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1 A sensitivity analysis for counteraction hypotheses

In the paper, we outline a framework for connecting theories about counteraction in human rights,

mediation effects, and instrumental variables estimators. This section further develops the theory

connecting the IV estimator to mediation effects, explains the assumptions behind using the IV

sensitivity analysis for assessing mediation effects, and distinguishes the proposed approach from

existing methods for mediation analysis. In particular, we build on results from Sobel 2008 to

show how the IV estimator identifies the path effect of the mediator on the outcome under the

exclusion restriction. We allow researchers to relax the exclusion restriction by specifying beliefs

about how large the violation of the might be in terms of an intuitive quantity: the expected

direct effect of the treatment on the outcome.

1.1 Notation

As in Section III, we define an observed treatment Ai, mediator/targeted outcome Mi, and fi-

nal/“spillover” outcome Yi. The potential outcome Mi(a) denotes the mediator that would be

observed if unit i were assigned treatment level a. Likewise, the potential outcome Yi(a,m) is

the value of Yi observed if i were assigned treatment a and mediator value m. We can also write

a composite potential outcome Yi(a) = Yi(a,Mi(a)) of manipulating a alone and allowing the

mediator to take its natural value under a. In both cases, we make the standard Stable Unit

Treatment Value assumption (SUTVA) such that there is only one version of treatment a and

that each unit’s potential outcomes depend only on their individual treatment assignments.1 This

also allows us to connect the observed outcomes to potential outcomes such that Mi = Mi(a) and

Yi = Yi(a) = Yi(a,Mi(a)) for units observed to have Ai = a. Likewise Yi = Yi(a,m) for units with

observed Ai = a and Mi = m.

1. Angrist, Imbens, and Rubin 1996.
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1.2 Identification of total effects

We start by briefly reviewing identification of the total effect of the treatment. For an individual

unit, the effect of treatment A on outcome Y is defined as

τi = Yi(1)− Yi(0)

Likewise, the individual effect of A on M is defined as

µi = Mi(1)−Mi(0)

Since individual treatment effects are unidentifiable from the data as we only observe units

under one treatment condition,2 researchers typically focus on identifying and estimating averages

of effects. Define the average treatment effects for Y and M as τ = E[τi] = E[Yi(1)−Yi(0)] and µ =

E[µi] = E[Mi(1) −Mi(0)] respectively. Identifying either average effect from observational data

requires two primary assumptions in addition to SUTVA: an ignorability or exogeneity assumption

– often conditional on pre-treatment covariates Xi – and an “overlap” or positivity assumption.3

Assumption 1 Ignorability of Ai

{Yi(a,m),Mi(a)} ⊥⊥ Ai|Xi = x

for all values of a and m

Assumption 2 Positivity

0 < Pr(Ai = a|Xi = x) < 1

for all values of a and x within the support of Ai and Xi.

Under these assumptions, the difference in conditional expectations identifies the conditional

treatment effect and the average can be recovered by averaging over the empirical distribution of

2. Holland 1986.
3. Imbens 2004.
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covariates.

E[Yi(1)− Yi(0)|Xi = x] = E[Yi|Ai = 1, Xi = x]− E[Yi|Ai = 0, Xi = x]

E[Yi(1)− Yi(0)] = {E[Yi|Ai = 1, Xi = x]− E[Yi|Ai = 0, Xi = x]}Pr(Xi = x)

When Xi is low-dimensional, each conditional expectation can be estimated via its sample ana-

logue, yielding the sub-classification estimator. Alternatively, regression or matching estimators

– among others – can be used to impute the unobserved potential outcomes.4 If researchers are

willing to assume a regression model for the outcome, the average treatment effect is identified by

a regression coefficient under a constant effects assumption. Assume:

Yi = α1 + β1Ai + ξ′1Xi + εi1

where εi1 is a mean-zero, finite variance error term. The β1 coefficient denotes the average treat-

ment effect of A.5 However, note that when effects are not constant, multiple regression yields a

variance-weighted average of individual treatment effects.6

1.3 Decomposing the total effect

In mediation analysis, researchers are typically interested in decomposing the average treatment

effect τ into components mediated by and unmediated by the post-treatment quantity M . While a

number of decompositions have been proposed in the statistics literature,7 one of the most common

is a two-part division of the average treatment effect τ into a “direct” effect (ξ) and an indirect

effect (δ).8 The “indirect” effect or Causal Mediation Effect (CME) Imai, Keele, Yamamoto, et

al. 2010 for unit i corresponds to the difference in potential outcomes if unit i were assigned the

value of its mediator under treatment versus the value if i were assigned the value of its mediator

under control, fixing the value of the treatment to t.

Formally, the individual indirect effect is defined as

4. Imbens 2004.
5. This formulation of the outcome model is drawn from the linear structural model set-up in Imai et al. 2011.
6. Aronow and Samii 2016.
7. e.g. VanderWeele 2013, VanderWeele 2014
8. Imai, Keele, Yamamoto, et al. 2010, Robins and Greenland 1992
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δi = Yi(a,Mi(1))− Yi(a,Mi(0))

or the effect on Y of manipulating Mi to take on the value it would take under treatment

compared to manipulating it to take on the value it would take under control.

Likewise, the individual direct effect is

ζi = Yi(1,Mi(a))− Yi(0,Mi(a))

for all values of m and x within the sup

or the effect of treatment fixing Mi to Mi(a).

We can write the total effect as the sum of a direct effect and an indirect effect:

τi = δi(a) + ζi(1− a)

and the average treatment effect as

τ = E[δi(a)] + E[ζi(1− a)] = delta(a) + ζ(1− a)

connection to the Baron-Kenny mediation analysis approach and

Identification and sensitivity analysis via sequential ignorability

Identification of the average direct and indirect effects requires additional assumptions beyond

those required for identification of the average treatment effect. One approach is to assume

sequential ignorability of the outcome and mediator.9

9. Imai, Keele, Yamamoto, et al. 2010.
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Assumption 3 Sequential ignorability

Yi(a
′,m),Mi(a) ⊥⊥ Ai|Xi = x

Yi(a
′,m) ⊥⊥Mi(a)|Ai = a,Xi = x

where 0 < p(Mi(a) = m|Ai = a,Xi = x) < 1, for all values of m and x within the support of Mi

and Xi.

The first part of the assumption is the standard ignorability assumption for treatment. The

second part states that the conditional on treatment and pre-treatment covariates, the mediator is

as-good-as randomly assigned. This latter assumption is very strong and often difficult to validate

as even in a randomized experiment it may not hold. It requires that the researcher account

for all pre-treatment covariates that may be predictive of both the mediator and the outcome.

Furthermore, it restricts researchers from conditioning on post-treatment quantities that may be

consequences of treatment but confounders of the mediator and outcome.

To address the difficulty of justifying the second component of sequential ignorability, Imai,

Keele and Yamamoto develop a sensitivity analysis technique that relaxes this assumption. The

structural equation framework has been used to motivate analyses of causal mechanisms as far

back as Baron and Kenny.10 Imai, Keele and Yamamoto clarify the assumptions under which

this framework can yield valid estimates of mediation effects.11 They then motivate a sensitivity

analysis that varies the correlation between the linear model error terms, though subsequent work

has generalized this approach to other models.12 We focus here on the linear structural equation

modeling approach, both due to its connection to the older Baron-Kenny mediation analysis and

its common use within political science.13

We retain the following model for the outcome and treatment alone.

Yi = α1 + β1Ai + ξ′1Xi + εi1 (1)

10. Baron and Kenny 1986.
11. Imai, Keele, Yamamoto, et al. 2010.
12. Imai, Keele, and Tingley 2010.
13. Imai et al. 2011.
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We further assume the following model for the mediator

Mi = α2 + β2Ai + ξ′2Xi + εi2 (2)

and another model for the outcome conditional on the mediator

Yi = α3 + β3Ai + γMi + ξ′3Xi + εi3 (3)

where εi2 and εi3 are mean zero error terms. Estimating both equations using least squares

and taking the product β̂2γ̂ yields the product-of-coefficients mediation effect.14. Imai et. al. show

that this approach identifies the causal mediation effect under the assumption that the models are

correctly specified along with an additional no-interaction assumption δ = δ(0) = δ(1).15 They

further note that this no-interaction assumption is not necessary if researchers specify a more

flexible model for Yi by including a treatment-mediator interaction. For simplicity, we focus on

the case where the no-interaction assumption holds.

To relax the strong assumption of sequential ignorability with respect to the mediator, Imai et.

al. propose a sensitivity parameter for the error correlation Cor(εi2, εi3) = ρ where −1 < ρ < 1.

When ρ is zero, sequential ignorability holds. Conversely, a non-zero ρ captures the presence

of some unobserved omitted confounder of the mediator M and Y . The closer the correlation

is to 1 or −1, the larger the magnitude of confounding. For any fixed value of ρ, and under a

no-interaction assumption, the average causal mediation effect is identified by

δ(1) = δ(0) =
β2σ1

σ2

{ρ̃− ρ
√

(1− ρ̃2)/(1− ρ2)}

where ρ̃ = Cor(εi1, εi2) and σ2
j = V ar(εij). The variance terms can be estimated directly from

the regressions regressions 1 and 2.

Notably, this does not address violations of the first part of sequential ignorability – the

assumption that the treatment is randomly assigned given the covariates. We likewise leave this

for other work, but note that it may be feasible to incorporate a number existing methods for

14. MacKinnon et al. 2002.
15. Imai, Keele, Yamamoto, et al. 2010; Imai et al. 2011.
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conducting a sensitivity analysis of treatment exogeneity in a linear equation framework.16

Identification and sensitivity analysis via instrumental variables

Even with a sensitivity analysis, sequential ignorability may be difficult to justify in a research

context such as when post-treatment confounding exists between M and Y . Additionally, the

sensitivity parameter ρ may be difficult for researchers to interpret. Imai et. al. suggest a re-

parameterization in the vein of Imbens which allows researchers to specify the sensitivity parameter

in terms of the share of unexplained variance explained by an unobserved confounder.17 This gives

a quantity that captures the overall strength of the confounder’s effect on both the treatment and

the mediator in a standardized fashion. However, even in this situation, reasonable benchmarks

for how strong a likely unobserved confounder might be are difficult to formulate. Furthermore,

this re-parameterization requires researchers to specify two sensitivity parameters – one relating

to the confounder’s effect on the mediator and the other relating to its effect on the outcome.

This paper presents an alternative strategy for both identification and sensitivity analysis. It

builds on an argument found in Sobel 2008 that an instrumental variables approach identifies me-

diation effects. It notes that these assumptions are not necessarily weaker than those required for

identification. While it does not require sequential ignorability, it requires additional restrictions

on the paths through which the treatment affects the mediator and outcome consistent with the

idea that the treatment acts as an instrument for the mediator. However, by suggesting a sensi-

tivity analysis on some of the more implausible assumptions – namely, the “exclusion restriction”

– we develop a method that may be more useful to applied researchers in some circumstances. In

particular, we believe that researchers are more likely to be able to conceive of reasonable bounds

for a sensitivity parameter that reflects the hypothesized “direct effect” of the treatment.

We will first discuss identification of the mediation effect via instrumental variables in the

context of no covariates. We will then extend it to the linear structural model case discussed

in the previous section and explain the proposed sensitivity analysis and how it differs from the

sensitivity analysis for identification under sequential ignorability.

We will start with the binary mediator/binary treatment case with no covariates. In this

16. Imbens 2003; Cinelli and Hazlett 2018; Oster 2019.
17. Imai, Keele, Yamamoto, et al. 2010; Imbens 2003.
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situation the average treatment effect τ and the treatment effect on the mediator are identified

by a simple difference in means in outcomes across treatment arms. To obtain the effect of the

mediator from these two effects, we introduce the instrumental variables assumptions from Angrist,

Imbens and Rubin.18 First, we assume that the treatment effect of A on M is monotonic for all

units

Assumption 4 Monotonicity

Mi(1) > Mi(0) ∀ i

This assumption partitions the sample into three sub-groups based on their joint potential

outcomes Mi(1),Mi(0). 19. Units can have either Mi(1) = Mi(0) = 1, Mi(1) = Mi(0) = 0 or

Mi(1) = 1,Mi(0) = 0. Let Sab = Mi(1) = a,Mi(0) = b denote the stratum characterized by

the joint potential outcomes Mi(1),Mi(0). For example, S10 denotes the sub-group with Mi(1) =

1,Mi(0) = 0.20

Second, instrumental variables designs make an “exclusion restriction” assumption which rules

out the presence of a direct effect of A on the individual level.

Assumption 5 Exclusion Restriction

Yi(a,m) = Yi(a
′,m)

for all m, a, a′

The average treatment effect can be decomposed as follows:

τ = E[Yi(1)− Yi(0)] = E[Yi(1,Mi(1))− Yi(0,Mi(0))] = E[Yi(1,Mi(1))− Yi(0,Mi(0))|S11]Pr(S11)

+ E[Yi(1,Mi(1))− Yi(0,Mi(0))|S00]Pr(S00)

+ E[Yi(1,Mi(1))− Yi(0,Mi(0)))|S10]Pr(S10)

18. Angrist, Imbens, and Rubin 1996.
19. These are often referred to as “principal strata” with respect to the mediator. See Frangakis and Rubin 2002.
20. Note that by monotonicity, S01 is ruled out.
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Substituting Mi(1) for the values implied by each stratum yields:

τ = E[Yi(1, 1)− Yi(0, 1)|S11]Pr(S11)

+ E[Yi(1, 0)− Yi(0, 0)|S00]Pr(S00)

+ E[Yi(1, 1)− Yi(0, 0)|S10]Pr(S10)

Note that the treatment effects for the two non-complier strata are direct effects only, while

the “complier” stratum effect further decomposes into an indirect and direct effect.

τ = E[Yi(1, 1)− Yi(0, 1)|S11]Pr(S11)

+ E[Yi(1, 0)− Yi(0, 0)|S00]Pr(S00)

+ E[Yi(1, 1)− Yi(0, 1)|S10]Pr(S10)

+ E[Yi(0, 1)− Yi(0, 0)|S10]Pr(S10)

Under the “exclusion restriction”, the first three terms all equal 0, yielding

τ = E[Yi(0, 1)− Yi(0, 0)|S10]Pr(S10)

Since Pr(S10) = E[Mi(1)−Mi(0)] under monotonicity, the treatment effect reduces to the product

of the average effect of A on M multiplied by the average effect of M on Y within the “complier”

stratum.

τ = E[Yi(0, 1)− Yi(0, 0)|S10]× E[Mi(1)−Mi(0)]

We can further show that this is equivalent to the pure indirect effect or average causal medi-

ation effect (ACME) from Imai, Keele and Yamamoto δ(a).21

21. Imai, Keele, Yamamoto, et al. 2010.
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δ(a) = E[Yi(a,Mi(1))− Yi(a,Mi(0))] = E[Yi(1,Mi(1))− Yi(0,Mi(0))|S11]Pr(S11)

+ E[Yi(1,Mi(1))− Yi(0,Mi(0))|S00]Pr(S00)

+ E[Yi(1,Mi(1))− Yi(0,Mi(0)))|S10]Pr(S10)

Substituting in the values of Mi(1),Mi(0) for each stratum yields

δ(a) = E[Yi(a,Mi(1))− Yi(a,Mi(0))] = E[Yi(a, 1)− Yi(a, 1)|S11]Pr(S11)

+ E[Yi(a, 0)− Yi(a, 0)|S00]Pr(S00)

+ E[Yi(a, 1)− Yi(a, 0)|S10]Pr(S10)

= E[Yi(a, 1)− Yi(a, 0)|S10]Pr(S10)

Notably, the exclusion restriction also implies a no-interaction assumption with respect to the

indirect effect such that δ(0) = δ(1). Therefore, under the instrumental variables assumptions,

the reduced-form effect of A on Y is equivalent to the natural indirect effect. A similar point is

made in Appendix B of Imai, Keele and Tingley.22.

However, we may not be strictly interested in the mediation effect for the entire sample. Rather,

we are interested in knowing whether there exists a mediation effect among those units for which

the treatment shifted the mediator. We can then rescale the pure indirect effect to the average

effect of the mediator by dividing the average treatment effect by the effect of treatment on the

mediator, which is the standard Wald ratio estimator for instrumental variables.23

E[Yi(1)− Yi(0)]

E[Mi(1)−Mi(0)]
= E[Yi(0, 1)− Yi(0, 0)|S10]

As Angrist and Imbens illustrate, the effect identified is the average effect of the mediator

on the outcome for the stratum of units for which treatment induces a change in the mediator

(the compliers). Therefore, under the instrumental variables assumptions for the treatment, the

22. Imai, Keele, and Tingley 2010.
23. Angrist, Imbens, and Rubin 1996.
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IV estimator identifies the average causal mediation effect among the stratum of units who are

affected by the treatment to change the mediator.

Suppose then that we relaxed the exclusion restriction but assumed that the direct effects

within each stratum are constant across mediator levels

Assumption 6 No mediator-treatment interactions for direct effects

E[Yi(1, 0)− Yi(0, 0)|Sab] = E[Yi(1, 1)− Yi(0, 1)|Sab]

for a = {0, 1}, b = {0, 1}

We can then write the average treatment effect in terms of the indirect effect of interest plus the

sum of three direct effects across each of the three principal strata

τ = ρ+ E[Yi(0, 1)− Yi(0, 0)|S10]× E[Mi(1)−Mi(0)]

where

ρ = E[Yi(1, 1)− Yi(0, 1)|S11]Pr(S11)

+ E[Yi(1, 0)− Yi(0, 0)|S00]Pr(S00]

+ E[Yi(1, 1)− Y (1, 0)|S10]Pr(S10)

The no-interaction assumption allows us to further simplify :

ρ = E[Yi(1, 1)− Yi(0, 1)|S11]Pr(S11) + E[Yi(1, 1)− Yi(0, 1)|S00]Pr(S00) + E[Yi(1, 1)− Y (1, 0)|S10]Pr(S10)

= E[Yi(1, 1)− Yi(0, 1)]

where the second step follows from the monotonicity assumption implying Pr(S11) + Pr(S10) +

Pr(S00) = 1.

Therefore, under a no treatment-mediator interaction assumption, we can decompose the aver-

age treatment effect into the quantity of interest and a sensitivity parameter reflecting the average
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direct effect of treatment holding the mediator fixed. Even if we do not make the no-interaction

assumption, the parameter ρ represents a stratum-weighted average of direct effects. However in

this case, we are averaging over two types of effects (Yi(1, 1) − Yi(0, 1) and Yi(1, 0) − Yi(0, 0)) in

different proportions and the interpretation of the sensitivity parameter becomes more difficult.

While it is possible to set multiple sensitivity analysis parameters for each of these effects and

combine them appropriately, we consider a single parameter sufficient for most applications.

Given a fixed violation of the exclusion restriction, ρ, the effect of the mediator for the complier

stratum can be identified by subtracting the sensitivity analysis parameter from the treatment

effect and dividing by the effect of treatment on the mediator.

E[Yi(1)− Yi(0)]− ρ
E[Mi(1)−Mi(0)]

= E[Yi(0, 1)− Yi(0, 0)|S10]

We can then consider varying ρ across a range of feasible values to assess how the implied effect

of the mediator on the outcome changes as the researchers assumptions regarding the direct effect

change. Notably, we have made no assumptions regarding confounding of M and Y , allowing for

possible unobserved variables to affect both.

To extend the analysis to cases where the mediator and treatment are not binary and identi-

fication is conditional on covariates, we adopt the same linear structural model set-up from Imai

et. al. and use the standard two-stage least squares (2SLS) approach to estimate the effect of

the mediator.24 Since linear regression models are commonly used for covariate adjustment in

most observational studies, these modeling assumptions are already implicit in a large share of

studies of counteraction - including those we analyze in the main text. One important caveat is

that structural models require strong assumptions regarding effect homogeneity to justify various

product-of-coefficients techniques to estimate mediated effects irrespective of the other assump-

tions used to identify the effect of the mediator.25

We assume the following models for the outcome and mediator.

24. Imai et al. 2011.
25. See Glynn 2012 for examples of where these approaches can fail. The central intuition is that while products

of coefficients correspond to indirect effects on an individual level, researchers can only estimate average effects.
When treatment has an effect on the mediator for one subset of units which are radically different from those where
the mediator affects on the outcome, these products can be misleading.
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Mi = α2 + β2Ai + ξ′2Xi + εi2 (4)

and another model for the outcome conditional on the mediator

Yi = α3 + β3Ai + γMi + ξ′3Xi + εi3 (5)

where εi2 and εi3 are error terms that are allowed to be correlated. The conditional ignorability

of Ai implies that E[εi2|Ai, Xi] = 0. However, because Mi is not exogenous conditional on A and

X, E[εi3|Mi, Ai, Xi] 6= 0. However, we do have E[εi3|Ai, Xi] = 0 by ignorability of Ai. β2 denotes

the average treatment effect of a unit increase in a on Mi. Likewise, gamma denotes the average

treatment effect of a unit increase in m on Yi holding constant Ai. Assuming a constant β2

implicitly makes an assumption stronger than monotonicity as the effect is not simply positive or

negative for all units, but a constant α.

We are interested in estimating the parameter γ, denoting the effect of the mediator on the

outcome. However, estimating the second regression via OLS alone will yield biased estimates of

γ. Under the exclusion restriction, β3 = 0. Therefore, we can write

Yi = α3 + γMi + ξ′3Xi + εi3 (6)

The regression of M on A and X can be estimated via the standard least squares approach,

yielding coefficient estimates α̂2, β̂2, ξ̂′2. Substituting those fitted values in the second regression

yields

Yi = α3 + γ
[
α̂2 + β̂2Ai + ξ̂′2Xi

]
+ ξ′3Xi + εi3 (7)

Yi = α3 + γα̂2 + γβ̂2Ai +
[
ξ̂′2 + ξ′3

]
Xi + εi3 (8)

Since E[εi3|Ai, Xi] = 0, regressing Yi on the fitted values from the first regression and the
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covariates yields identifies the parameter γ.

We motivate the sensitivity analysis technique by assuming that the violation of the exclusion

restriction is equal to ρ. This allows us to state that the exclusion restriction will hold for a

transformed outcome: Yi − ρAi. This then allows us to write

Yi − ρAi = α3 + γMi + ξ′3Xi + εi3 (9)

and use the two-stage least squares estimator to estimate γ.

While this sensitivity analysis is motivated using the same linear structural equation models

as in the work by Imai et. al., it differs in two key respects. The Imai et. al. sensitivity analysis

framework starts from the assumption that researchers have accounted for all confounders of M

and Y in X and the sensitivity parameter relaxes this assumption by capturing the magnitude

of omitted confounding between M and Y . Under the approach suggested here, there are no

conditional independence assumptions made with respect to M and Y . Rather, the instrumental

variables assumptions hinge on the absence of a direct effect from A to Y that does not flow

through M , which is relaxed by varying the magnitude of the exclusion restriction. The Imai et.

al. sensitivity analysis varies the correlation between error terms in the model, the sensitivity

analysis we suggest varies the direct effect of treatment. Furthermore, we assume that researchers

are interested in both the average causal mediation effect (the combination of the A → M , and

M → Y pathways) and the average effect of M on Y . While it is possible to conduct a sensitivity

analysis just for the first by regressing outcome on the treatment, giving an estimate of β̂2γ, this

does not permit researchers to distinguish between cases where treatment affects the mediator

for very few units but γ is larger and cases where treatment affects many units but γ is small.

In assessing counteraction hypotheses in particular, we recommend researchers evaluate both the

effect of A on M and the effect of M on Y separately. In the instrumental variables design, the

latter is identified particularly for the sub-group of interest: those units for which A moves M .
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2 Replication details

2.1 Hafner-Burton, 2008

We make a few modifications to the Hafner-Burton data in our replication. Unfortunately, we are

unable to replicate the results from the original paper exactly as presented, even when utilizing

data that appears to be as close as possible to the paper’s original construction. Moreover, we

noticed substantial missingness in the original dataset with respect to key confounding variables

- in particular, population. We corrected these issues and updated the data to cover all countries

coded in the CIRI human rights data from inception (1981) to 2000, when the paper’s covariates

conclude. Since we have CIRI measures for 2001 and the original analyses used lagged outcomes,

we can also include 2001 in our analysis. Overall, we are able to report a total of 2173 complete

observations in the period from 1984 to 2001 (allowing for a three-period lag for the CIRI rights

outcome as suggested in the original paper).

Among the other corrections we make is to analyze comparable time periods for the CIRI

data and the political rights index reported in the original paper. As Table 2 of Hafner-Burton

shows, the reported sample size for the regressions on the political rights outcome is notably

larger than the sample size for the political terror regressions. We find that this is driven by

differences in coverage rates (as CIRI only begins in 1981). As we note in the main text, it is

important to analyze treatment effects for comparable samples in order to make claims about

mediation and counteraction. We also re-code the NGO shaming variable to have a more intuitive

interpretation. The original paper uses the (de-meaned) log of the number of mentions of a given

country by Amnesty International in a particular year. Because for many years, this value is equal

to 0 and the log of 0 is undefined, the paper replaces these zeroes with a small value. While

this is not stated anywhere explicitly in the original paper, it is implied that this value is .1

based on the minimum value given in the summary statistics for the advocacy variable in Table

1 (log(.1) = −2.303). Since the choice of this value is arbitrary and results in an uninterpretable

scale for the magnitude of the treatment effects, we consider an alternative coding that coarsens

the presence or absence of shaming into a binary indicator - whether Amnesty International issued

any press releases regarding that country in a given year. This appears to be the case in roughly

one-third of all country-years in our dataset. This indicator correlates at about .5 with the logged
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measure in the original paper and behaves similarly. Analyses with the original logged measure

are qualitatively identical to those we present here and still fail to recover a statistically significant

effect for Amnesty International shaming under the author’s originally specified

Terror Terror Terror Political
(Intercept) 0.01 0.00 −0.02 0.81∗∗∗

(0.31) (0.34) (0.42) (0.23)
Shaming (lag 1 year) 0.11 0.12∗ 0.18∗∗ 0.03

(0.07) (0.07) (0.08) (0.03)
Repression (lag 1 year) 0.43∗∗∗ 0.48∗∗∗ 0.66∗∗∗ 0.89∗∗∗

(0.03) (0.02) (0.02) (0.02)
Repression (lag 2 years) 0.17∗∗∗ 0.27∗∗∗

(0.03) (0.02)
Repression (lag 3 years) 0.18∗∗∗

(0.02)
CAT (lag 1 year) −0.02 −0.01 −0.00 −0.04

(0.06) (0.06) (0.07) (0.03)
CCPR (lag 1 year) 0.06 0.05 0.05 −0.06∗

(0.07) (0.07) (0.08) (0.04)
Democracy (lag 1 year) −0.27∗∗∗ −0.28∗∗∗ −0.35∗∗∗ −0.21∗∗∗

(0.08) (0.08) (0.08) (0.07)
Log GDP per capita (lag 1 yr) −0.11∗∗∗ −0.13∗∗∗ −0.17∗∗∗ −0.04∗∗∗

(0.02) (0.02) (0.03) (0.01)
Log Population (lag 1 year) 0.11∗∗∗ 0.13∗∗∗ 0.16∗∗∗ −0.00

(0.02) (0.02) (0.02) (0.01)
Civil war (lag 1 year) 0.30∗∗ 0.35∗∗∗ 0.53∗∗∗ 0.06

(0.12) (0.12) (0.13) (0.04)
War (lag 1 year) 0.39∗∗∗ 0.43∗∗∗ 0.43∗∗ 0.11∗

(0.13) (0.15) (0.18) (0.06)
Fixed effects for year Yes Yes Yes Yes
N 2173 2173 2173 2173
N Countries 140 140 140 140
OLS coefficients. Cluster-robust (country) standard errors in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 1: Re-analysis of Hafner-Burton (2008): Effect of Amnesty International shaming on phys-
ical and political rights

Table 1 presents coefficient estimates for the regression models predicting physical integrity

rights and political rights.26 The original paper argues for a three-period lag model for physical

integrity rights and a one-period lag for political rights. When re-estimating these models on our

26. These reflect the estimates for Amnesty International shaming from Table 2 in the original paper.
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updated dataset, the direction of the physical integrity rights estimates are consistent with those

presented in the original paper. By relaxing the three-period lag assumption, we obtain stronger

estimated effects for shaming, but this is likely being driven by omitted variable bias as we find

the third and second lags remains a strong predictor of the outcome. Regardless of the choice

of covariates for the terror indices, the absence of any meaningful effect of shaming on political

rights on a comparable sub-sample is evidence against counteraction.

2.2 Lupu, 2013

In the case of Lupu, our reconstructed dataset contains slightly more observations (2155 versus

1966, similar to our replication of Hafner-Burton). Additionally, the original paper estimated

ordinal probit regression models for each of the civil and personal integrity rights indicators.

Instead of fitting ordinal probit models, we fit a standard ordinary least-squares regression of

the CIRI scores. While the scores are not properly “continuous,” OLS still returns consistent

estimates of the conditional expectation function. The coefficients from the OLS models also have

direct interpretations as changes in the conditional expectation of the mediator and outcome.

Additionally, linear models are required for using the fitted values approach in two-stage least

squares. Regardless of the change in the model, the estimates are all roughly comparable and

coefficients are in the same direction.

Table 2 replicates the relevant ordinal probit models from Lupu’s Table 3 and 4 for ICCPR

ratification. The coefficient estimates are very close to those reported in the original paper and

the significance thresholds are roughly the same for each variable, though notably, we do not

recover statistically significant effects for speech or religious freedom outcomes. Table 3 presents

the corresponding OLS estimates that we use in the main paper. Again, the directionality of the

coefficients largely matches what was presented in the original paper.
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Disappearances Association Speech Religious Freedom
ICCPR Ratification −0.16∗ 0.22∗∗ 0.11 0.10

(0.08) (0.09) (0.09) (0.08)
Judicial independence 0.18∗∗ 0.13∗∗ 0.21∗∗∗ 0.19∗∗∗

(0.07) (0.06) (0.07) (0.05)
Polity −0.00 0.08∗∗∗ 0.09∗∗∗ 0.04∗∗∗

(0.01) (0.01) (0.01) (0.01)
Regime durability 0.01∗ 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Civil war −0.85∗∗∗ −0.15 −0.23∗∗∗ −0.06

(0.09) (0.10) (0.09) (0.11)
External war 0.04 −0.05 −0.14 −0.26

(0.21) (0.20) (0.15) (0.17)
GDP per capita (logged) −0.00 −0.06∗ 0.04 −0.12∗∗∗

(0.03) (0.03) (0.03) (0.03)
Population (logged) −0.09∗∗∗ −0.06∗∗∗ −0.03∗∗ −0.13∗∗∗

(0.01) (0.01) (0.01) (0.01)
INGOs 0.00 0.00 −0.00 0.00∗

(0.00) (0.00) (0.00) (0.00)
Rights (t-1) 1.07∗∗∗ 1.61∗∗∗ 1.03∗∗∗ 1.21∗∗∗

(0.09) (0.10) (0.08) (0.06)
Fixed effects for year Yes Yes Yes Yes
N 2155 2155 2155 2155
N Countries 144 144 144 144
Ordered probit coefficents. Cluster-robust (country) standard errors in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 2: Replication of Lupu (2013) - Ordinal Probit Regressions
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Disappearances Association Speech Religious Freedom
(Intercept) 1.02∗∗∗ 0.63∗∗∗ 0.54∗∗ 1.48∗∗∗

(0.22) (0.18) (0.27) (0.30)
ICCPR Ratification −0.05∗∗ 0.06∗∗ 0.04 0.04

(0.02) (0.03) (0.03) (0.04)
Judicial independence 0.06∗∗ 0.04∗∗ 0.08∗∗∗ 0.08∗∗∗

(0.02) (0.02) (0.02) (0.02)
Polity −0.00 0.03∗∗∗ 0.03∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00) (0.00)
Regime durability 0.00 −0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00)
Civil war −0.41∗∗∗ −0.05 −0.08∗∗∗ −0.02

(0.06) (0.03) (0.03) (0.04)
External war 0.01 −0.00 −0.05 −0.11∗

(0.08) (0.06) (0.05) (0.06)
GDP per capita (logged) −0.00 −0.02 0.01 −0.05∗∗∗

(0.01) (0.01) (0.01) (0.02)
Population (logged) −0.02∗ −0.01 −0.01 −0.05∗∗∗

(0.01) (0.01) (0.01) (0.01)
INGOs 0.00 0.00 −0.00 0.00∗

(0.00) (0.00) (0.00) (0.00)
Rights (t-1) 0.54∗∗∗ 0.64∗∗∗ 0.39∗∗∗ 0.62∗∗∗

(0.05) (0.03) (0.03) (0.03)
Fixed effects for year Yes Yes Yes Yes
N 2155 2155 2155 2155
N Countries 144 144 144 144
OLS coefficients. Cluster-robust (country) standard errors in parentheses. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 3: Replication of Lupu (2013) - Ordinary least squares regressions
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