq C\left(|\theta|^{\mathrm{a}_{1}}+|\theta|^{10}\right) . \tag{S16}
\end{align*}
$$

For the last term, for all $\theta<0$ and all $x \geq 3|\theta| / 2$, using a Taylor expansion of $x \mapsto x^{\mathrm{a}_{2}}$, there exists $\zeta \in[x+\theta, x]$ such that

$$
\left|(x+\theta)^{\mathrm{a}_{2}}-x^{\mathrm{a}_{2}}-\mathrm{a}_{2} \theta x^{\mathrm{a}_{2}-1}\right| \leq C|\theta|^{2}|\zeta|^{\mathrm{a}_{2}-2} \leq C|\theta|^{2}|x|^{\mathrm{a}_{2}-2}
$$

Then,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{*}}\left|\mathcal{E}_{3}(x)\right|^{5} \pi_{\gamma}(x) \mathrm{d} x \leq C|\theta|^{10} \int_{3|\theta| / 2}^{+\infty} x^{5\left(\mathrm{a}_{2}-2\right)+\mathrm{a}_{1}-1} \mathrm{e}^{-x^{\mathrm{a}_{2}}} \mathrm{~d} x \leq C\left(|\theta|^{5 \mathrm{a}_{2}+\mathrm{a}_{1}}+|\theta|^{10}\right) \tag{S17}
\end{equation*}
$$

Combining (S15), (S16), (S17) and using that $\mathrm{a}_{1}>6$ concludes the proof of G 11(i) for $p=5$.

References

[1] B. Jourdain, T. Lelievre, and B. Miasojedow. Optimal scaling for the transient phase of the random walk Metropolis algorithm: the mean-field limit. The annals of Applied Probability, 2015.
[2] Valentin V. Petrov. Limit theorems of probability theory, volume 4 of Oxford Studies in Probability. The Clarendon Press, Oxford University Press, New York, 1995. Sequences of independent random variables, Oxford Science Publications.

