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We divide the appendix in two, beginning with a mapping of equilibrium strategies and

then proving the remarks.

1 Equilibrium

Proposition 1. Suppose cR > 1. Then types cS < q + 1 defect and set s = 0, while types

cS > q + 1 do not defect. R accommodates regardless of the signal.

When cR > 1, accommodating strictly dominates containing for R. That is because the

worst payoff R can receive by accommodating is −1, which is still better than guaranteeing

−cR through containment when the condition holds.

Given that R accommodates at both of its information sets, a generic type of S’s payoff

for defection is 1 − αs − cS. This strictly decreases in s, and so the optimal s is 0. In

turn, a type prefers to openly defect rather than maintain the status quo if 1− cS > −q, or

cS < q + 1.

Proposition 2. Suppose cR ∈
(
1
2
, 1
)
. Then types cS < q +

c2R(1−t)

(2cR−1)(1−t)+a
defect and set

s = 1−cR
α

, while types cS > q +
c2R(1−t)

(2cR−1)(1−t)+a
do not defect. R accommodates following

the cooperative signal and accommodates after observing defection with probability σD =

(2cR−1)(1−t)
(2cR−1)(1−t)+α

.
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We begin with R’s indifference condition upon observing a defection. Suppose all types

of S choose the same s. Then, conditional on being at that information set, R earns 0− cR

for containing and 1− αs for accommodating. Thus, it is indifferent if 0− cR = −(1− αs),

or s = 1−cR
α

. All types that defect here choose that level, and thus R’s indifference condition

holds. Mixing between containing and accommodating is optimal.

Now consider R’s decision to contain following the cooperative signal. Its posterior belief

that S has defected under this circumstance is:

F
(
q +

c2R(1−t)

(2cR−1)(1−t)+a

)
(1−cR)(1−t)

α

F
(
q +

c2R(1−t)

(2cR−1)(1−t)+a

)
(1−cR)(1−t)

α
+ 1− F

(
q +

c2R(1−t)

(2cR−1)(1−t)+a

)
This is strictly less than 1. But note that R’s payoff for accommodating strictly decreases

in its belief that S has defected, and R was indifferent when it knew with certainty S had

defected. Thus, it has a strict preference to accommodate, as the equilibrium strategy

dictates.

Meanwhile, consider S’s decision to defect. Suppose that R accommodates with probabil-

ity σD upon observing defection and never contains following the cooperative signal. Then

S’s objective function for defecting is:

(1− αs)(s(1− t)) + (1− s(1− t))(σD(1− αs) + (1− σD)(0))− cS

Taking the first order condition yields:

s =
(1− t)(1− σD)− ασD

2α(1− t)(1− σD)
(1)

Substituting σD = (2cR−1)(1−t)
(2cR−1)(1−t)+α

yields s = 1−cR
α

. This is a maximizer because the second

derivative is −2α(1− t)(1− σD). Thus, it is optimal for all types who defect to choose that

quantity, as the proposition indicates.

The final thing to verify is which types wish to defect at s = 1−cR
α

. Substituting that

2



value and the equilibrium σD into S’s objective function yields
c2R(1−t)

(2cR−1)(1−t)+α
− cS. S earns

−q for not defecting. Therefore, types with cS < q +
c2R(1−t)

(2cR−1)(1−t)+α
have a strict preference

to defect, and types with cS > q +
c2R(1−t)

(2cR−1)(1−t)+α
have a strict preference not to.1

Proposition 3. Suppose cR ∈
(

F(q+ 1−t
4α )(1−t)

2F(q+ 1−t
4α )(1−t)+4α(1−F (q+ 1−t

4α
))
, 1
2

)
. Then types cS < q + 1−t

4α

defect and set s = 1
2α
, while types cS > q + 1−t

4α
do not defect. R contains if it observes

defection and accommodates following a cooperative signal.

We begin by proving that S’s strategies within the proposition are its best response. For

any type choosing to defect, its objective function is:

(1− αs)(s(1− t)) + 0(1− s(1− t))− cS

Thus, its first order condition is:

∂

∂s
(1− αs)(s(1− τ)) + 0(1− s(1− t))− cS = 0

s =
1

2α

This is a maximum because the second partial derivative of its objective function with

respect to s is −2α(1− t).

Substituting s = 1
2α

into S’s objective function generates:

(
1− α

(
1

2α

))(
1

2α
(1− t)

)
+ 0(1− s(1− t))− cS

1− t

4α
− cS (2)

1Note that
c2R(1−t)

(2cR−1)(1−t)+α is constrained between 0 and 1. It is trivially greater than 0 because cR > 1
2

for this parameter space. It is less than 1 because
c2R(1−t)

(2cR−1)(1−t)+α < 1 reduces to (1 − cR)
2 < α

1−t . The left

hand side maximizes in this region at cR = 1
2 , and the left hand side minimizes at α = 1

2 (the assumption

for the interior solution) and t = 0. Using those as the toughest case, the inequality reduces to 1
4 < 1

2 , which

is true.
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In turn, a given type prefers defecting under this optimal level of secrecy to not defecting

if 1−t
4α

− cS > −q, or cS < q + 1−t
4α

. Analogously, all types with cS > q + 1−t
4α

cooperate. This

is the decision rule given in the proposition.

What remains is to show that R’s prescribed action forms the mutual best response. The

case where R observes defection is straightforward. Because each type that has defected has

chosen s = 1
2α
, R’s payoff for accommodating is −

(
1− α

(
1
2α

))
. Meanwhile, it earns 0− cR

by containing. Thus, it prefers to contain if cR < 1
2
, which is given by the proposition’s

parameter space.

The case where R does not observe defection is more complicated. Let p represent R’s

posterior belief that S has defected. Given that each defecting type chose s = 1
2α
, R prefers

to accommodate if:

−p

(
1− α

(
1

2α

))
+ (1− p)q > p(0) + (1− p)q − cR

p < 2cR

We can derive the equilibrium posterior belief through Bayes’ rule. Recall that all types

cS < q+ 1−t
4α

defect with 1
2α

secrecy. The probability Nature does not reveal them is therefore

1−t
2α

. Meanwhile, all types cS > q + 1−t
4α

do not defect. Therefore, the probability that S has

defected conditional on not observing it is:

F
(
q + 1−t

4α

) (
1−t
2α

)
F
(
q + 1−t

4α

) (
1−t
2α

)
+ 1− F

(
q + 1−t

4α

) =
F
(
q + 1−t

4α

)
(1− t)

F
(
q + 1−t

4α

)
(1− t) + 2α

(
1− F (q + 1−t

4α
)
)

Thus, R has a strict preference to accommodate if:

2cR >
F
(
q + 1−t

4α

)
(1− t)

F
(
q + 1−t

4α

)
(1− t) + 2α

(
1− F (q + 1−t

4α
)
)
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cR >
F
(
q + 1−t

4α

)
(1− t)

2F
(
q + 1−t

4α

)
(1− t) + 4α

(
1− F (q + 1−t

4α
)
)

This is given by the proposition’s parameter space. Moreover, note that because 4α
(
1− F (q + 1−t

4α
)
)
>

0, the right hand side is strictly less than 1
2
and thus the parameter space is guaranteed to

exist.

Proposition 4. Suppose cR ∈
(

F (q)(1−t)
2F (q)(1−t)+4α(1−F (q))

,
F(q+ 1−t

4α )(1−t)

2F(q+ 1−t
4α )(1−t)+4α(1−F (q+ 1−t

4α
))

)
. Then

types cS < c∗S (as defined below) defect and set s = 1
2α
. R contains if it observes defection

and accommodates with probability σC =
4α(c∗S−q)

1−t
following a cooperative signal.

The simplest part of this is to verify that R wishes to contain observed defection, so

we begin there. The proof of Proposition 3 showed that R prefers to contain there under

s = 1
2α

given that cR < 1
2
. Because

F(q+ 1−t
4α )(1−t)

2F(q+ 1−t
4α )(1−t)+4α(1−F (q+ 1−t

4α
))

< 1
2
, R has an even stronger

preference to contain in this parameter space.

Now consider R’s indifference condition. Suppose all types below some c∗S defect with

secrecy s = 1
2α
. Let p represent R’s posterior belief that S has defected. Given s = 1

2α
, R is

indifferent between containing and not if:

−p

(
1− α

(
1

2α

))
+ (1− p)q = p(0) + (1− p)q − cR

p = 2cR (3)

R can calculate its posterior belief through Bayes’ rule. Recall that all types cS less

than some c∗S defect with secrecy 1
2α
. The probability that Nature does not reveal them is

therefore 1−t
2α

. Meanwhile, all types cS > c∗S do not defect. Therefore, the probability that S

has defected conditional on not observing it is:

F (c∗S)
(
1−t
2α

)
F (c∗S)

(
1−t
2α

)
+ 1− F (c∗S)

=
F (c∗S) (1− t)

F (c∗S) (1− t) + 2α (1− F (c∗S))

Indifference therefore requires:
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2cR =
F (c∗S) (1− t)

F (c∗S) (1− t) + 2α (1− F (c∗S))

cR =
F (c∗S) (1− t)

2F (c∗S) (1− t) + 4α (1− F (c∗S))

We therefore define c∗S as the solution to cR = F (cS)(1−t)
2F (cS)(1−t)+4α(1−F (cS))

. Such a solution

exists and is strictly between q and q + 1−t
4α

due to a few points. First, the right hand side

is continuous in cS. Second, cR <
F(q+ 1−t

4α )(1−t)

2F(q+ 1−t
4α )(1−t)+4α(1−F (q+ 1−t

4α
))

for this parameter space.

Finally, cR > F (q)(1−t)
2F (q)(1−t)+4α(1−F (q))

for this parameter space. Moreover, the solution is unique

because the right hand side strictly increases in cS.

Thus, we have shown that R must contain when it observes defection and that it is optimal

for R to mix when it observes the cooperative signal given S’s strategy. Now consider S’s

strategy. Let σC be the probability that R accommodates following the cooperative signal.

Then any type that defects has an objective function of:

(s(1− t))(σC(1− αs) + (1− σC)0) + (1− s(1− t))(0)− cS

Thus, its first order condition is:

∂

∂s
((s(1− t))(σC(1− αs) + (1− σC)0) + (1− s(1− t))(0)− cS) = 0 (4)

s =
1

2α

This is a maximum because the second partial derivative of its objective function with

respect to s is −2ασC(1− t). For Proposition 4’s strategies to be optimal, the c∗S type must

be indifferent between defecting at s = 1
2α

and not. All types with cS < c∗S would therefore

have a strict preference to defect, and all types with cS > c∗S would have a strict preference to

cooperate. Drawing from the above objective function and substituting the optimal secrecy,

that the c∗S type is indifferent if:
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σC

(
1− α

(
1

2α

))(
1

2α
(1− t)

)
− c∗S = −q

σC =
4α(c∗S − q)

1− t

Note that this is a valid mixed strategy so long as c∗S ∈
(
q, q + 1−t

4α

)
, which the derivation

of c∗S already guaranteed to be true.

Proposition 5. Suppose cR < F (q)(1−t)
2F (q)(1−t)+4α(1−F (q))

. Then all types cS < q defect with secrecy

s = 1
2α
. R contains regardless of the signal.

We begin with S’s defection strategy. Any type that defects earns 0− cS regardless of s

because R contains at both its information sets. Thus, types with 0 − cS < −q, or cS > q,

must cooperate. Likewise, types with cS < q must defect. Moreover, all types that defect

are indifferent among their s choices, so choosing s = 1
2α

is optimal. Note further that this is

the unique maximizer if S anticipates any trembles in R’s response to a cooperative signal,

as Line 4 showed that s = 1
2α

is the solution to the first order condition for any σC .

Now consider R’s decision to contain following observed defection. It earns−
(
1− α

(
1
2α

))
for accommodating and 0− cR for containing. Therefore, it contains if cR < 1

2
, which is true

because F (q)(1−t)
2F (q)(1−t)+4α(1−F (q))

< 1
2
.

R’s decision to contain following the cooperative signal is more complicated. Let p be

its posterior belief that S has defected, all at s = 1
2α
. Then its payoff for containment is

p(0) + (1− p)q − cR and its payoff for accommodating is −p
(
1− α

(
1
2α

))
+ (1− p)q. Thus,

it contains if 2cR < p.

Note from before that F (q)(1−t)
F (q)(1−t)+2α(1−F (q))

is R’s posterior given that all types cS < q defect

with secrecy 1
2α
. Substituting that value for p yields cR < F (q)(1−t)

2F (q)(1−t)+4α(1−F (q))
, which is the

bound for this parameter space.2

2Because the types are indifferent among every s, multiple equilibria exist. Indeed, any strategy mapping

from cS to s sustains the equilibrium as long as R’s posterior belief p is greater than cR
1−s . In fact, the

strategies can be more complex, with each type choosing a different s value. If the strategy mapping s(cS)
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2 Uniqueness Proof

We now show that the equilibrium is unique given the refinement on trembles. This is a two-

step process. First, we show that the five types of strategies R can undertake in equilibrium

are the five types of strategies covered in Propositions 1–5. These are (1) accommodate at

both information sets, (2) accommodate following the cooperative signal and mix following

observed defection, (3) accommodate following the cooperative signal and contain following

observed defection, (4) mix following the cooperative signal and contain following observed

defection, and (5) contain at both information sets. Second, we show that the equilibrium

conditions described in those propositions are necessary as well as sufficient.

2.1 Restrictions on R’s Equilibrium Strategies

Broadly, the equilibria we have seen so far all feature R accommodating with weakly greater

probability following a cooperative signal than after observing defection. That is, σC ≥ σD.

We now show that this is true for any equilibrium.

Suppose in an equilibrium, R was weakly more likely to accommodate an observed defec-

tion than a cooperative signal. That is, σD ≥ σC . In this case, S’s optimal secrecy is s = 0;

any secrecy made results in a weakly higher probability that R contains it, and S’s defection

is weaker whenever R accommodates instead. In turn, R must contain the observed defection

as a pure strategy if cR < 1. This exhausts one case where σD = σC . The other pure strategy

way for σD = σC is if the receiver contains as a pure strategy at both information sets, so

any s value is optimal.

The last possibility is that R mixes at both information sets. However, this is not possible.

Line 4 showed that, given that R will accommodate with positive probability following a

cooperative signal, any type that defects has a unique optimal secrecy level s = 1
2α
. Note

is differentiable, the condition for this is
∫ q
0
s(cS)(1−t)f(s)ds∫ q

0
s(cS)(1−t)f(s)ds+1−F (q)

. Going further, it can grow even more

complex and involve non-differentiable mappings. The key is that R’s expected benefit for containing is

greater than its cost to do so.
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that this is independent of type and strictly less than 1. Note further that indifference after

observed defection requires that cR = 1 − αs. Meanwhile, let p be R’s posterior belief that

R has defected following a cooperative signal. Then R is indifferent between containing and

accommodating if if p(−cR)+ (1− p)(q− cR) = p(−(1−αs))+ (1− p)(q), or cR = p(1−αs).

It is therefore impossible for R to be indifferent at both information sets. It would require

1−αs = p(1−αs), but p < 1 because S’s mixing implies positive probability on both actions.

2.2 The Equilibrium Parameter Spaces Are Comprehensive

Now we turn to showing that the strategies listed in the propositions can each only occur

in the parameter spaces listed. All the earlier proofs started by considering equilibrium

strategies and then derived constraints on model parameters. This part shows that the

parameters imply the strategies.

First, consider the set of strategies where R accommodates following an observed de-

fection. When this happens, S must set s = 0 when it defects. Because R knows S has

defected upon observing the non-cooperative signal, R earns 0 − cR for containing and −1

for accommodating. Thus, for this strategy to occur in equilibrium, it must be that cR ≥ 1.

Meanwhile, R’s payoff for containing following a cooperative signal is (1−p)q−cR, where

p is its posterior belief that S has defected. Its payoff for accommodating depends on its

belief about which types defected and what their level of secrecy is. However, for each type

that defected, R’s payoff must be strictly greater than −1. Using −1+ ϵ as a placeholder, R

still prefers not resisting if p(−1 + ϵ) + (1− p)q > (1− p)q− cR. This reduces to cR > 1− ϵ.

This is covered by the requirement that cR ≥ 1. Therefore, equilibria where R accommodates

after observing defection require that R accommodates following a cooperative signal. The

only parameters where this can happen are found in Proposition 1.

Second, consider the set of strategies where R mixes between containing and accommo-

dating after observing defection. Mixing here requires indifference. The first section of the

uniqueness proof showed that this implies that R must accommodate as a pure strategy
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upon observing a cooperative signal. Line 1 showed that types that wish to defect under

those circumstances have a solution to the first order condition that is not a function of cS.

They therefore must select the same s value. The proof of Proposition 2 then showed that

s = 1−cR
α

is the unique strategy that generates R’s necessary indifference condition, that

σD = (2cR−1)(1−t)
(2cR−1)(1−t)+α

is the unique strategy that makes 1−cR
α

the solution to the first order

condition, and cS = q+
c2R(1−t)

(2cR−1)(1−t)+a
is the cutpoint the cutpoint for which S wants to defect

given that secrecy. Thus, the only parameters where R mixes only after observing defection

are found in Proposition 2.

Finally, consider the set of strategies where R contains after observing defection. There

are three subcases to consider: R contains as a pure strategy following a cooperative signal, R

accommodates following a cooperative signal, and R mixes between its two options following

a cooperative signal. Propositions 3 and 5 derived the bounds on when S’s response to those

strategies would self-reinforce R’s strategies. Thus, the remaining work needs to verify that

the mixing subcase is unique to Proposition 4’s parameters.

To make progress there, begin by noting that Line 4 showed that any type that defects

has a unique solution to the first order condition for secrecy, setting it at 1
2α
. Given that, all

types cS < c∗S must defect to obtain R’s indifference condition in any cutpoint equilibrium3,

and R must contain in response to a cooperative signal with probability
4α(c∗S−q)

1−t
to maintain

the c∗S type’s defection. Thus, the only parameters where R mixes after a cooperative signal

are found in Proposition 4.

3 Proof of the Remarks

The proof of Remark 1 is straightforward. Within the parameters of Proposition 3, the

probability that a type engages in secret defection is F
(
q + 1−t

4α

)
. The CDF is strictly

increasing, so demonstrating that the probability decreases is equivalent to showing that

3The equilibrium must be in cutpoint strategies because the types have utilities monotonic in type.
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q + 1−t
4α

decreases in t, which is obviously true.

The proof of Remark 2 requires more work. From Proposition 3, R’s posterior belief that

S has not defected upon observing cooperative signals is:

F
(
q + 1−t

4α

)
(1− t)

F
(
q + 1−t

4α

)
(1− t) + 2α

(
1− F (q + 1−t

4α
)
)

Thus, we need to show:

∂

∂t

(
F
(
q + 1−t

4α

)
(1− t)

F
(
q + 1−t

4α

)
(1− t) + 2α

(
1− F (q + 1−t

4α
)
)) < 0 (5)

It will be helpful to instead define g(t) = F
(
q + 1−t

4α

)
(1−t) and h(t) = 2α

(
1− F (q + 1−t

4α
)
)
.

Using the quotient rule, Line 5 holds if:

g′(t)(g(t) + h(t))− (g′(t) + h′(t))g(t)

(g(t) + h(t))2
< 0

g′(t)h(t) < h′(t)g(t)

Both g(t) and h(t) are strictly positive. Note that g′(t) = −F
(
q + 1−t

4α

)
−(1−t)

(
f(q+ 1−t

4α )
4α

)
and is therefore negative. Meanwhile, h′(t) =

f(q+ 1−t
4α )

4α
and is therefore positive. Conse-

quently, the left hand side is negative and the right hand side is positive, so Line 5 holds.

Proving Remark 3 is more complicated than the other two. First, consider how changes

to t affect S’s payoff under Proposition 5. Types with cS < q always defect. Because R

contains regardless of the signal, such a type earns 0− cS. This is unchanging in t.

Note that the cutpoint on Proposition 5 is F (q)(1−t)
2F (q)(1−t)+4α(1−F (q))

. This decreases in t and

thus can transition the parameters into Proposition 4.4 Recall that R contains upon ob-

serving defection and accommodates upon observing the cooperative signal with probability

4α(c∗S−q)

1−t
. Also, the type in question chooses s = 1

2α
. Thus, within Proposition 4’s parameter

4That is, the derivative of F (q)(1−t)
2F (q)(1−t)+4α(1−F (q)) with respect to t is − αF (q)(1−F (q))

(2α(1−F (q))+F (q)(1−t))2 .
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space, such a type earns:

(
4α(c∗S − q)

1− t

)(
1− α

(
1

2α

))(
1− t

2α

)
− cS

c∗S − q − cS

In turn, showing that the utility increases requires demonstrating that c∗S increases in t.

Recall that c∗S is the unique solution to cR = F (cS)(1−t)
2F (cS)(1−t)+4α(1−F (cS))

. Increasing t decreases the

right hand side. Thus, cS must change in a manner to exactly offset the change to maintain

the equality. The value increases in cS, and so c∗S increases in t.5 Note that because c∗S > q,

this amount is larger than what it earns under Proposition 5.

Note that the upper cutpoint on Proposition 4 is
F(q+ 1−t

4α )(1−t)

2F(q+ 1−t
4α )(1−t)+4α(1−F (q+ 1−t

4α
))
. This

decreases in t and thus can transition the parameters into Proposition 3.6 Within that

parameter space, Line 2 calculated the given type’s payoff as 1−t
4α

− cS. This decreases in t

and goes to −cS as t goes to 1. We therefore have a nonmonotonicity as claimed.

5More formally, let G(cS , t) = F (cS)(1−t)
2F (cS)(1−t)+4α(1−F (cS)) − cR. Then the implicit function theorem says

that the derivative of c∗S with respect to t is −∂G
∂t /

∂G
∂cS

. Because G increases in cS but decreases in t, the

sign of that derivative is positive.
6The cutpoint is the value from Line 5 multiplied by the scalar 1

2 . We have previously shown that this

value decreases in t, and so does the same value multiplied by a positive scalar.
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