
Role Based Toughness

First consider an extension to the model where the actors can have different preferences

over conflict based on whether they are in the proposer or responder role. That is, the type

of a player is now a double (βr, βp). and the conflict payoff is v−k+βp when in the proposer

role and v − k + βr when in the responder role.

Static Analysis

The analysis of the SP-SPE of the model is the same with some minor modifications to

notation. If player 1 has a toughness of βp1 in the proposer role and player 2 has a toughness

of βr2 in the responder role, then a deal is struck at the responders reservation point if:

βp1 + βr2 ≤ 2k. (1)

If this inequality does not hold, the proposer makes a low offer which is rejected.

Next, we compute the expected fitness payoff for a player with type βj when matched

with a player of type β−j. When player j is in the proposer role, his objective payoff is

v − βr−j + k if βpj ≤ 2k − βr−j and v − k otherwise. When player j is in the responder role,

their objective payoff is v + βrj − k if βrj ≤ 2k − βp−j and v − k otherwise. So the expected
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payoff as a function of j’s type is:

Π(βpj , β
r
j ; β−j) =



v +
βrj−βr−j

2
βpj + βr−j ≤ 2k and βp−j + βrj ≤ 2k

v +
k−βr−j

2
− k

2
βpj + βr−j ≤ 2k and βp−j + βrj > 2k

v +
βrj−k

2
− k

2
βpj + βr−j > 2k and βp−j + βrj ≤ 2k

v − k βpj + βr−j > 2k and βp−j + βrj > 2k

First, note that for any pair (βh, ph) that meets the equilibrium condition in the baseline

model, there is an analogous equilibrium where types can differ on toughness where βr =

βp = βh with probability ph and βr = βp = βl with probability 1−ph. In such an equilibrium,

increasing the toughness in any role for either type leads to more conflict and hence a lower

objective payoff, and decreasing the toughness either leads to a strictly lower objective payoff

(when βrj decreases) or no change in the payoff (when βpj increases). So, building on Theorem

1 in the main text:

Proposition 1. For any pc ∈ [0, 1], the model with asymmetric toughness based on role has

a SP-SPE where the probability of conflict is pc.

Second, note that the objective payoff is always weakly decreasing in βpj for any βpj > 0,

as becoming tough in the proposer role can only lead to more inefficient conflict. Further,

the objective payoff is weakly increasing in βpj for βpj < 0 as being “irrationally weak” can

only lead to proposing accepted offers that give a worse objective payoff than fighting. So,

for any β−j and βrj , any type where βpj 6= 0 gets a weakly lower payoff than they would with

βpj = 0. Formally:

Definition A type βj is weakly dominated if there exists a β′j 6= βj such that Π(βj; β−j) ≤

Π(β′j; β−j) for all β−j.
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Under this definition, any type with βpj 6= 0 is weakly dominated. So, if we restrict

attention to equilibria where weakly dominated types do not exist in equilibrium, we only

consider types where βpj = 0. It immediately follows that for βrj to give the highest payoff

possible, all types are βrj = 2k:

Proposition 2. The model with asymmetry of toughness based on role has a unique SP-SPE

with no weakly dominated types where all actors have βp = 0 and βr = 2k

In such an equilibrium, the proposer always offers v + k which is accepted, i.e., there is

no conflict.

Noisy Evolution

However, the lack of conflict is still not possible with a noisy evolutionary process. Using

the uniform noise, suppose that if a type βmax = (βpmax, β
r
max) gets the highest payoff, then the

toughness parameters for each actor in the subsequent round are given by (βpmax + νpi , β
r
max +

νri ) where νpi and νri are independent and uniformly distributed on [−εp, εp] and [−εr, εr],

respectively, where εp, εr > 0.

Following a similar analysis as the main uniform model, the fitness payoff for being type

βj when matched with a population with proposer fitness uniform on [βpm − εp, βpm + εp] and

responder fitness uniform on [βrm − εr, βpm + εr] is:

Π(βpi , β
r
j ;F ;σ) =

1

2
Πp(βpj ;F ;σ) +

1

2
Πr(βrj ;F ;σ)

where Πj is the expected fitness payoff in role j. When in the proposer role the only relevant

part of the distribution is the responder toughness and when in the responder role the only

relevant part of the distribution is the proposer toughness. So, finding the optimal type can

be separated into finding the optimal type in each role.
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For the proposer role, it is more straightforward to first consider the payoff for fixed types

(when using SPNE strategies):

πp(βpj , β
r
−j;σ

∗) =


v + k − βr−j βpj + βr−j ≤ 2k

v − k βpj + βr−j > 2k

The fitness payoff for making a deal (the first segment) is higher if v + k − βr−j < v − k, or

βr−j < 2k. So if βr−j < 2k the optimal proposer toughness is any βpj such that βpj < 2k− βr−j,

and if β−j > 2k then the optimal proposer toughness is any βjp such that βpj > 2k − βr−j.

So, if all responder types are greater than 2k any type such that βpj > 0 gets the highest

possible payoff, and hence there can be no stable distribution using a definition analogous

to [REFERENCE]. If all responders have toughness less than 2k then any type such that

βpj < 0 gets the highest possible expected fitness, so there can be no stable type distribution

of this form either.

So in any stable distribution, there must be some responders with βr−j > 2k and some

with βr−j < 2k. The only proposer type that gets the highest fitness when matched with an

individual with this distribution is βpj = 0. This is because types with βpj < 0 will strike

a deal with some responders with βr−j > 2k, which gives a lower fitness than fighting, and

types with βpj > 0 fight against some types with β−j
r < 2k, which gives lower fitness than

striking a deal.

So, this can only have a unique maximum at βpj = 0, and hence in any stable preference

distribution βp,∗ = 0. That is, there is never a benefit to having preferences that deviate

from fitness payoffs when in the proposer role.

This also implies that the expected payoff for having toughness βrj in the responder role
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in any stable preference distribution is:

Πr(βrj ;F
p;σ∗) = Pr(βp−j ≤ 2k − βrj )(v − k + βrj ) + Pr(βp−j > 2k − βrj )(v − k)

=


v − k + βrj βrj ≤ 2k − εp

2k+εp−βrj
2εp

(v − k + βrj ) +
βrj−2k+εp

2εp
(v − k) βrj ∈ (2k − εp, 2k + εp]

v − k βrj > 2k + εp

Again, the first segment is linear and increasing, the second segment is quadratic, and the

last segment is constant, though always at a lower level than the peak of the first segment.

The quadratic is maximized at βr = k+ εp/2, which is above 2k− εp if and only if k > 3εp/2,

so the optimal toughness nevel in the stable preference distribution is:

βr,∗ =


k + εp/2 k < 3εp/2

2k − εp k > 3εp/2

which is double the toughness of the equilibrium average toughness is the baseline model (if

εp = ε). So, by allowing the toughness to be conditional on whether a player is the proposer

or not, the aggregate toughness remains unchanged, though only responders are irrationally

tough.

To compute the probability of conflict, write the type a actor j is in role i as βi,∗ + νj.

So, the probability of conflict in the stable preference distribution is:

Pr(βr + βp > 2k) = Pr(βr,∗ + νr + νp > 2k) =


Pr(νr + νp > k − εp/2) k < 3εp/2

Pr(νr + νp > εp) k > 3εp/2

(2)

Determining the probability of conflict for either case requires computing the distribution

of νp+νr. It is useful to first state a general result about the sum of uniform random variables
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centered at zero but with different range:

Lemma 1. Let νh ∼ U [−εh, εh] and νl ∼ U [−εl, εl], where εl ≤ εh. Then:

i. the cumulative density function of νh + νl is given by:

F νh+νl(x) =



0 x < −εh − εl

(x+εl+εh)
2

8εlεh
x ∈ (−εh − εl, εl − εh)

x/(2εh) + 1/2 x ∈ (εl − εh, εh − εl)

1− (−x+εl+εh)2
8εlεh

x ∈ (εh − εl, εl + εh)

1 x > εl + εh

ii. F νh+νl(−x) = 1− F νh+νl(x)

Proof For part i, figure plots the joint density of νl and νh. For any x, the distribution

function is the relative area of the rectangle drawn by the bounds of the distribution below

the line νl + νh = x times the density over the rectangle, which is 1
4εlεh

(i.e., the product of

the individual densities). Clearly for x < −εl−εh none of the rectangle is under the diagonal,

so the distribution function is 0, and when x > εl + εh the entire rectangle is below and the

distribution function is 1.

The left panel shows that for x ∈ (−εl − εh, εl − εh) the region below the diagonal is a

right triangle with equal base and height. The diagonal intersects νh = −εh at νh = x+ εh,

so the sides are length x + εh − (−εl), and hence the area is (x+εl+εh)
2

2
, and multiplying by

the density gives (x+εl+εh)
2

8εlεh
.

The middle panel shows that for x ∈ (εl − εh, εh − εk), the area is a right triangle with

area (2εl)
2

2
plus a rectangle with area 2εl(x− (εl− εh)). Adding these and multiplying by the
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Figure 1: Illustration of CDF of Sum of Uniform Random Varibales
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density gives:

2εl(x− (εl − εh)) + 2ε2l
4εlεh

=
x

εh
+

1

2

The right panel shows that for x ∈ (εh − εl, εl + εh), the area under the diagonal is the

area of the entire rectangle 4εlεh minus the upper triangle with area (εl+εh−x)2
2

. Combining

these pieces gives part i.

Part ii follows from part i (or the symmetry of the densities of νl and νh around 0).

So, there are many cases to consider for the probability of conflict, depending on the

signs of εr − εp and k − εp/2, and then where k − εp/2 and εp lie in the five segments of the

CDF of νr +νp. Rather than enumerating all possible cases, we focus on comparative statics

analogous to those in the main text:

Proposition 3. In the unique stable preference distribution to the model with role-based

toughness, the probability of conflict is:
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i. equal to the probability of conflict in the baseline if εp = εr,

ii. weakly decreasing in k, and

iii. for any k > 3εp/2, equal to

p =



εr

8εp
εr < εp

εp

8εr
εr ∈ (εp, 2εp)

1
2
− εp

2εr
εr > 2εp

Proof Part i follows from evaluating the fact that β∗,r +β∗,p = 2β∗ (where β∗ is the average

toughness for the main model) and if εr = εp = ε the distribution of εr + εp is the triangle

distribution with CDF given by equation [REFERENCE].

Part ii follows immediately from equation 2.

For part iii, for any k > 3εp/2, the probability of conflict is 1 − F (εp) = F (−εp). When

εp > εr, −εp must lie on the second segment of the CDF and and is hence the probability of

conflict is:

(−εp + εp + εr)2

8εpεr
=

εr

8εp
.

When εp < εr, −εp lies on the second segment if −εp < εp− εr =⇒ εr < 2εp and on the third

segment otherwise. Plugging −εp into the relevant segment of the PDF gives the desired

result.

Part i implies that allowing role-based toughness changes the equilibrium preferences but

not the equilibrium probability of conflict if the amount of noise in the evolutionary process

is the same. Parts ii-iii examines what happens if the evolution of the toughness in different

roles is more or less noisy. The only case where conflict approaches 0 is if k is large and

εr → 0. This is because in this case βr,∗ → 2k− εp. So, the probability of conflict approaches
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Pr(νp > 2k − εp) = 0.

On the other hand, as εp → 0, the probability of conflict can become much larger than

in the baseline model. This is because βr,∗ → 2k, and hence any responder with a positive

draw of νr will fight every proposer.

Sacred Values

Next, consider a class of utility functions which depart more starkly from standard bar-

gaining models to capture the idea that players care about “sacred land” or values. In

particular, in this formulation players do no vary on the conflict payoff but on their payoff

for making agreements. The intuition is that there is some share of what players are bar-

gaining over x such that they are always willing to take any agreement where they get at

least x but are unwilling ot accept any agreement less than x. For example, an actor that

assigns a “sacred value” to getting v is one who demands at least half of the prize, perhaps

due to strong feelings about a norm of fairness.

To be general, we allow the actors to have a different minimal acceptable value depending

on their role in the bargaining game. In particular:

Definition A player has (x, x)-sacred value preferences if her subjective utility function in

role i is:

u(i, x, a) =


s a = 1, i = p, x > x or a = 1, i = r, x < x

0 a = 0

gi(x) a = 1, i = p, x ≤ x or a = 1, i = r, x ≥ x

for any s < 0, strictly positive and increasing gr(x), and strictly positive and decreasing

gp(x).

That is, when in the responder role any deal which give less than x is strictly (and

9



Figure 2: Sacred Values Preferences and the Bargaining Range
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discontinuously) worse than fighting. Similarly, when in the proposer role giving anything

more than x is discontinuously worse than fighting.

The top two panels in figure 2 show what these payoffs look like for a responder (top

right) and proposer (top left). For the responder, any deal below x is below zero and hence

“unacceptable”, while deals above x are better than fighting, get better as the offer increases.

Conversely, for a proposer, anything above x is unacceptable, and lower accepted deals are

better.

The bottom two panels illustrate the two important cases for determining the equilibrium

behavior. In the bottom left panel, the responders minimal acceptable offer is below the

proposer maximal acceptable offer, so any offer between (x, x) is preferred to fighting for

both actors. In the bottom right panel, x for the responder is above x for the proposer, so
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there is no mutually acceptable deal.

So, when two actors i and j are matched with i in the proposer role and j in the responder

role, by standard logic i will offer xj and it will be accepted if xj ≤ xi and will make an offer

which is rejected if xj > xi.

Proposition 4. An actor with (x, x)-sacred value preferences uses the same SPNE strategy

and hence gets the same objective payoff as an actor with toughness (βr, βp) = (v+k−xp, v−

k + xr)

Now consider a noisy evolutionary process where in each generation the type that gets

the highest fitness payoff (call these (xmax, xmax)) reproduces, and the next generation has

sacred value preferences where xi is uniformly distributed on [xi − εp, xi + εp] and xi is

uniformly distributed on [x − εr, x + εr]. Then by an identical analysis, there is a unique

stable distribution of preferences centered around x∗ = v + k − βp,∗ = v + k and:

x∗ = v − k + βr,∗ =


v + εp/2 k < 3εp/2

v + k − εp k ≥ 3εp/2

and the probability of conflict is the same as in the role-based toughness case.

More General Preferences

This equivalence suggests that the same equilibrium behavior and chance of conflict can

occur for a much wider class of preferences differing from the objective payoffs. A complete

description of a players preferences is a 4−tuple u = (wp, wr, ap(x), ar(x)), where wr ∈ R

and wp ∈ R are the preferences over conflict when in the responder and proposer role,

respectively, and ap(x) and ar(x) are the subjective utility when offer x is accepted in the

respective roles. The only restrictions we place on the preferences are the following:
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Assumption 1. The preferences for the actors u are such that: i) ap is weakly decreasing

in x and ar is weakly increasing in x

ii) there exists an x ∈ R such that x = min{x : ap(x) ≥ wp and an x ∈ R such that

x = max{x : ar(x) ≤ wr.

In words, i implies the proposer always prefers smaller offers and the responder always

prefers higher offers. Part ii implies that there is a well defined “highest acceptable offer” for

the proposer and a “lowest acceptable offer” for the responder. A somewhat more intuitive

assumption which implies this property is if ap(x) is right-continuous and wp ∈ Range(ap),

and similarly ar(x) is left-continuous and wr ∈ Range(ar). That is, the cases that need to

be ruled out are when either the fighting payoffs lie outside the range of possible payoffs for

acceptance or there is a discontinuity in the acceptance payoffs which renders the minimum

or maximum expressions undefined.

Suppose two players are matched to play the bargaining game, and call the player in the

proposer role i and in the responder role j. Then the proposer role either offers xj or an

offer which is rejected, and prefers to offer xrj if and only if xrj ≤ xi. That is, if there is a

division weakly preferred to war for both players, they strike a bargain at the minimal offer

accepted by the responder. Otherwise, they fight. So, a more general statement of lemma

?? is:

Lemma 2. Suppose players i and j have preferences meeting assumption 1, and i is placed

in the proposer role with j in the responder role. Then in any SPNE:

i. If xrj ≤ xpi , then the proposer offers xrj and it is accepted

ii. If xrj > xpi , then the proposer makes an offer less than xrj which is rejected.

So, any preferences meeting equation 1 induce identical behavior as the (x, x)-sacred

value preferences. While explicitly modeling the evolution of preferences is more complex,

as it requires specifying not just how a real-valued parameter changes but how the entire
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preference function evolves. However, as long as the resulting x and x behave in a similar

manner defined above, identical results arise in this more general setting.

Partially Observed Preferences

So far all of the analysis has assumed that the preferences of the players are known. In

the final extension, we relax this assumption. In particular, suppose that when two players

are matched, their preferences are observed with probability q, and with probability 1 − q

the actors only know the distribution of preferences.

Motivated by the analysis of role-based toughness as well as to simplify the analysis, we

assume that all actors preferences are equal to the objective payoffs when in the proposer

role, and in the responder role the conflict payoff is v − k + βr. We also assume uniform

noise, so if the type that gets the highest payoff is βrmax, then the payoffs in the next period

are uniformly distributed on [βmax − εr, βrmax = εr.

So, if the population is distributed on [βm − εr, βm + εr], when the type is unobserved

that proposer payoff for making offer x is:

up(x; βm) =


v − k x < v + k + βrm − εr

x−(v−k+βrm−εr)
2εr

(2v − x) + v−k+βrm+εr−x
2εr

(v − k) x ∈ (v − k + βrm − εr, v − k + βrm + εr)

2v − x x ≥ v − k + βrm + εr

The middle segment is a quadratic maximized at v + βrm−εr
2

. If this maximum lies below

v− k+ βrm− εr, then the proposer maxes an offer which is always rejected. If the maximum

of the quadratic is above v−k+βrm + εr, then the proposer makes this offer as it buys off all

types. If the quadratic is maximized on the relevant interval, the proposer makes that offer.
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So:

x∗u =


v +−k + βrm − εr βrm > 2k + εr

v + βrm−εr
2

βrm ∈ [2k − 3εr, 2k + εr]

v − k + βrm + εr βrm < 2k − 3εr

When the types are observed, the equilibrium behavior is the same as in the main model

(with βp = 0). So, if βrm < 2k − 3εr, then the proposer buys off all types when the type is

unobserved. This inequality also implies that the highest type is 2k−2ε, so a deal is reached

when the type is observed, and so the highest type always gets the highest fitness payoff,

and hence the distribution is not stable. Conversely, if βrm > 2k + εr, then all types fight

regardless of whether the type is observed, which also violates the stability condition. So, in

any stable equilibrium βrm ∈ [2k − 3εr, 2k + εr] and an interior offer is made when the type

is unobserved.

Next, we compute the fitness payoff for a responder with toughness βrj when the mean

toughness is βrm (within the range of types in the distribution). When the type is observed

the fitness payoff is v−k+βrj for βrj ≤ 2k and v−k otherwise. When the type is unobserved,

the responder accepts the offer made if and only if:

v − k + βrj ≤ v +
βrm − εr

2
=⇒ βrj ≤ k +

βrm − εr
2

So, the expected fitness is:

Π(βrj ; β
r
m) =


q(v − k + βj) + (1− q)

(
v + βrm−εr

2

)
βrj ≤ k + βrm−εr

2

q(v − k + βrj ) + (1− q)(v − k) k ∈ [k + βrm−εr
2

, 2k]

v − k βrj > 2k
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which is a piecewise linear function with two (downward) discontinuities. For there to be

a stable distribution at the first discontinuity, it must be the case that the center of this

distribution is in fact at the first peak, and there is no type at a higher βrj that gets a higher

payoff For the first condition:

βrm = k +
βrm − εr

2
=⇒ βrm = 2k − εr

Note this implies that the toughest type in the distribution lies exactly at the other peak of

2k. So, for this to represent a stable preference distribution it must be case that

Π(2k − εr; 2k − εr) ≥ Π(2k; 2k − εr)

q(v − k + (2k − εr) + (1− q)
(
v +

2k − εr − εr

2

)
≥ q(v + k) + (1− q)(v − k)

(v + k − εr) ≥ v + q2k − kq ≤ 1− εr

2k

The second peak always lies at 2k. If the center of the preference distribution is at the

second peak, the first peak lies at k + 2k−εr
2

= 2k − εr/2 which is above the lowest possible

type 2k − εr. So, for there to be a stable preference distribution at 2k it must be the case

that:

Π(2k − εr; 2k) ≤ Π(2k; 2k)

q(v − k + (2k − εr/2)) + (1− q)(v +
2k − εr/2− εr

2
) ≤ q(v + k) + (1− q)(v − k)

q ≥ 1− εr

4k

Since 1 − εr

2k
< 1 − εr

4k
, there may be a range of q where neither peak represents an

equilibrium. While there is no stable distribution of preferences in this case, there is a

stable cycle where generations alternate between being centered at 2k and 2k− εr/2. This is

15



because the optimal level of toughness when βm = 2k is 2k− εr/2, and when βm = 2k− εr/2

the optimal level of toughness is 2k.

Finally, consider the equilibrium probability of conflict in the stable (or cyclically stable)

distribution. When q ≤ 1 − εr

2k
, the mean of the preference distribution is 2k − εr, which

implies there is never conflict when the type is observed. When the type is unobserved, the

center of the preference distribution is indifferent between accepting the offer made or not,

so the probability of conflict is 1/2. So, the overall probability of conflict is (1− q)/2.

When q ≥ 1 − εr

4k
, the preference distribution is centered at 2k. When the type is

unobserved, there is always conflict, and when the type is observed there is conflict with

probability 1/2. So the overall probability of conflict is q/2 + 1− q = 1− q/2.

When q ∈ (1− εr

2k
), for half of rounds the preference distribution is centered at 2k giving

probability of conflict 1− q/2. For the other half, the distribution is centered at 2k − εr/2.

So, when the type is observed, the probability of conflict is 2k+εr−(2k−εr/2)
2εr

= 1/4. When the

type is unobserved, the offer made is accepted if βr > k + 2k−εr/2−εr
=

2k − 3εr

4
, which occurs

with probability
2k+εr−(2k− 3εr

4
)

2εr
= 7

8
. So, the total probability of conflict is:

1

2
(1− q/2) +

1

2
(q/4 + (1− q)(7/8))

General Single Reproducer Preferences

Suppose the toughness in the population follows density f(β−j) with support on [β, β]

(where these bounds can be infinite). Then the expected payoff for having toughness βj in

this population is (suppressing the strategy argument):

Π(βj) =

∫ β

β

π(βj; β−j)f(β−j)dβ−j =

∫ 2k−βj

β

v +
βj − β−j

2
f(β−j)dβ−j +

∫ β

2k−βj
(v − k)f(β−j)dβ−j
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If βj < 2k − β, this is equal to v +
βj−β−j

2
and if βj > 2k − β this is equal to v − k. so: So

on the range of βj where both parts of the integral are used:

∂Π(βj)

∂βj
=


1/2 βj < 2k − β

−βjf(2k − βj) +
∫ 2k−βj
−∞ f(β−j)/2dβ−j βj ∈ (2k − β, 2k − β)

0 βj > 2k − β

If the middle segment is always increasing, then the objective function is maximized at any

βj > 2k− β. If the middle segment is always decreasing, the objetive function is maximized

at βj = 2k − β.

A sufficient condition for there to be a unique maximizer is if the middle segment is

concave, which becomes:

∂2Π(βj)

∂2βj
= −3

2
f(2k − βj) + βjf

′(2k − βj) < 0

2

3
βj ≤

f ′(2k − βj)
f(2k − βj)
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