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1 Full information benchmark

Proof of Lemma 1. The IO solves

max
(c̃(θ1),...c̃(θi),...,c̃(θn))

n∑
i=1

[θi log(c̃(θi)) + (1− θi) log(ω − C)] . (1)

Let C̃(θ) =
∑n

i=1 c̃(θi) denote the total emissions under a mechanism c̃ and let T =
∑n

i=1 θi

denote the sum of all types. This problem generates n first-order conditions:

θi
c̃(θi)

=
1− θi

ω − C̃(θ)
+

n∑
k=1

1− θk
ω − C̃(θ)

(2)

θi
n− T

=
c̃(θi)

ω − C̃(θ)
(3)

θi
n− T

[
ω − C̃(θ)

]
=c̃(θi). (4)

1



Solving for C̃(θ) gives:

C̃(θ) =
n∑
i=1

θi
n− T

[
ω − C̃(θ)

]
(5)

=
T

n− θ

[
ω − C̃(θ)

]
(6)

C̃(θ) =
Tω

n
. (7)

Plugging this solution into (4) gives c̃(θi) = ωθi
n

as claimed.

2 Proof of Proposition 1

To prove this result, we follow the general steps in ?. First, we consider the IO’s ”relaxed

problem” of maximizing welfare subject only to (??). We show that, in a solution to this

problem, no type is allowed emissions more than θω
n

, the amount of emissions allowed for the

highest type in the full information solution in Lemma 1. Second, we show that all types

would choose emissions higher than θω
n

if they freely chose their own emissions. This implies

that the only solutions to this relaxed problem are fully compressed because all types for all

countries i would be incentivized to misrepresent their true type by reporting θ̂ > θi.

Lemma 1. Let c0 be a solution to the IO’s relaxed problem of maximizing (??) subject to

(??). Then c0(θ̂i, θ−i) ≤ θω
n

for all i with probability 1.

Proof. Our proof follows the steps in Harrison and Lagunoff (2017). In line with their proof,

we establish similar notation. We write the utility of a type θi of player i of a consumption

plan c as

ui(θi, θ−i; c) = r(c)− θiqi(c)

where r(c) = log(ω − C) and qi(c) = log(ω − C) − log(ci). This is simply a rewriting of

the payoff where r represents the (common) rewards to conservation and qi represents the
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individual costs. Consider a solution c0 and assume that c0
i (θ) > c ≡ θω

n
for some individual

i and type realizations θ. Denote the interim values of the cost and reward functions defined

above by

R0
i (θi) =

∫
θ−i

r(c0(θ))dF−i(θ−i) and

Q0
i =

∫
θ−i

qi(c
0(θ))dF−i(θ−i).

Following Harrison and Lagunoff (2017) we can rewrite the relaxed problem as

max
c

∑
i

[
R0
i (θ)− θQi(θ) +

∫ θ

θ

Fi(θ)Qi(θi)dθi

]
(8)

subject toQi weakly decreasing. We construct an alternative consumption plan c∗∗ as follows:

c∗∗i (θ) =


c if θi = θ

c0
i (θ) otherwise.

c∗∗j (θ) =


c if θk = θ for any k

c0
i (θ) otherwise.

We can write the difference in the objective functions for these two consumption plans as

∑
i

[
R∗∗i (θ)− θQ∗∗i (θ) +

∫ θ

θ

Fi(θ)Q
∗∗
i (θi)dθi

]
−

∑
i

[
R0
i (θ)− θQ0

i (θ) +

∫ θ

θ

Fi(θ)Q
0
i (θi)dθi

]
(9)

=
∑
i

[
R∗∗i (θ)− θQ∗∗i (θ)−

(
R0
i (θ)− θQ0

i (θ)
)]

+

∑
i

[∫ θ

θ

Fi(θ)Q
∗∗
i (θi)dθi −

∫ θ

θ

Fi(θ)Q
0
i (θi)dθi

]
. (10)
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The first sum in (10) must be positive because c is the unconstrained optimal consumption

for a player of type θ regardless of the type profile of the other players. The second sum is

positive because c∗∗(θ) ≤ c0(θ) and Qi is monotone in c. Therefore, c∗∗ has an overall higher

value of the objective function in (8), contradicting the statement that c0 is optimal.

Lemma 2. If θ > θ̄
n+θ̄−nθ̄ then for all types of all countries we have

arg max
c

∫
Θ−i

θi log(c) + (1− θi) log(ω − c−
∑
j 6=i

c0
j(θ−i))dF−i(θ−i) >

θω

n
.

That is, if each country could freely choose its consumption, it would prefer to choose a level

greater than that allowed to the highest type in the unconstrained optimum.

Proof. Country i’s first-order condition (using Leibniz’s rule) is

∫
Θ−i

[
θi
c
− 1− θi
ω − c−

∑
j 6=i c

0
j(θ−i)

]
dF−i(θ−i) = 0. (11)

Let c∗ denote a solution to this first-order condition. Note that country i’s optimal choice

is always decreasing in the total amount consumed by the other players. Therefore c∗ must

be greater than the amount i would consume if all other players consumed c = θω
n

(the

maximum amount possible given Lemma 1) given any θ. We let ĉ denote this amount and

solve for it as follows:

∫
Θ−i

[
θi
ĉ
− 1− θi
ω − ĉ− n−1

n
θω

]
dF−i(θ−i) =0 (12)

θi
ĉ

=
1− θi

ω − ĉ− n−1
n
θω

(13)

ĉ =
θiω

n
(n+ θ − nθ). (14)
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Note that this is increasing in θi. Using that our assumption that θ > θ̄
n+θ̄−nθ̄ we have

ĉ =
θiω

n
(n+ θ − nθ) (15)

≥ θ̄

n+ θ̄ − nθ̄
ω

n
(n(1 + θ)− θ) (16)

=
θω

n
. (17)

Thus, we have c∗ > ĉ > θω
n

as claimed.

We are now ready to prove the main result.

Proof of Proposition 1. Suppose c0 is a solution to the planner’s problem and is not fully

compressed. Then for some player i and type θi we have c0
i (θi, θ−i) < c0

i (θ
′, θ−i) for θ′ 6= θi. By

Lemma 1, we have c0
i (θi, θ−i) < c0

i (θ
′, θ−i) <

θω
n
. But the interim expected utility for type θi of

player i is strictly concave and, by Lemma 2, maximized at some value c > θω
n

. This implies

that type θi of player i prefers any consumption level in (c0
i (θi, θ−i),

θω
n

] to c0
i (θi, θ−i). In

particular, type θi of player i strictly prefers c0
i (θ
′, θ−i) to c0

i (θi, θ−i), contradicting the truth-

telling constraint. Thus, any solution to the planner’s problem must be fully compressed.

3 Limited investigations

Proof of Proposition 3. Recall that the optimal quota is c̃(θi) = ωθi
n
. Type interim expected

utility of type θi of player i for participating in an agreement with the optimal quota given

θ−i is therefore

θi log

(
ωθi
n

)
+ (1− θi) log

(
ω − ωθi

n
− ω

n

∑
j 6=i

θj

)
. (18)
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The utility to type θi of player i if i does not participate is

max
c≥0

θi log (c) + (1− θi) log

(
ω − c− ω

n

∑
j 6=i

θj

)
−K. (19)

Taking first-order conditions and solving for the optimal c at each θ−i ∈ Θ−i gives:

θi
c

=
1− θi

ω − c− ω
n

∑
j 6=i θj

(20)

⇒ c =θi

(
ω − ω

n

∑
j 6=i

θj

)
. (21)

Define

UO
i (θi) := θi log

(
θi

(
ω − ω

n

∑
j 6=i

θj

))
+ (1− θi) log

(
ω − θi

(
ω − ω

n

∑
j 6=i

θj

)
− ω

n

∑
j 6=i

θj

)
.

(22)

The utility to type θi of player i for opting out of the agreement is therefore

UO
i (θi)−K. (23)

Clearly, for K > UO
i (θi)− θi log

(
ωθi
n

)
− (1− θi) log

(
ω − ωθi

n
− ω

n

∑
j 6=i θj

)
, the participation

constraint is met.

Next, consider the payoff to type θi of player i to submitting a report θ̂ 6= θi given the

investigation mechanism ri(θ̂i, θ̂−i). In this case, player i gets its reservation payoff from

(23) with probability ri(θ̂i, θ̂−i) and, with probability 1 − ri(θ̂i, θ̂−i), gets its payoff from
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successfully imitating type θ̂ in the optimal mechanism. This expected payoff is

∫
Θ−i

[
(1− ri(θ̂, θ̂−i)

[
θi log

(
ωθ̂

n

)
+ (1− θi) log

(
ω − ωθ̂

n
− ω

n

∑
j 6=i

θj

)]
+

ri(θ̂, θ̂−i)
[
UO
i (θi)−K

] ]
dF−i(θ−i). (24)

The truth-telling constraint is

∫
Θ−i

[
θi log

(
ωθi
n

)
+ (1− θi) log

(
ω − ωθi

n
− ω

n

∑
j 6=i

θj

)]
dF−i(θ−i) ≥

∫
Θ−i

[
(1− ri(θ̂, θ̂−i)

[
θi log

(
ωθ̂

n

)
+ (1− θi) log

(
ω − ωθ̂

n
− ω

n

∑
j 6=i

θj

)]
+

ri(θ̂, θ̂−i)
[
UO
i (θi)−K

] ]
dF−i(θ−i). (25)

A sufficient condition is to satisfy this constraint for every θ−i, so we can write the

constraint as

θi log

(
ωθi
n

)
+ (1− θi) log

(
ω − ωθi

n
− ω

n

∑
j 6=i

θj

)
−

(1− ri(θ̂, θ̂−i))

[
θi log

(
ωθ̂

n

)
+ (1− θi) log

(
ω − ωθ̂

n
− ω

n

∑
j 6=i

θj

)]
−

ri(θ̂, θ̂−i)
[
UO
i (θi)−K

]
≥ 0. (26)

To save on notation, let

Ũi(θi) =θi log

(
ωθi
n

)
+ (1− θi) log

(
ω − ωθi

n
− ω

n

∑
j 6=i

θj

)

Ũi(θ̂) =θi log

(
ωθ̂

n

)
+ (1− θi) log

(
ω − ωθ̂

n
− ω

n

∑
j 6=i

θj

)
.
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For θ̂ > θi, (26) holds with equality if

ri(θ̂, θ̂−i) =
Ũi(θ̂)− Ũi(θi)

K − UO
i (θi) +

[
θi log

(
ωθ̂
n

)
+ (1− θi) log

(
ω − ωθ̂

n
− ω

n

∑
j 6=i θj

)] . (27)

By Lemma 2, we have

[
θi log

(
ωθ̂

n

)
+ (1− θi) log

(
ω − ωθ̂

n
− ω

n

∑
j 6=i

θj

)]
−[

θi log

(
ωθi
n

)
+ (1− θi) log

(
ω − ωθi

n
− ω

n

∑
j 6=i

θj

)]
>0

for θ̂ > θi >
θ

n(1+θ)+θ
. Thus, the numerator of (27) is positive and the denominator goes to

∞ as K →∞.

Finally, define r∗(K) as follows:

r∗(K) = sup
θi∈Θi

sup
θ−i∈Θ−i

sup
θ̂∈Θi

Ũi(θ̂)− Ũi(θi)
K−UOi (θi)+

[
θi log

(
ωθ̂
n

)
+(1−θi) log

(
ω−ωθ̂

n
−ω
n

∑
j 6=i θj

)]

denote the smallest amount of investigative resources that deters all types from submitting

a false report given any distribution of other players’ types as long as the participation

constraint is met. For a given K large enough to satisfy the pa44rticipation constraint,

the constant investigation plan setting ri(θ̂iθ̂−i) = r∗(K) for all θ̂ and all i implements

the full information optimum. The total investigative budget is therefore nr ∗ (K). Since

limK→∞ nr
∗(K) = n limK→∞ r

∗(K) = 0, this shows that for any R > 0 there exists a value

of K large enough to implement the full information optimal quota.
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4 Extensions and additional results

4.1 An example of a non-inclusive optimal compressed mechanism

In the main text, we impose the constraint that all countries must participate and show

that the optimal mechanism subject to that constraint is fully compressed. Here, we show

by example that the optimal mechanism may not be fully inclusive. That is, the optimal

mechanism may have some set of types opt out. By way of example, let ω = 2, n = 3,

and assume that the set of types is [1/5, 4/5]. We will consider the limiting case as K → 0.

Recall from our arguments in the main text that the optimal fully inclusive mechanism is

c∗ =
θω

1 + θ(n− 1)
. (28)

The optimal fully inclusive mechanism from applying (28) is therefore a compressed mech-

anism in which c∗ = 8/13. Our task is to show that this mechanism is not always ex-post

optimal among all incentive compatible mechanisms. To show this, let’s consider a realiza-

tion of types such that θ1 = θ2 = 1
5

and θ3 = 3
5
. Total utility under the optimal mechanism

is

2

[
1

5
log

(
8

13

)
+

4

5
log

(
2

13

)]
+

4

5
log

(
8

13

)
+

1

5
log

(
2

13

)
≈ −3.95. (29)

Consider an alternative mechanism for which only the lowest types would participate. That

is, the mechanism is a fully compressed quota such that the lowest types are indifferent

between participating and not participating and all other types opt-out. The quota that

makes the lowest types indifferent (as K → 0) is c′′ = 2
7

(again applying (28) but using the

lowest type rather than the highest type). All higher types opt out of this mechanism and

choose ci = θi(ω−
∑

j 6=i cj). In this case, with the type realizations above, the ex-post payoff
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from this mechanism is therefore

2

[
1

5
log

(
2

7

)
+

4

5
log

(
2

7

)]
+

4

5
log

(
8

7

)
+

1

5
log

(
2

7

)
≈ −2.65. (30)

The additional calculations here are that 4
5
(2− 22

7
) = 8

7
and 2− 22

7
− 8

7
= 2

7
. That is, a non-

inclusive compressed mechanism gives higher total welfare than the inclusive compressed

mechanism.

This example may seem extreme because it relies on (a) a very strange realization of

types at the endpoints of the support of the distribution and (b) a very extreme mechanism

that only includes a measure zero set of types (i.e., only the very lowest type opts into

the mechanism). However, this is only for convenience. Consider for instance a mechanism

designed to make all types lower than 1
2

accept. Applying (28) using θ = 1
2

rather than the

highest type yields c∗ = 1
2
. Under this mechanism (but under the same type realizations), the

low types agree and choose 1
2

while the high type opts out and chooses ci = 4
5
(2− 2 ∗ 1

2
) = 4

5
.

Therefore, the total utility is

2

[
1

5
log

(
1

2

)
+

4

5
log

(
1

5

)]
+

4

5
log

(
4

5

)
+

1

5
log

(
1

5

)
≈ −3.35. (31)

Thus, this less extreme mechanism still outperforms the fully inclusive mechanism. Fur-

thermore, because both expected welfare equations are continuous with respect to the type

realizations except near the participation cutoff, this mechanism beats the fully inclusive

mechanism for a positive measure of types.

This construction does depend on having a small value of K. In fact, for large values of

K it must be the case that the optimal compressed mechanism is fully inclusive, because all

of the participation constraints are easily satisfied. This explains why there is no difference

between the optimal mechanism and the optimal fully inclusive mechanism in ?, where

dynamic strategies resemble an unbounded value of K.
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4.2 Endogenous K

The model in the text assumes an exogenous punishment K for noncompliance. Of course,

international organizations do not typically have significant enforcement power, so here we

consider how K may arise endogenously without the need for intrinsically powerful organi-

zations. We consider two possibilities.

One way to think about K is as a short form for forward-looking strategies under dynamic

mechanisms. We do not fully analyze this case here but instead point out the relationship

to ?. That paper considers a dynamic model with the same basic elements that we present

here but with a carbon stock that evolves over time as a function of the choices of the

players. In the dynamic model, shirking is responded to with punishments that deplete the

total carbon stock in future periods. Since these potential punishments are unbounded, the

results of the dynamic model most closely resemble our limiting case of K → ∞. In fact,

under complete information any feasible payoff is implementable. In the case of complete

information, the optimal compressed mechanism is implementable and in fact is very similar

to our compressed mechanism in the limiting case of K → ∞. Thus, if we interpret our

model as a simplification of a richer dynamic model, we should take the punishments to

be arbitrarily large. Note also that these punishments are self-enforcing and do not require

state-like powers for the IO.

An alternative way to think of K is as something arising from other issues that states

care about and that may be affected by climate negotiations. A benefit of this perspective

is that we can still think about the effects of varying K, but this becomes a measure of

the value of the non-environmental issue. Therefore, we consider an extension in which the

punishment for noncompliance (or reward for compliance) is determined by issue bundling

and is self-enforcing and requires no formal enforcement power by the IO. That is, the role

of the IO is merely to help countries coordinate on a particular self-enforcing punishment

strategy. Though climate action could in principle be bundled with any issue, we use trade as
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our leading example. This allows us to focus on a concrete and simple model and also places

our model firmly in line with the climate club proposals of ? and others (??). Following ?,

we take the repeated prisoner’s dilemma (PD) as the useful metaphor for trade cooperation.

Consider the following game. There is an infinite horizon with time indexed by t ∈

{0, 1, 2, . . . }. At time t = 0, the countries play the climate game exactly as described in the

main text of the paper but without the exogenous penalty for noncooperation. In each period

t ≥ 1, the countries engage in a trade game which we represent as follows. In each period,

every country sets trade barriers with every other country. Following ?, we can represent

the trade barrier game between each pair of countries as a prisoner’s dilemma.1 Thus, for

each pair of countries i, j ∈ N , the stage game payoffs can be represented by the following:

Country j

C D

Country i
C (b, b) (−d, a)

D (a,−d) (0, 0)

where a > b > 0 and d > 0. Since these payoffs apply to a particular pair, each country’s

total stage game payoff is its payoff from each of these interactions summed over all players.

Formally, let sijt ∈ {C,D} denote player i’s action toward player j in time t and let st denote

the profile of all actions in time t. Let vijt(sijt, sjit) be the pairwise stage game payoff defined

in the table above (i.e., vijt(C,C) = b, vijt(D,C) = a, vijt(D,D) = 0, vijt(C,D) = −d).

Country i’s stage game payoff is then vit(st) =
∑

j 6=i vijt(sijt, sjit). The discounted present

value of a stream of payoffs is therefore
∑∞

t=1 δ
t−1vit(st) where δ ∈ (0, 1) is a common discount

factor.

There are a great many equilibria to this game. Our purpose is merely to show that (a)

1The prisoner’s dilemma setup is derived from a continuous game in Rosendorff and Milner (2001) by
setting the payoff when both countries defect equal to the countries’ payoffs from the static Nash equilibrium
to the game, the payoff when both players cooperate equal to the payoffs from the Pareto optimal pair of
trade barriers, and the payoff when one player defects and the other cooperates equal to the payoff obtained
when one player acts according to the Pareto optimal trade barriers and the other chooses the optimal
defection given that player’s action.
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punishing climate defectors can be self-enforcing in the trade stage of this game and (b)

anticipation of the trade stage can endogenously generate the equivalent of our K without

any formal enforcement power by the IO. We begin by analyzing the trade stage of the game.

Suppose that a (possibly empty) subset of countries M ⊆ N are considered non-compliant

with the climate agreement and the rest are compliant. We set up a strategy profile in

which compliant countries play grim trigger strategies with one another and always defect

on countries in M , and where countries in M always defect regardless of which countries

they are matched with. To be complete, the strategy is described as follows for all countries

i ∈ N :

• If i ∈M then sijt = D for all j ∈ N\{i} and all t.

• If i 6∈M then sijt = D for all j ∈M and sij1 = C for all j 6∈M , and for t > 1 sijt = C

if and only if sijt′ = sjit′ = C for all t′ < t, otherwise sijt = D.

No i ∈ M will deviate from this strategy: defection is a dominant strategy in the static

game and cooperating in any period cannot change future payoffs, so defection remains a

best response for i ∈M . Similarly, because countries in M will never cooperate, no country

i 6∈M will deviate from the part of its strategy that dictates sijt = D for all j ∈M . Finally,

in pairs where neither country is in M , neither country has any incentive to deviate from the

grim trigger punishment strategy for the same reasons as above. Thus, this strategy profile

is an equilibrium as long as pairs of climate-compliant countries have enough incentive to

cooperate along the path of play. Since actions are chosen independently across pairs (e.g.,

player i defecting on player j affects future rounds with player j but does not affect pairs

involving player i but not player j), we can simply analyze the standard PD game within

each pair. Player i’s expected payoff in interactions with player j from cooperating is

b+ δb+ δ2b+ · · · = b

1− δ
.
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Player i’s expected payoff in interactions with player j from defecting is

a+ δ0 + δ20 + · · · = a.

Therefore, player i cooperates along the path of play if b
1−δ ≥ a which holds when δ ≥ a−b

a
.

Thus, this strategy profile is an equilibrium when δ ≥ a−b
a
.

The above analysis makes a very simple point that is only slightly modified from standard

analyses of the repeated PD. However, we now consider the implications for the climate

agreement at time t = 0. We consider whether all countries will choose to participate in a

particular agreement. Consider an agreement that prescribes a profile of carbon consumption

levels (c̃1(θ1), . . . , c̃n(θn)). We consider a profile in which all countries comply and ask whether

any particular country would unilaterally withdraw. We first consider the fully compressed

mechanism, so we drop dependence of the quota on θi for the moment and ignore truth-telling

constraints. The utility of a country of type θ for complying given the trade equilibrium

above is:

ui(c̃, c̃−i, θ) + δ
b(n− 1)

1− δ
.

That is, a country’s expected utility for complying is now the static utility from carbon

consumption plus the discounted trade benefits from being in compliance. The total trade

benefits are the pairwise benefit from above multiplied by the number of other players, be-

cause the player contemplating a deviation expects all other players to remain in compliance.

The expected benefit of noncompliance is

max
c≥0

ui(c, c̃−i, θ).

That is, a country that does not comply gets the benefit of optimally choosing its carbon

consumption given the levels of the other players, but it expects zero trade benefits in the

future because every country will defect in every interaction. Therefore, the country complies
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if

ui(c̃, c̃−i, θ) + δ
b(n− 1)

1− δ
≥ max

c≥0
ui(c, c̃−i, θ)

or

ui(c̃, c̃−i, θ) ≥ max
c≥0

ui(c, c̃−i, θ)− δ
b(n− 1)

1− δ
.

Setting K = δ b(n−1)
1−δ , this is exactly the participation constraint from (3). This analysis

holds for the fully compressed mechanism but works the same for the optimal mechanism

with investigations. If a country is labelled noncompliant when investigations reveal that

it submitted a false report, we simply set K = δ b(n−1)
1−δ to obtain the same truth-telling

constraint as in (26).

This simple exercise is intended merely to demonstrate how we can think of K in the

original model as coming from a mechanism that does not depend on having an IO with

formal enforcement power. Taking the PD model a bit more seriously, however, we could

characterize how K changes as a function of the underlying parameters. We see that K

is larger when players are more patient, when the total number of countries negotiating

increases, and when the value of preferential treatment on trade increases. As we mentioned,

however, we think of trade as only one possible source of issue linkage. In addition, a more

detailed model of the linked issue may yield further interesting insights about enforcement.
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