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A. Mining’s E�ects on Armed Con�ict

A.1 ACLED Data

Table A.1: Mining Activity and Pr(Armed Con�ict) in ACLED

Dependent variable:

1(Battle)
Full Full Full Border Border≤2 Full Border≤2
(1) (2) (3) (4) (5) (6) (7)

Dit 0.003∗ 0.003∗ −0.001 0.002 0.003†

(0.001) (0.001) (0.002) (0.001) (0.001)

Pit (Placebo) −0.001 −0.002
(0.001) (0.001)

Mean(yit) 0.0003 0.0003 0.0003 0.0005 0.0008 0.0003 0.0006

Dependent variable:

1(Rebel Event)
Dit −0.0001 −0.0000 −0.002 −0.001 −0.001

(0.001) (0.001) (0.001) (0.001) (0.001)

Pit (Placebo) −0.001 −0.001
(0.001) (0.002)

Cell FEs 1,500,538 1,500,538 65,994 18,763 1,500,189 18,414

Cell-Period FEs 4,501,614

Year FEs 18 18

Country-Year FEs 1,008 1,008

Area-Year FEs 18,864 18,864 18,864

Mean(yit) 0.0003 0.0003 0.0003 0.0003 0.0005 0.0003 0.0004

Observations 27,009,684 27,009,684 27,009,684 2,273,094 471,402 26,997,974 443,971

Note: Robust standard errors clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-7: linear probability models per equation 1.�e unit of analysis is the grid cell-year. Models 4-5, 7: see �gure 3

for how border areas are de�ned. Models 6-7: Pit is a placebo indicator that turns on for a �ve-year period prior to

mining. Data onmining from IntierraRMG, SNLMetals andMining, andMining eTrack databases; outcome data from

ACLED (see appendix F). Battles correspond to event types 1-3 in the ACLED data; rebel events are coded if ACLED

codes either actor in a con�ict as a rebel force.

1



Table A.2: Mineral Prices and Pr(Armed Con�ict)

Dependent variable:

1(Battle)

(1) (2) (3) (4) (5) (6)

log(Price)it 0.003 0.004 0.001 0.0004 0.001 0.001

(0.002) (0.003) (0.001) (0.002) (0.001) (0.001)

Mean(yit) 0.0043 0.0043 0.0019 0.0019 0.0003 0.0003

Dependent variable:

1(Rebel Event)
log(Price)it 0.002 0.001 −0.001 −0.002† 0.001 0.001

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Cell FEs 940 940 284 284 1,499,840 1,499,840

Year FEs 17 17 17

Country-Year FEs 608 532 952

Mean(yit) 0.0025 0.0025 0.0019 0.0019 0.0003 0.0003

Mining Cell-Years Only X X X X
Var(#Mines) = 0 X X X X
Observations 8,776 8,776 4,851 4,851 25,497,303 25,497,303

Note: Robust SEs clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-6: linear probability models per equation 3. Models 1-4: sample only includes cell-years with active mines.

Models 3-6: sample restricted to cells with no change in in mining status (Dit) from 1997-2013. Models 5-6: sample

includes non-mining cells, imputing a price of zero to those areas. Commodity prices compiled from the World Bank,

USGS, and US EIA; outcome data from ACLED (see appendix F).
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A.2 UCDP Data

Table A.3: Mining Activity and Pr(Armed Con�ict) in UCDP-GED

Dependent variable:

1(UCDP Event)

Full Full Full Border Border≤2 Full Border≤2
(1) (2) (3) (4) (5) (6) (7)

Dit 0.0002 0.0005 0.001 0.002 0.002

(0.001) (0.001) (0.002) (0.002) (0.003)

Pit (Placebo) −0.0000 0.001

(0.001) (0.002)

Mean(yit) 0.0002 0.0002 0.0002 0.001 0.0014 0.0002 0.0013

Dependent variable:

1(UCDP Event> 25 Deaths)

Dit 0.0002 0.0002 0.0000∗ 0.0003 0.0003

(0.0002) (0.0002) (0.0000) (0.0002) (0.0002)

Pit (Placebo) 0.0000∗ 0.0001∗

(0.0000) (0.0001)

Cell FEs 1,500,538 1,500,538 50,766 14,309 1,500,292 14,063

Cell-Period FEs 6,002,152

Year FEs 22 22

Country-Year FEs 1,232 1,232

Area-Year FEs 17,490 17,490 17,490

Mean(yit) 0 0 0 0.0001 0.0001 0 0.0001

Observations 33,011,836 33,011,836 33,011,836 2,105,554 437,008 33,001,330 413,098

Note: Robust SEs clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-7: linear probability models per equation 1.�e unit of analysis is the grid cell-year. Models 4-5, 7: see �gure 3

for how border areas are de�ned. Models 6-7: Pit is a placebo indicator that turns on for a �ve-year period prior to

mining. Data onmining from IntierraRMG, SNLMetals andMining, andMining eTrack databases; outcome data from

Uppsala Con�ict Data Program2s Georeferenced Event Data (UCDP-GED) (see appendix F).
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B. Lagged Commodity Prices and Protest

Table A.4: E�ect of World Mineral Prices (Lagged) on Pr(Protest or Riot)

Dependent variable:

1(Protest or Riot)

(1) (2) (3) (4) (5) (6)

log(Price)i,t−1 0.006† 0.007∗ 0.010∗ 0.014∗ 0.013∗ 0.012∗

(0.003) (0.003) (0.005) (0.007) (0.004) (0.004)

Cell FEs 322 322 284 284 1,499,840 1,499,840

Year FEs 17 17 17

Country-Year FEs 519 518 904

Mean(yit) 0.0105 0.0105 0.0104 0.0104 0.0002 0.0002

Mining Cell-Years Only X X X X
Var(Dit) = 0 X X X X
Observations 4,940 4,940 4,693 4,693 23,997,589 23,997,589

Note: Robust standard errors clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-6: linear probability models per equation 3, where price has been lagged one year. Models 1-4: sample only

includes cell-years with active mines. Models 3-6: sample restricted to cells with no change in mining status (Dit) from

1997-2013. Models 5-6: sample includes non-mining cells, imputing a price of zero to those areas. Commodity prices

compiled from the World Bank, USGS, and US EIA; outcome data from ACLED (see appendix F).
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C. Evidence on Mechanisms

C.1 Reporting Bias

Table A.5: Mining Activity and Media Coverage

Dependent variable:

Mean(Articles/Protest)

Full Full Full Border Border≤2 Full Border≤2
(1) (2) (3) (4) (5) (6) (7)

Dit −0.46 −0.14 −0.32 0.49 −0.79
(0.81) (0.73) (1.15) (1.14) (4.16)

Pit (Placebo) −0.59 15.07∗∗

(0.78) (6.07)

Dependent variable:

Mean(Sources/Protest)

Dit −0.07 −0.04 −0.02 −0.11 −0.14
(0.06) (0.07) (0.04) (0.07) (0.23)

Pit (Placebo) 0.10 −0.12
(0.08) (0.32)

Cell FEs 8,484 8,484 1,227 577 8,426 519

Cell-Period FEs 12,037

Year FEs 36 36

Country-Year FEs 1,479 1,479

Area-Year FEs 6,893 3,079 2,400

Observations 20,427 20,427 20,427 11,619 3,760 20,122 2,922

Note: Robust standard errors clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-7: OLS models per equation 1. �e unit of analysis is the grid cell-year. Models 4-5, 7: see �gure 3 for how

border areas are de�ned. Models 6-7: Pit is a placebo indicator that turns on for a �ve-year period prior to mining. In

the top panel, the outcome is the average number of articles written about each protest in a cell-year; the dependent

variable in the bottom panel is the average number of sources covering each protest in a cell-year. �ese outcomes

can only be coded for cell-years that involve at least one protest. Data on mining from IntierraRMG, SNL Metals and

Mining, and Mining eTrack databases; outcome data from GDELT (see appendix F).
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C.2 Owners’ Characteristics

Table A.6: Mining Activity, Pr(Protest), and Owners’ Origins

Dependent variable:

1(Protest or Riot)

(1) (2) (3) (4) (5) (6)

Dit 0.005∗ 0.005∗ 0.005∗ 0.004∗ 0.006∗ 0.005∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Dit × 1(China)it 0.001 0.002

(0.015) (0.015)

Dit × 1(Tax Haven)it −0.001 −0.001
(0.003) (0.003)

Dit × 1(Government)it −0.006∗ −0.005∗
(0.002) (0.002)

Cell FEs 1,500,511 1,500,511 1,500,511 1,500,511 1,500,504 1,500,504

Year FEs 18 18 18

Country-Year FEs 1,008 1,008 1,008

Mean(yit) 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Observations 27,008,793 27,008,793 27,008,793 27,008,793 27,008,348 27,008,348

Note: Robust standard errors clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-6: linear probability models per equation 1, where treatment is separated into two groups using indicators for

whether companies from China (models 1-2), tax havens (models 3-4), or the domestic government (models 5-6) hold

any ownership stake in an active mining area. �e unit of analysis is the grid cell-year. Mining cells hosting projects

without ownership information are dropped as missing. Data on mining from IntierraRMG, SNL Metals and Mining,

and Mining eTrack databases; outcome data from ACLED (see appendix F).
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C.3 Environmental Hazards

Table A.7: Mining Activity, Environmental Hazards, and Pr(Protest or Riot)

Dependent variable:

1(Protest or Riot)

(1) (2) (3) (4) (5) (6) (7) (8)

Dit 0.02
∗

0.02
∗

0.01
∗

0.01
∗

0.01
∗

0.01
∗

0.03
∗

0.03
∗

(0.01) (0.01) (0.003) (0.003) (0.002) (0.002) (0.01) (0.01)

Dit×1(Surface Mine)i −0.01 −0.01

(0.01) (0.01)

Dit×Min(Dist. Protected Area)i 0.0000 0.0000

(0.0001) (0.0001)

Dit×Avg. Water Stressi −0.0000
∗ −0.0000

∗

(0.0000) (0.0000)

Env. Risk Exposurect −0.01
∗

(0.0004) (0.00)

Dit×Env. Risk Exposurect −0.03
∗ −0.03

∗

(0.01) (0.01)

Cell FEs 1,500,470 1,500,470 1,500,530 1,500,530 1,476,989 1,476,989 1,485,590 1,485,590

Year FEs 18 18 18 18

Country-Year FEs 1,008 1,008 1,008 954

Mean(yit) 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Observations 27,006,816 27,006,816 27,009,540 27,009,540 26,585,802 26,585,802 26,740,620 26,740,620

Note: Robust standard errors clustered on cell;
†p < 0.1,

∗p < 0.05

Models 1-8: linear probability models per equation 1, where the indicator for an active mine (Dit) has been interacted

with measures that vary cross-sectionally (surface mining, distance to a protected area, average water stress) or at the

country-year level (environmental risk exposure). �e unit of analysis is the grid cell-year. Data on mining from In-

tierraRMG, SNLMetals and Mining, and Mining eTrack databases; outcome data from ACLED (see appendix F). Data

on protected areas from UNEP-WCMC (2016); water stress, Gassert, Landis, Luck et al. (2014), and environmental risk

exposure, Hsu (2016).
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Table A.8: World Mineral Prices, Environmental Hazards, and Pr(Protest or Riot)

Dependent variable:

1(Protest)it

(1) (2) (3) (4)

log(Priceit) 0.02∗ 0.02∗ 0.02∗ 0.02∗

(0.01) (0.01) (0.01) (0.01)

log(Priceit)×1(Surface Mine)i −0.002
(0.005)

log(Priceit)×Min(Dist. Protected Area)i −0.0001
(0.0001)

log(Priceit)×Avg. Water Stressi 0.002

(0.003)

Env. Risk Exposurect −0.003
(0.01)

Cell FEs 621 932 937 939

Country-Year FEs 540 608 608 592

Mean(yit) 0.0177 0.0134 0.0134 0.0134

Observations 6,256 8,703 8,748 8,760

Note: Robust standard errors clustered on cell;
†p < 0.1, ∗p < 0.05

Models 1-4: linear probability models per equation 3, where price (logged) has been interacted with measures that

vary cross-sectionally (surface mining, distance to a protected area, average water stress) or at the country-year level

(environmental risk exposure). �e unit of analysis is the grid cell-year. Commodity prices compiled from the World

Bank, USGS, and US EIA; outcome data from ACLED (see appendix F). Data on protected areas from UNEP-WCMC

(2016); water stress, Gassert, Landis, Luck et al. (2014), and environmental risk exposure, Hsu (2016).
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C.4 In-Migration and Displacement

Table A.9: Mining Activity or World Mineral Prices and Migration

Dependent variable:

Prop. Moved

10km 10km 10km 10km 20km 20km 20km 20km

(1) (2) (3) (4) (5) (6) (7) (8)

Dit −0.08 −0.06 −0.06 −0.05
(0.11) (0.11) (0.07) (0.07)

log(Price)it 0.42 0.42 0.01 0.02

(0.49) (0.49) (0.22) (0.29)

Mine FEs 220 220 107 107 348 348 164 164

Year FEs 13 11 14 12

Country-Year FEs 35 23 39 28

Mean(yit) 0.62 0.62 0.63 0.63 0.62 0.62 0.63 0.63

Mining Years Only X X X X

Observations 295 295 137 137 528 528 226 226

Note: Robust standard errors clustered on mine; †p < 0.1, ∗p < 0.05

Models 1-2, 5-6: OLS models per equation 1. Models 3-4, 7-8: OLS models per equation 3. �e unit of analysis is the

mine-year, where a mining area is de�ned by a 10 (models 1-4) or 20 (models 5-8) kilometer bu�er centered on each

mine’s coordinates. Data on mining from IntierraRMG, SNL Metals and Mining, and Mining eTrack databases; com-

modity prices compiled from the World Bank, USGS, and US EIA; outcome data from DHS surveys (see appendix F).
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Table A.10: Migration in Mining Areas and Pr(Protest or Riot)

Dependent variable:

1(Protest or Riot)
10km 20km 10km 20km

(1) (2) (3) (4)

Prop. Moved 0.08 0.04 0.03 0.01

(0.18) (0.14) (0.07) (0.02)

Mine FEs 219 348 107 164

Year FEs 12 13 11 12

Mean(yit) 0.1 0.09 0.11 0.11

Mining Years Only X X

Observations 294 527 138 227

Note: Robust standard errors clustered on mine;
†p < 0.1, ∗p < 0.05

Models 1-6: linear probability models where an indicator for a protest or riot is regressed on the proportion of DHS

respondents in a mining area that have ever moved. Mining areas are de�ned by a 10 (models 1, 3) or 20 (models 2, 4)

kilometer bu�er centered on each mine’s coordinates. Models 3-4: sample restricted to years when the mine is active.

Data on migration from DHS surveys; outcome data from ACLED (see appendix F).
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Table A.11: Wealth Di�erences between Permanent Residents and Migrants

Dependent variable:

HH Asset Index

10km 10km 20km 20km

(1) (2) (3) (4)

1(Moved) 0.003 0.01

(0.01) (0.01)

1(Moved Post-Mining) 0.001 0.01

(0.01) (0.01)

Mine FEs 107 107 164 164

Year FEs 11 11 12 12

Mean(yit) 0.49 0.5 0.46 0.46

Mining Years Only X X X X

Observations 6,224 6,103 17,340 16,979

Note: Robust standard errors clustered on mine;
†p < 0.1, ∗p < 0.05

Models 1-4: OLS models where a household’s score on an asset index is regressed on whether they report having ever

moved (models 1, 3) or moved a�er mining started (models 2, 4). �e unit of analysis is the household. Mining areas

are de�ned by a 10 (models 1-2) or 20 (models 3-4) kilometer bu�er centered on each mine’s coordinates. Models 1-4:

sample restricted to years when the mine is active. Data on migration and household assets from DHS surveys (see

appendix F).
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C.5 Inequality

Table A.12: Mining Activity and Inequality or Wealth

Dependent variable:

Inequality Avg. HH Assets

10km 10km 20km 20km 10km 10km 20km 20km

(1) (2) (3) (4) (5) (6) (7) (8)

Dit −0.001 −0.01 −0.01 −0.004 −0.003 0.0003 −0.003 −0.004
(0.02) (0.03) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Mine FEs 402 402 549 549 404 404 550 550

Year FEs 22 22 23 23

Country-Year FEs 97 110 102 114

Mean(yit) 0.52 0.52 0.51 0.51 0.44 0.44 0.42 0.42

Observations 909 909 1,877 1,877 937 937 1,937 1,937

Note: Robust standard errors clustered on mine; †p < 0.1, ∗p < 0.05

Models 1-8: OLS models per equation 1, where the outcome is either inequality (constructed per McKenzie (2005))

(models 1-4) or the average score on an asset index (models 5-8).�e unit of analysis is the mine-year. Mining areas are

de�ned by a 10 (models 1-2, 5-6) or 20 (models 3-4, 7-8) kilometer bu�er centered on each mine’s coordinates. Models

1-4: sample restricted to years when the mine is active. Data on mining from IntierraRMG, SNL Metals and Mining,

and Mining eTrack databases; household assets from DHS surveys (see appendix F).
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Table A.13: Inequality in Mining Areas and Pr(Protest or Riot)

Dependent variable:

1(Protest or Riot)
10km 10km 20km 20km

(1) (2) (3) (4)

Inequalityit −0.03 −0.07 −0.01 −0.01
(0.09) (0.08) (0.04) (0.03)

Mine FEs 395 395 544 544

Year FEs 17 17

Country-Year FEs 89 99

Mean(yit) 0.11 0.11 0.12 0.12

Observations 836 836 1,696 1,696

Note: Robust standard errors clustered on mine;
†p < 0.1, ∗p < 0.05

Models 1-6: linear probability models where an indicator for a protest or riot is regressed on inequality in a mining area.

Mining areas are de�ned by a 10 (models 1-2) or 20 (models 3-4) kilometer bu�er centered on each mine’s coordinates.

Data on household assets from DHS surveys; outcome data from ACLED (see appendix F).
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Table A.14: World Mineral Prices and Inequality or Wealth

Dependent variable:

Inequality Avg. HH Assets

10km 10km 20km 20km 10km 10km 20km 20km

(1) (2) (3) (4) (5) (6) (7) (8)

log(Price)it −0.05 −0.09 −0.03 −0.03 −0.03 0.03 −0.04 −0.06
(0.09) (0.16) (0.04) (0.07) (0.05) (0.09) (0.03) (0.04)

Mine FEs 239 239 339 339 245 245 340 340

Year FEs 17 19 18 20

Country-Year FEs 66 83 70 87

Mean(yit) 0.57 0.57 0.55 0.55 0.47 0.47 0.44 0.44

Mining Years Only X X X X X X X X
Observations 407 407 785 785 422 422 813 813

Note: Robust standard errors clustered on mine; †p < 0.1, ∗p < 0.05

Models 1-8: OLS models per equation 3, where the outcome is either inequality (constructed per McKenzie (2005))

(models 1-4) or the average score on an asset index (models 5-8). �e unit of analysis is the mine-year. Sample is

restricted to years with activemines. Mining areas are de�ned by a 10 (models 1-2, 5-6) or 20 (models 3-4, 7-8) kilometer

bu�er centered on each mine’s coordinates. Models 1-4: sample restricted to years when the mine is active. Commodity

prices compiled from the World Bank, USGS, and US EIA; household assets from DHS surveys (see appendix F).
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C.6 Correlation between EITI and the Worldwide Governance Indicators

Figure A.1: Pooled Bivariate Correlations between EITI Candidacy and WGI
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D. Other Event Datasets

Table A.15: E�ect of Mining Activity on the Pr(Protest)

Dependent variable:

1(Protest or Riot) 1(Protest) 1(Social Con�ict)
ACLED ICEWS GDELT SCAD

(1) (2) (3) (4) (5) (6) (7) (8)

Dit 0.01∗ 0.01∗ 0.003† 0.003† 0.01∗ 0.01∗ 0.0004 0.0004

(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.001) (0.001)

Cell FEs 1,500,538 1,500,538 1,500,538 1,500,538 1,500,538 1,500,538 1,500,538 1,500,538

Year FEs 18 20 36 25

Country-Year FEs 1,008 1,120 2,016 1,400

Mean(yit) 0.0003 0.0003 0.0002 0.0002 0.0005 0.0005 0.0001 0.0001

Observations 27,009,684 27,009,684 30,010,760 30,010,760 54,019,368 54,019,368 37,513,450 37,513,450

Note: Robust standard errors clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-8: linear probability models per equation 1. �e unit of analysis is the grid cell-year. Data on mining from

IntierraRMG, SNLMetals andMining, andMining eTrack databases; outcome data fromACLED (models 1-2), ICEWS

(models 3-4), GDELT (models 5-6), and SCAD (models 7-8) (see appendix F). In ICEWS and GDELT events are re-

stricted to protests; in SCAD to social con�icts, more generally.

Table A.16: E�ect of World Mineral Prices on the Pr(Protest)

Dependent variable:

1(Protest or Riot) 1(Protest) 1(Social Con�ict)
ACLED ICEWS GDELT SCAD

(1) (2) (3) (4) (5) (6) (7) (8)

log(Price)it 0.012∗ 0.011∗ 0.007† 0.007† 0.011∗ 0.010∗ 0.003 0.003

(0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.003) (0.003)

Cell FEs 1,499,840 1,499,840 1,499,801 1,499,801 1,499,652 1,499,652 1,499,736 1,499,736

Year FEs 17 19 35 24

Country-Year FEs 952 1,064 1,960 1,344

Mean(yit) 0.0002 0.0002 0.0002 0.0002 0.0004 0.0004 0.0001 0.0001

Var(Dit) = 0 X X X X X X X X
Observations 25,497,303 25,497,303 28,496,281 28,496,281 52,487,950 52,487,950 35,993,749 35,993,749

Note: Robust SEs clustered on cell; †p < 0.1, ∗p < 0.05

Models 1-8: linear probability models per equation 3. Sample restricted to cells with no change in mining status (Dit)

from 1997-2013. A price of zero is imputed to non-mining areas. Commodity prices compiled from the World Bank,

USGS, and US EIA; outcome data from ACLED, ICEWS, GDELT, SCAD (see appendix F).
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E. Proofs

E.1 Complete-Information Game

Consider a game of complete information between a Community and a Firm that owns a project with

non-negative pro�ts (θ ∈ R1
+). In each round of bargaining, one player proposes a split of the project’s pro�ts:

{(xi, x−i) : xi, x−i ≥ 0;xi+x−i ≤ θ}.�e other player can accept, ending the game, or reject. If they reject,

then they must choose a duration to delay (t ∈ [t,∞)). Proposal power alternates between players a�er each

rejection. In all games presented below, the Community proposes �rst. Each player’s payo� is simply their

share of the surplus discounted by any delay required to reach agreement. Formally, u(xi, t; δi) = xie
−δit

for i ∈ {C,F}, where xi is the share obtained by player i, δi > 0 is player i’s opportunity cost, and t is any

delay prior to reaching the �nal bargain.

De�nition 1. Γ =
δF

δF + δC

Proposition 1. �ere exists a unique stationary sub-game perfect equilibrium inwhich the Firm immediately ac-
cepts the Community’s o�er. As the minimum time between o�ers approaches zero, the shares of the Community
and Firm are given by (θΓ, θ(1− Γ)).

Proof. Stationarity implies that the each responder’s value function is the same a�er each history: V i
R(ht) =

V i
R for all ht and i ∈ {C,F}. Suppose that the Firm is the responder without loss of generality.

It is straightforward to show that the Firm’s unique optimal strategy when faced with an o�er x is to

reject if x < V F
R and accept when x ≥ V F

R . Obviously, the Firm has to accept if x > V F
R , but it must also

accept if x = V F
R . Suppose it did not and rejected with some probability ρ > 0. �e Community could

then pro�tably deviate by o�ering just slightly more, V F
R + ε where ε > 0, which the Firm would certainly

accept. To see how, note that V F
R + V C

R ≤ 1. �is implies that V F
R + V C

R e
−tF δC < 1, as e−tF δC < 1 where

tF ∈ [t,∞) is the equilibrium amount of delay by the Firm (and tC is the equilibrium amount of delay by

the Community) if they reject. (Note that stationarity implies tF (ht) = tF and tC = tC(ht) for all ht.)�is

implies that we can �nd ε ∈ (0, ρ(1− V F
R − V C

R e
−tF δC ) that makes the deviation pro�table.

Given the Firm’s optimal unique strategy, the Community must o�er V F
R to the Firm.�e Community

does not want to o�er more, as they could ensure acceptance and a larger share by o�ering exactly x = V F
R .

�e Community also does not want to o�er less, as rejection yields a lower payo�, since 1−V F
R > V C

R e
−tF δC ,

where tF is the equilibrium delay by the Firm a�er rejecting.

It remains to derive the equilibrium o�ers. �e Community’s o�er must leave the Firm indi�erent be-

tween accepting now and rejecting, delaying, and counter-o�ering.�is implies two indi�erence conditions
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that characterize V F
R and V C

R .

(1− V F
R ) = V C

R e
−tF δC

(1− V C
R ) = V F

R e
−tCδF

1 > V C
R =

1− e−tCδF
1− e−tF δCe−tCδF

> 0

1 > V F
R =

1− e−tF δC
1− e−tF δCe−tCδF

> 0 (4)

where tC , tF are equilibrium delay times for the Community and Firm, respectively. For all tC , tF ≥ t > 0,

V F
R , V

C
R ∈ (0, 1).

Finally, it remains to be shown that neither party delays longer than they have to (t) before making their

o�er. Consider a one-stage deviation in which the Community delays t + ε and then o�ers V F
R . �e Com-

munity’s payo� frommaking this minimum acceptable o�er a�er an additional ε delay is (1−V F
R )e−(t+ε)δC ,

which is less than (1− V F
R )e−tδC . So the deviation is not pro�table.

Substituting tC = tF = t, into the equilibrium o�er (eqn. 4) and taking the limit as t→ 0,

lim
t→0

V C
R =

δF
δC + δF

(5)

by L’Hopital’s rule. Equation 5 is how Γ is de�ned.
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E.2 One-sided Informational Asymmetry

In this modi�ed game the Firm knows its project’s pro�tability (θ ∈ R1
+), but the Community only

knows the range of pro�tability (θ ∈ [θ, θ]; θ > θ) and holds a prior belief (F (·)) about the distribution of

projects over this range. In each round, the player making the o�er proposes a payout to the Community of

xC withxF = θ−xC being retained by the Firm.�e game is otherwise identical to the complete information

game of alternating o�ers described in section E.1.114

Tomake the analysis tractable, Imake three additional assumptions. First, as the primary concern is with

the occurrence delays and not the �nal pro�t split, I assume for convenience that the Firm and Community

share the same opportunity cost:

Assumption 1. �e Firm and Community have the same opportunity cost (δF = δC = δ).

Second, I also adopt the �rst assumption of Admati and Perry (1987, 349):

Assumption 2. If a player can obtain the same payo� by making fewer o�ers, then they make fewer o�ers.

Finally, I place a restriction on the Community’s beliefs. I assume that the Community only pays attention

to the Firm’s delay strategy when updating their beliefs, and not the split (xC) that the Firm proposes a�er

that delay. �is assumption is natural: while delaying is a costly signal for the Firm to send, shouting out a

proposed split is not. �us, the Community ignores the proposed split when attempting to infer the Firm’s

type.

Assumption 3. �e Community’s beliefs about the project’s type are based only on the time that the Firm delays.

E.2.1 Lemmas

De�nition 2. Let t : Θ→ R1
+ be a �rm strategy. t(θ) is locally incentive compatible i� ∀ θ ∈ Θ, there exists

ε > 0 s.t. u(t(θ̃) | θ) ≤ u(t(θ) | θ) ∀ θ̃ ∈ [θ − ε, θ + ε].

Lemma 1. In a stationary, di�erentiable fully separating pure strategy PBE, a �rm’s delay strategy (t(θ)) must be
locally incentive compatible.�at is, a �rm of type θ can not improve their payo� by delaying in�nitesimallymore
or less tomimic a di�erent type θ̃. Given this condition, a �rm’s strategymust be of the form t(θ) = k−log(θ)/δ.

Proof. Local incentive compatibility requires that no �rm can pro�t by in�nitesimally deviating to the equi-

librium strategy of another �rm (de�nition 2).

Let u(t(θ̃)|θ) be the payo� that type θ gets when it mimics the delay strategy of type θ̃ and makes the

o�er that type θ̃makes in equilibrium.�is must be the o�er that θ̃makes in the complete information game,

since we are conjecturing a fully separating equilibrium, stationarity, and assumptions 2 and 3.

114I continue to assume that the Community is a unitary actor, as collective action problems do not o�er an

explanation for why protests occur without further assuming that the Firm is uninformed about the Com-

munity’s resolve — a questionable assumption given the �rms’ outlays for community relations o�cers.
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De�neD(θ̃ | θ) := u(t(θ̃) | θ)−u(t(θ) | θ), which is the payo� to type θ frommimicking type θ̃. Local

incentive compatibility implies that the derivative ofD(θ̃ | θ) with respect to θ̃must be zero at the �rm’s true

type:

∂

∂θ̃
D(θ̃ | θ)

∣∣∣∣
θ̃=θ

= 0

Plugging inD(θ̃ | θ), this �rst order condition reduces to:

δθt′(θ) + 1 = 0

t′(θ) = − 1

δθ

Solving this di�erential equation,

t(θ) = k − log(θ)

δ

�is strategy, t(θ), is, by construction, locally incentive compatible.

Lemma 2. In a stationary, di�erentiable fully separating pure strategy PBE, a �rm’s delay strategy must also be
globally incentive compatible. �at is, a �rm of type θ can not improve their payo� by mimicking any other type.
In this game, local incentive compatibility (IC) is su�cient to establish global incentive compatibility.

Proof. Lemma 1 implies that t(θ) = k − log(θ)/δ. We can now rewriteD(θ̃ | θ) as

D(θ̃ | θ) =

(
θ − θ̃

2

)
θ̃e−δk − θ2

2
e−δk

By construction, when the �rm employs strategy t(θ), the �rst derivative ofD(θ̃ | θ) evaluated at the �rm’s

true type is zero. As such, the prescribed equilibrium strategy is a local minimum or maximum ofD(θ̃ | θ).
Taking the second derivative ofD(θ̃ | θ), we �nd that it is always negative:

∂2

∂θ̃2
D(θ̃ | θ) = −e−δk < 0

D(θ̃ | θ) is globally concave in θ̃. As such, the �rm attains the global maximum of D(θ̃ | θ) by playing the
prescribed equilibrium strategy and has no incentive to deviate and mimic another type.

Lemma 3. For any o�-the-path beliefs by the Community that place a point mass on some θ′ ∈ [θ, θ], no k
strictly greater than log(θ)/δ can sustain the stationary, di�erentiable fully separating pure strategy PBE.
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Proof. Suppose that k > log(θ)/δ. Lemma 1 implies that, in equilibrium, no �rm chooses a period of delay

in the interval [0, t(θ)). When k is this large, then even the most pro�table �rm chooses to delay.

If (o� the equilibrium path) the Community observes t′ ∈ [0, t(θ)), suppose that they form the pos-

terior belief µ
[
θ|t′; t(θ)

]
= θ′. �is is the Community’s posterior belief a�er seeing a delay of t′ given the

conjectured �rm strategy t(θ).

If θ′ ≤ θ, then a �rmwith type equal to θ′ can nowpro�tably deviate: this �rm candelay t′ < t(θ′), reveal

their type, and propose the same counter-o�er they would have a�er delaying t(θ′). Given this pro�table

deviation, this cannot be an equilibrium.

Lemma4. For any posterior beliefs by the Community that place a pointmass on some θ′ ∈ [θ, θ] a�er observing
no delay, no k strictly less than log(θ)/δ can sustain the stationary, di�erentiable fully separating pure strategy
PBE.

Proof. Suppose that k < log(θ)/δ. Let θ̌ be the type that that now waits t = 0 given the strategy de�ned by

lemma 1.�us, all types in [θ̌, θ] do not delay, and there is a bunching of types at t = 0.

What does the Community infer a�er observing no delay? Suppose that µ
[
θ|t = 0; t(θ)

]
= θ′ ∈ [θ, θ].

We need to consider three cases:

(i) If θ′ < θ̌, then a �rm of type θ′ can pro�tably deviate by not delaying, rather than waiting t(θ′) > 0.

(ii) If θ′ > θ̌, then a �rm of type θ̌ can pro�tably deviate by in�nitesimally delaying, separating, and o�ering

t−1(ε)/2 < θ′/2, which the Community accepts.

(iii) Finally, if θ′ = θ̌, then θ ∈ (θ̌, θ] can pro�tably deviate by in�nitesimally delaying and pooling on

t−1(ε). �at is, the most pro�table types can, with virtually no cost, mimic a �rm that is slightly less

pro�table than θ̌ and, thus, retain a higher payo�.

Given these pro�table deviations, this cannot be an equilibrium.

Lemmas 1, 3, and 4 imply that k = log(θ)/δ and t(θ) =
log(θ)− log(θ)

δ
.
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E.2.2 Proof of Proposition 2

Let t : Θ → R1
+ be a �rm strategy. A pure strategy, fully separating Perfect Bayesian equilibrium is

“strongly pure” if for all t ∈ R1
+, the Community’s posterior beliefs µ

[
θ|t; t(θ)

]
place probability 1 on some

θ′ ∈ Θ.�is equilibrium concept does not permit posterior beliefs that are not a point mass. Also, I de�ne a

PBE in this model to be di�erentiable if the equilibrium function t(θ) is di�erentiable in θ. Finally, I require

that the Community’s posterior beliefs upon observing t > t(θ) are such that they believe they are facing θ

with probability 1.

Proposition 2. Granting assumptions 1-3 and that the Community believes with probability 1 that they face θ
if t > t(θ), as the minimum time between o�ers approaches zero, there exists a unique stationary, di�erentiable
pure strategy fully separating Perfect Bayesian Equilibrium that is strongly pure. In it, the following properties
hold:

(A) �e Community makes an optimal initial o�er (b∗).

(B) Firms with projects above a cuto� value (θ ≥ θ̂(b∗)) immediately accept.

(C) Firms with projects below that cuto� value (θ < θ̂(b∗)) reject the initial o�er, delay long enough (t(θ)) to
perfectly reveal their type, and then counter-o�er. As the project’s pro�tability has now been revealed, the
Firm counters with the split from the complete-information game, which the Community accepts.

(D) O� the path, if the delay exceeds t(θ), then the Community assumes that they are facing the least pro�table
type (θ = θ); otherwise (when t ∈ [0, t(θ)]), the Community inverts the delay function to determine the
type θ that they face a�er a delay of length t (θ = t−1(t)).

Proof. If the Firm rejects the Community’s initial o�er, then they choose to delay t(θ) = k − log(θ)/δ

(Lemma 1).�is is globally incentive compatible (Lemma 2). If the Community believes that they face θ a�er

observing no delay (and places no positive probability on θ > θ), then k = log θ/δ (Lemmas 3 and 4).

A�er the Firm delays t(θ) and reveals its type, it counter-o�ers with the split from the complete infor-

mation game (Proposition 1). By assumption 3, the Firm has no incentive to propose an alternative split, as

the Community ignores this action in forming its posterior beliefs. By assumption 2, if proposing a di�erent

split does not change the Firm’s payo� but does extend the game, then they prefer not to deviate.

How does the Community choose its initial o�er? Let θ̂(b) be the type that is indi�erent between ac-

cepting an initial o�er of b and delaying t(θ̂(b)). θ̂ is then de�ned by the following indi�erence condition:

θ̂(b)− b

2
=
θ̂

2
e−δt(θ̂(b))

θ̂(b) = θ −
√
θ(θ − b)
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(�e second solution for θ̂(b) falls outside the support of θ.) All θ > θ̂(b) will immediately accept an o�er of

b; all others will delay t(θ).�e Community’s optimal initial o�er is then

b∗ = arg max
b∈[θ,θ]

{(
1− F [θ̂(b)]

)
(b/2)︸ ︷︷ ︸

Firm accepts b

+F [θ̂(b)] Eθ

[
θ

2
e−δt(θ)

∣∣ θ < θ̂(b)

]
︸ ︷︷ ︸

Firm delays t(θ)

}

E.3 Extension: In�ated Expectations

�e probability of protest in the model with incomplete information is the probability the Firm would

rather disrupt production than immediately accept the Community’s initial o�er (i.e., Pr(θ < θ̂(b∗) =

F (θ̂(b∗))). To compute this probability, I assume that project pro�tability is distributed uniformly between

zero and some upper bound θ. We can now determine the community’s optimal initial o�er, b∗ = 3θ/4.

And, given this initial o�er, all �rms below θ̂(3θ/4) = θ/2 would rather disrupt production than immedi-

ately concede; the probability that a given �rm falls in this range is then F (θ/2) = 1/2.115

To extend the model, suppose that the true distribution of �rms is θ ∼ U [0, θ − ω] = F (·) where

ω ∈ (0, θ/2). Yet, the Community continues to believe that θ ∼ U [0, θ] = F̃ (·) (and this prior belief is

common knowledge). In such a setting, the Community expects to confront a �rm that is more pro�table (by

ω/2) than the population average type.

�e equilibrium described in proposition 2 still exists (though not uniquely) with one modi�cation: the

Community’s initial o�er now re�ects their in�ated prior beliefs (F̃ (·)) and not the true distribution of �rm

types. Changing the Community’s prior in this way does not a�ect the Firm’s behavior: while the Firm knows

that the Community holds exaggerated beliefs, it can not exploit this information for its own gain and, thus,

has no incentive to deviate from the strategy proposed in proposition 2.

Given their prior beliefs (F̃ (·)), the Community’s optimal initial o�er remains b∗ = 3θ/4, and all �rms

below θ/2 would rather disrupt production than concede. However, the probability that a �rm actually falls

in this range now a function of the Community’s bias: Pr(Protest) = F (θ/2) =
1

2

(
θ

θ − ω

)
. When the

Community’s beliefs match the true distribution of �rms (i.e., ω = 0), the probability of protest remains

1/2; however, this probability increases when the Community exaggerates the likelihood of hosting a highly

pro�table mine.

115Manipulating the upper bound on�rms’ pro�tability (θ) does not a�ect the probability of disruptions, because

the community adjusts their o�er as the upper bound of pro�ts changes.
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F. Data Sources

F.1 Commodity Prices

I employ World Bank (WB) commodity prices, the supply-demand statistics from the US Geological

Survey (USGS), and coal and uranium prices from the US Energy Information Administration (EIA). WB

prices are based on major commodity markets. �e USGS uses a variety of trade journals and open market

prices. Finally, the EIA bases its coal prices on open market prices, and its uranium series on the prices paid

by civilian operators of US nuclear power reactors. I convert all units to USD permetric ton and de�ate prices

to real 1998 USD.116 Where prices for the same commodity are available from both WB and USGS, I use WB

prices. Figure A.2 graphs the price series for the twenty most commonminerals (according to the number of

cell-years for which the commodity is coded as the modal commodity).

Figure A.2: Commodity Price Series (Base Year = 1990)
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116I choose 1998, because the USGS data provides real prices in 1998.
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F.2 Demographic and Health Surveys

�e Demographic andHealth Surveys are nationally representative surveys of between 5,000 and 30,000

households that focus on outcomes related to population, health, and nutrition (http://www.dhsprogram.

com/What-We-Do/Survey-Types/DHS.cfm). In many countries, multiple survey waves have been enu-

merated, allowing for comparisons over time. For this project, I compile the subset of surveys that also in-

clude approximate geo-coordinates. �ese allow researchers to locate over 99% of survey clusters to within

5km.�e resulting dataset includes just under 760,000 household observations from 72 surveys.117

Table A.17: Included Survey Waves from DHS

Country Waves

1 AO 2010 16 MD 1997, 2009, 2012

2 BF 1993, 1999, 2003, 2010 17 ML 1996, 2001, 2006, 2012

3 BJ 1996, 2001, 2012 18 MW 2002, 2010, 2012

4 BU 2011 19 MZ 2009, 2011

5 CD 2007, 2013 20 NG 1990, 2003, 2008, 2013

6 CF 1994 21 NI 1992, 1998

7 CI 1995, 2012 22 NM 2000, 2007, 2013

8 CM 1991, 2004, 2011 23 RW 2005, 2008, 2010

9 ET 1994, 2003 24 SL 2008, 2013

10 GA 2012 25 SN 1995, 2005, 2008, 2011

11 GH 1993, 1998, 2003, 2008 26 TG 1998

12 GN 1999, 2005, 2012 27 TZ 1999, 2007, 2012

13 KE 2003, 2009 28 UG 2001, 2007, 2011

14 LB 2008, 2012 29 ZM 2007

15 LS 2004, 2009 30 ZW 1999, 2005, 2010

Migration

�e DHS asks how long households have lived in their place of residence. Respondents can answer

“always,” which I use to code households that have never moved (i.e., permanent residents).

Knowing both the year of the survey wave and how long a household has lived in their current residence,

I can also determine whether they moved before or a�er mining started, which I use in table A.11.

117�e DHS documentation notes that each row in the household recode datasets correspond to a unique house-

hold. �ere are, however, some instances of repeated household IDs within the same survey wave. In the

analysis presented above, I retain all rows.
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Assets and Inequality

Across most surveys, the DHS collects a common set of variables related to households’ access to drink-

ing water and toilet facilities, what the respondents’ homes are constructed of and the number of rooms used

for sleeping, and the ownership of common consumer items. I use the recodemaps from the DHS to generate

standard codes for the drinkingwater (piped, well, surface, tanker/bottled, or other), toilet facilities (�ush, pit,

none, other), and home construction variables (natural, rudimentary, �nished, other). �e variables related

to consumer items are yes or no questions.�e asset index I employ is the mean of the following non-missing

indicator variables: does not rely on surface water, has some toilet facility, does not have a �oor made of nat-

ural materials, does not have walls made of natural materials, does not have a roof made of natural materials,

has electricity, owns a radio, owns a telephone, owns a television, owns a refrigerator, owns a bicycle, owns a

motorcycle, and owns a car.

Figure A.3: Asset Index vs. DHS’s (Relative) Wealth Classi�cations
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Households’ scores on the asset index are �rst demeaned by survey. I then take the average of these de-

meaned scores for each wealth quintile. Finally, these averages are connected by a line, with one line for

each unique survey.

�eDHS does not report an asset index. It does, however, classify households intowealth quintiles based

on how they compare to other households surveyed in the same country and year (i.e., within the samewave).

�is DHS classi�cation incorporates respondents’ answers to additional country-speci�c questions. Unfor-

tunately, the relative classi�cation does not permit comparisons across countries or over time. Nonetheless, I
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can use it to assess the validity of my own asset index: are households that score relatively high on my index

(for a given survey wave) more likely to be classi�ed as richer? Figure A.3 presents this comparison. I nor-

malize my asset index by survey (to remove variation due to cross-country or over-time variation) and then

plot the normalized value of my asset index against the DHS’s wealth classi�cation. I connect these values

with a line; there is, thus, one line for each unique DHS survey in the data. As is apparent from the �gure,

knowing where a household falls on my asset index (relative to other respondents in their same country and

year) provides a good indication for where they fall in the DHS’s wealth distribution.

F.3 Environmental Hazards

World Database of Protected Areas

According toUNEP-WCMC (2016), “�eWorldDatabase on ProtectedAreas (WDPA) is the only global

database of protected areas. It is a joint e�ort between IUCN and UNEP, managed by UNEP-WCMC, to

compile protected area information for all countries in the world from governments and other authoritative

organizations which are referred to as data providers.”

�eWDPA includes areas designated by national governments, regional and international conventions,

and indigenous or community groups. �e WDPA de�nes protected areas per the International Union for

Conservation of Nature (IUCN) and Convention on Biological Diversity. �e IUCN considers a protected

area “a clearly de�ned geographical space, recognized, dedicated and managed, through legal or other e�ec-

tive means, to achieve the long term conservation of nature. . . ” (9). Areas only enter the WDPA if they meet

this de�nition, include an associated list of attributes, provide source information, and sign a contributor

agreement (12). In the analysis I use all sites included in the WDPA and measure the minimum (great circle)

distance between these sites and each mine.

Water Stress

�e World Resource’s Institute produces the Aqueduct Water Risk Atlas Global Maps (Gassert, Landis,

Luck et al. 2014). In this paper, I use theirmeasure of baseline water stress, which “measures total annual water

withdrawals (municipal, industrial, agricultural) expressed as a percent of the total annual available �ow.

Higher values indicate more competition among users” (8).�is is calculated by dividing water withdrawals

by total available blue water. �e baseline water stress data are only available cross-sectionally and could be

measured post-treatment.

Environmental Risk Exposure

Environmental Risk Exposure is one of the indicators included in the Environmental Performance Index

from Hsu (2016). �e authors describe it as a summary measure of “how much of the burden of disease

observed in a given year can be attributed to past exposure to environmental risk factors, which include:

unsafe water (unsafe sanitation); air pollution (ambient particulate matter pollution, household air pollution,

and ozone pollution)” (2). �e measure runs from 0-1, with higher values indicating greater risk, and is

available as a panel with observations in 1990, 1995, 2000, 2005, 2010, and 2013. For intervening years, I

impute the most recent past observation.
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F.4 Governance

�e Worldwide Governance Indicators from Kaufmann, Kraay, and Mastruzzi (2010) include six mea-

sures:

(1) Voice and Accountability: “Re�ects perceptions of the extent to which a country’s citizens are able to

participate in selecting their government, as well as freedom of expression, freedom of association, and

a free media.”

(2) Political Stability and Absence of Violence: “Re�ects perceptions of the likelihood that the government

will be destabilized or overthrown by unconstitutional or violent means, including politically-motivated

violence and terrorism.”

(3) Government E�ectiveness: “Re�ects perceptions of the quality of public services, the quality of the civil

service and the degree of its independence from political pressures, the quality of policy formulation and

implementation, and the credibility of the government’s commitment to such policies.”

(4) Regulatory Quality: “Re�ects perceptions of the ability of the government to formulate and implement

sound policies and regulations that permit and promote private sector development.”

(5) Rule of Law: “Re�ects perceptions of the extent to which agents have con�dence in and abide by the

rules of society, and in particular the quality of contract enforcement, property rights, the police, and the

courts, as well as the likelihood of crime and violence.”

(6) Control of Corruption: “Re�ects perceptions of the extent to which public power is exercised for private

gain, including both petty and grand forms of corruption, as well as ‘capture’ of the state by elites and

private interests.”

�eWGI are a country-year panel that runs from 1996-2016. Each of the sixmeasures range from roughly

-2.5 to 2.5 and are an index constructed using an unobserved components model.

F.5 Mining Projects

�is paper draws on three sources of project-level data on global mining activity: SNLMetals and Min-

ing, IntierraRMG, and Mining eTrack.118 �ese data are only available to subscribers and primarily serve

clients within the mining and �nancial sectors, though recent research by Knutsen, Kotsadam, Olsen et al.

(2016) and Berman, Couttenier, Rohner et al. (2017) draws upon the IntierraRMGdata.�ese providers com-

pete on their completeness and accuracy and rely on press releases, corporate and government reports, and

local and international news to compile and update their databases.

118In 2014, IntierraRMG was acquired by SNL Metals and Mining. However, the respective databases had not

been fully merged when some of the data used in this paper was accessed.
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Completeness

�ese databases do not include artisanal or illegal mines. Given the composition of source materials,

they are also more likely to miss two types of mines: (a) small-scale operations and (b) mines operated by

private companies, especially in cases where neither the company nor the government disclose information

about the project. �is second group could include mines operated by private or state-backed companies in

less transparent contexts. As noted in the main text, the empirical claims made in this paper are restricted to

commercial investments.�e omission of artisanal, illegal, and small-scale miners is, thus, appropriate.

Duplicate Mines

One challenge of working with partially overlapping databases is how to exclude duplicate observations.

As most of the analysis employs an indicator for mining activity (and not counts of mines), duplicate projects

are less of a concern. Nonetheless, I take a number of steps to identify and exclude duplicates. In particular,

I identify duplicate mines using (a) the names of mining projects (and approximate string matching), (b)

the commodities mined, and (c) the geo-coordinates of the mining projects (rounded to one decimal place

to allow for approximate matches). �is results in a dataset of mining projects sourced from one or more

databases.

Table A.18: Number of Mining Projects by Data Source

Source N

SNL 673
SNL, IntierraRMG 202
SNL, Mining eTrack 148
SNL, IntierraRMG, Mining eTrack 146
Mining eTrack 105
IntierraRMG, etrack 104
IntierraRMG 72

�is includes projects for which geo-coordinates and start years are available.

Assigning Start and End Dates

All three databases include a variable for when a project starts.�e SNL Metals and Mining and Intier-

raRMG glossaries claim that this corresponds to the �rst year of actual mining (i.e., production) and not the

year in which exploration commenced. Among the projects labeled as operational by SNLMetals andMining

or IntierraRMG or included in the Mining e-Track database, a start year is included for 84% of projects (or

can be coded from the earliest year in which production data is available). A start year is also included for

535 other projects in the SNL Metals and Mining or IntierraRMG data. Most of these are classi�ed into the

following stages: closed, expansion, feasibility, reserves development, satellite, or various stages of produc-

tion. I err on the side of inclusiveness and use all projects with start years and geo-coordinates to code cells

with active mines. If a project is labeled as active in 2014, then I code the end year as 2014, the last year in the

panel.
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F.6 Social Con�ict

�e Armed Con�ict Location and Event Data Project (ACLED) covers all countries on the African

continent from 1997 to 2014 (Raleigh, Linke, andDowd 2014). ACLED data is based on three types of sources:

“(1) more information from local, regional, national and continental media is reviewed daily; (2) consistent

NGO reports are used to supplementmedia reporting in hard to access cases; (3) Africa-focused news reports

and analyses are integrated to supplement daily media reporting” (Raleigh, Linke, and Dowd 2014, 17). �e

providers of the data claim that “the result is the most comprehensive and wide-reaching source material

presently used in disaggregated con�ict event coding” (17).�is information is used to codewhat type of event

occurred, the type of actor that participated (government, rebel force, political militia, ethnic militia, rioters,

protesters, civilians, or outside/external force), and where the event took place. I only retain events coded as

a “protest or riot” (a protest becomes a “riot” if the event turns violent) that have a precise geo-coding, i.e.,

a particular town is noted and geo-coordinates are available for that town. ACLED has enjoyed widespread

use in both political science and economics: Raleigh, Linke, Hegre et al. (2010), the article introducing the

dataset, has been cited over 330 times according to Google scholar.

�e Global Database of Events, Location, and Tone (GDELT) machine codes events from a wide array

of news sources (Leetaru and Schrodt 2013). GDELT includes a number of di�erent types of events, but I

only include protests, which can be geo-located based on the name of speci�c city or landmark. �e dataset

covers all countries over the period from 1979 to 2014. If an event is reported on in multiple stories or by

multiple sources, these reports are aggregated (to avoid double-counting) and information is recorded about

the number of news sources and stories covering each event.

GDELT errs on the side of inclusion and, thus, contains more false positives than other event databases.

However, head-to-head comparisons suggest that the dataset captures important changes in protest activity

(Ward, Berger, Cutler et al. 2013). Ward, Berger, Cutler et al. (2013) look at events in Egypt, Syria, and Turkey

as reported in GDELT and ICEWS, a warning system used by the US government.�ey �nd that “the volume

of GDELT data is very much larger than the corresponding ICEWS data, but they both pick up the same

basic protests in Egypt and Turkey, and the same �ghting in Syria” (10). Two aspects of the research design

that make me more comfortable about employing GDELT: �rst, my empirical strategy focuses on trends in

protest activity and not levels; and second, I include both cell and year (or country-year) �xed e�ects in our

regressions, which helps to account for di�erential rates of reporting in di�erent places and over time.

�e Integrated Crisis Early Warning System (ICEWS) is a product of Lockheed Martin that draws on

commercially available news sources from approximately 300 publishers, including both international and

national publishers (Boschee, Lautenschlager, O’Brien et al. 2015). LikeGDELT, ICEWSmachine codes events

from this corpus of news stories using the Con�ict and Mediation Event Observations (CAMEO) system,

which includes a top-level category for protest (Schrodt and Yilmaz 2007). �e dataset covers all countries

over the period from 1995 to 2014. To exclude events with imprecise geo-codes, I limit my sample to events

that include the name of a speci�c city or town.
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A recent evaluation of the ICEWS data asked human coders to evaluate a sample of events (from 2011 to

2013) and determine (a) whether protest events were, in fact, protests, (b) whether the correct source actor

was coded, and (c) whether the correct target actor was coded.�e report found that 84.5% of protest events

in the sample met these three criteria (Raytheon BBN Technologies 2015, 8).

I use the Uppsala Con�ict Data Program’s Geo-referenced Event Dataset (UCDP-GED) to evaluate

whether the onset of mining increases the probability of armed con�ict (Melander and Sundberg 2012). An

event in the UCDP-GED data is de�ned as: “�e incidence of the use of armed force by an organised (sic)

actor against another organized actor, or against civilians, resulting in at least 1 direct death in either the best,

low or high estimate categories at a speci�c location and for a speci�c temporal duration” (Melander and

Sundberg 2012, 3). I only use events that can be related to an exact location (i.e., a city or landmark). �e

dataset covers the African continent from 1989-2010.
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