
A Dynamic Theory of Nuclear
Proliferation and Preventive War

Online Appendix

Muhammet A. Bas and Andrew J. Coe

A1 Proofs of Propositions

We start with a simple lemma that determines equilibrium behavior once B has acquired

nuclear weapons.

Lemma 1. Suppose that B has acquired nuclear weapons. In every period, A will offer

q = pn + cB, and B will accept q ≤ pn + cB. No war will occur.1

Subgame perfection implies that B will accept any q < pn + cB, because rejecting it

yields his war value, while accepting it and going to war in the next round guarantees a

higher payoff. Because of this, A would strictly prefer offering any q ∈ (pn − cA, pn + cB) to

war. For any such q that is less than pn + cB, there is a higher q that both A and B would

strictly prefer to war. Thus, in equilibrium A makes the offer that renders B indifferent to

war (q = pn + cB) and B accepts this or any higher offer and rejects any lower offer.

Proposition 1

Suppose that, in some period prior to B obtaining nuclear weapons, his equilibrium continu-

ation value is at least V B
n ≡ (1−pn− cB)/(1− δ). This implies that A’s own value is at most

1We assume throughout that pn + cB < 1. If this did not hold, then B would have no bargaining power,
with or without nuclear weapons, and so no incentive to acquire them, and A would have no reason to try
to stop B from getting them. We discard this uninteresting case.

1



1/(1 − δ) − V B
n = (pn + cB)/(1 − δ). But then A could profitably deviate by offering some

q ∈ (pn + cB,max{p+ cB, 1}) in all rounds prior to proliferation, which subgame perfection

requires B to accept. This violates the supposition of equilibrium, so B’s pre-proliferation

continuation value must always be less than V B
n .

Since, in a no-deal equilibrium, A does not react to signals of investment, an investment

that fails gives B the same continuation value in the next period as not investing, and this

value is less than V B
n . But the investment succeeds with positive probability, yielding a

next-period value of V B
n , and so B always strictly prefers to invest, given the chance.

In any peaceful no-deal equilibrium, B must receive at least V B ≡ max
{

1−p−cB
1−δ , δλV B

n

1−δ(1−λ)

}
,

since if he received less than the first term, he would do better by starting a war, and he

cannot receive less than the second term even if A offers q = 1 in every round before B

obtains nuclear weapons. This means that A’s continuation value is at most 1/(1− δ)−V B.

If this is less than A’s war value WA ≡ (p− cA)/(1− δ), then the unique no-deal equilibrium

features immediate war. It is easily seen that this can only occur when V B = δλV B
n

1−δ(1−λ) .

Re-arranging the inequality 1/(1 − δ) − δλV B
n

1−δ(1−λ) < WA leads to the war condition given in

the statement of the proposition.

Suppose instead that 1/(1− δ)− V B > WA and that war occurs in equilibrium. In the

period in which war occurs, subgame perfection requires B to accept any

q ∈
(
p− cA +

δλ

1− δ
(p− pn − cA − cB),min

{
1, p+ cB +

δλ

1− δ
(p− pn)

})
,

since taking this and going to war in the next round yields a better value for B than starting

a war now, given that B is investing. The supposed condition implies that this range is

non-empty, and any offer in it would also be better for A than war, so at least one player

has a profitable deviation to not starting a war, and thus war cannot occur in equilibrium.

Since, for any offer in the above range, A could make a slightly less generous offer that B
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would still accept, in equilibrium A offers q = min
{

1, p+ cB + δλ
1−δ (p− pn)

}
, and B accepts

this or any higher offer and rejects any lower offer.

Proposition 2

We first establish equilibrium behavior in the subgames in which B’s program has reached

the second stage. We then turn to the first-stage subgames. For convenience, we use “B1”

and “B2” to refer to B whenever his program is in the first or second stage, respectively.

We start by establishing some properties of any no-deal equilibrium that will be used

in later arguments. Observe that B’s continuation value from the beginning of any period

must be at least his war value WB. If it is not, B could profitably deviate by rejecting

A’s offer and thereby causing a war. Consequently, if the current round is peaceful and B

does not have nuclear weapons, B can invest and thereby guarantee himself an expected

next-round continuation value greater than his war value. If the investment fails, he will

receive at least his war value in the next round, but it will succeed (in the sense of B getting

nuclear weapons) with positive probability and, by Lemma 1, yield a value in the next round

of V B
n > WB. It follows that, in any round prior to B acquiring nuclear weapons, the

minimum offer B would accept gives him less than his per-period war value. Thus, in a

no-deal equilibrium, A’s offers will always give B less than 1 − p − cB, if it is positive, and

zero otherwise.

As supposed in the statement of the proposition, if A knows that B’s program has reached

the second stage, then A immediately attacks, and if she did not then B would invest. So

consider any prior period in which A faces B2, but has yet to detect this, and suppose

that B2’s continuation value is at least V B
n . For this to be true, it must be that A offers a

q ≤ pn+cB in that or some later period before proliferation. But this violates our observation

that A’s offer is always at least min{p + cB, 1}, so B2’s continuation value must always be

less than V B
n . Then the same argument as used in the proof of Proposition 1 applies, and
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B2 will always invest, given the chance.

Moreover, the supposition that a second-stage signal leads to war implies that B2 strictly

prefers investment to war, even if A offers him nothing. To see this, note that failed invest-

ment must yield a next-period value of at least WB, so that the present value of investment

is at least δ
[
λV B

n + (1− λ)WB
]
, and Proposition 1 implies this is greater than WB. Thus,

once B has reached the second stage, he will always accept any offer from A and invest. It

follows that, if A ever has to give B more than nothing, it is because this is required to satisfy

B1. This in turn implies that, in equilibrium, A will never make an offer that B1 would

reject. To see why, note that rejection of the offer would bring war, while acceptance would

enable A to infer that B’s program had reached the second stage. If there is any possibility

of the latter, A would do better by attacking rather than making the offer; otherwise, the

offer makes war certain and so we treat it as equivalent to attacking.

Now consider any period (call it t) in which B’s program is in the first stage, and suppose

by way of contradiction that there is a no-deal equilibrium in which B1 would not invest at

t, given the chance to do so. B1’s continuation values of investing (I) and not (NI) and B2’s

continuation value are:

V B1
t (I) = 1− qt + δε

[
λV B

n + (1− λ)
(
σWB + (1− σ)V B2

t+1

)]
+ δ(1− ε)

[
σV B

0 + (1− σ)V B1
t+1

]
V B1
t (NI) = 1− qt + δ

[
σV B

0 + (1− σ)V B1
t+1

]
V B2
t = 1− qt + δ

[
λV B

n + (1− λ)
(
σWB + (1− σ)V B2

t+1

)]
where V B2

t+1 is B2’s continuation value from the next period, given that he did not get nuclear

weapons this period, V B
0 is B1’s continuation value from the next period, given that A

received a signal that his program remained at the first stage, and V B1
t+1 is B1’s value from

the next period given that A received no stage signal.

Since B1 does not invest at t, it must be that V B1
t (I) ≤ V B1

t (NI), which is equivalent to
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V B2
t ≤ V B1

t (·), or:

λV B
n + (1− λ)

(
σWB + (1− σ)V B2

t+1

)
≤ σV B

0 + (1− σ)V B1
t+1. (1)

By expansion of V B2
t+1, the left hand side of 1 is at least:

VL ≡ V B
n

∞∑
i=0

[
Πi
j=1(1− pj)

]
δiµiλ+WB

∞∑
i=0

[
Πi−1
j=1(1− pj)

]
δi
[
pi + (1− pi)µi(1− λ)σ

]
where µ ≡ (1−λ)(1− σ) and pj is the probability that A attacks at the beginning of period

t + j, given that B does not have nuclear weapons and A has not received a stage signal

since at least period t. The “at least” follows from the fact that this expansion neglects any

value B would attain from A’s offers. Henceforth, we will abbreviate Πi
j=1(1− pj) as Pi.

On the right hand side of 1, V B
0 must be less than:

V B
0 ≡ V B

n

∞∑
i=0

(1− ε)iε
∞∑
j=0

µjλ+WB

∞∑
i=0

(1− ε)iε
∞∑
j=0

µj(1− λ)σ = V B
n ψ +WB(1− ψ)

where ψ = λ
λ+σ−λσ . ψ is the probability that the game will end with B’s proliferation,

assuming that A would never attack B unless she received a signal that B’s program had

reached the second stage, and is thus an upper bound on the equilibrium probability of

proliferation. Since the per-period payoffs associated with V B
n exceed those associated with

war, which exceed those associated with A’s pre-proliferation offers, and the formula ignores

discounting due to any delay in war or proliferation occurring, this formula must be greater

than V B
0 .

We deal with the second value on the right hand side of 1 (V B1
t+1) in two cases. First

suppose that, given the chance, B1 will not invest again after t, unless A receives a signal

of his stage. For this to be in equilibrium, it must be that V B1
t′ > WB for every t′ ≥ t

in which A has not yet received a stage signal. (If instead V B1
t′ ≤ WB, there would be
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a profitable deviation to investment, since investing is strictly preferred to not investing

whenever V B2
t′ > V B1

t′ , and we observed earlier that it must always be true that V B2
t′ > WB.)

This in turn implies that the offer qt′ associated with period t′ must be 1, so that A offers

nothing to B. (If instead qt′ < 1, then this cannot be a no-deal equilibrium, since A could

make a less generous offer and still avoid war in that period with certainty.) Then by

expansion of V B1
t+1, and substituting V B

0 for V B
0 , the right hand side of 1 is less than:

VR ≡ V B
0

∞∑
i=0

Piδ
i(1− σ)iσ +WB

∞∑
i=0

Pi−1δ
ipi

Using our lower and upper bounds on the two sides, 1 thus implies that VL < VR. Subtracting

WB
∑∞

i=0 Pi−1δ
ipi from both sides and collecting terms, we have:

∞∑
i=0

Piδ
iµi
[
λV B

n + (1− λ)σWB
]
<
∞∑
i=0

Piδ
i(1− σ)iσ

[
ψV B

n + (1− ψ)WB
]

⇔ (λ+ σ − λσ)
∞∑
i=0

Piδ
iµi < σ

∞∑
i=0

Piδ
i(1− σ)i

This inequality is false. To see why, temporarily set aside the factors of Piδ
i from the two

series. Since (λ+ σ − λσ)
∑∞

i=0 µ
i = σ

∑∞
i=0(1− σ)i = 1, and µi ≤ (1− σ)i for all i, it must

be that each partial sum of the simplified left hand side exceeds the corresponding partial

sum of the simplified right hand side. Returning to the unsimplified series, because Piδ
i is

at most one and never increases in i, it must shrink later terms in each series at least as

much as earlier terms. Thus, both unsimplified series will converge, but the one on the right

cannot possibly exceed the one on the left, since the latter converges more quickly relative

to its simplified version and is therefore reduced less by the presence of Piδ
i.

This contradiction eliminates the possibility that in a no-deal equilibrium B1 would not

invest from some period onward until A received a stage signal. So now suppose that B1

does not invest at period t, and, in the absence of a stage signal, waits until the period t′ > t
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to invest again. It is sufficient to show that 1 is contradicted when t′ = t + 1, because for

any larger t′, B1 will not invest at period t′′ = t′ − 1, giving rise to the same contradiction

except at t′′ instead of t. Since B1 invests at t′, it must be that V B1
t′ ≤ V B2

t′ , so 1 implies:

λV B
n + (1− λ)σWB + µV B2

t′ < σV B
0 + (1− σ)V B2

t′

⇔ ψV B
n + (1− ψ)WB = V B

0 < V B2
t′

This inequality is false. To see why, note that the argument establishing V B
0 as an upper

bound for V B
0 implies that it is also an upper bound for B’s continuation value in any period

prior to proliferation, regardless of stage. Thus, V B2
t′ ≤ V B

0 .

Thus, regardless of B1’s subsequent investment behavior, it cannot be in (a no-deal)

equilibrium for him to not invest at period t. Since t is arbitrary, the result is established.

Proposition 3

Since B always invests, signals of his investment are irrelevant to A’s estimate of his stage.

After i consecutive null stage signals since A was last certain that B was in the first stage,

the probability that B remains in the first stage is just (1− ε)i. The probability that B has

reached the second stage is the sum of the probabilities that he reached the second stage at

any given point since A was last certain of his stage, and then did not subsequently acquire

nuclear weapons, or
∑i

j=1(1 − ε)i−jε(1 − λ)j. Since B has not obtained nuclear weapons

(recall we assumed this would immediately become common knowledge), these are the only

two possibilities, and A’s estimate is:

∑i
j=1(1− ε)i−jε(1− λ)j

(1− ε)i +
∑i

j=1(1− ε)i−jε(1− λ)j

To see how the estimate converges, factor (1− ε)i out of numerator and denominator and
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cancel these (since ε < 1) to obtain
ε
∑i

j=1 α
j

1+ε
∑i

j=1 α
j , where α = (1−λ)/(1−ε). If ε ≥ λ, then α ≥ 1,

and the estimate clearly converges to 1 as i→∞. Otherwise, α < 1, and each sum converges

to α/(1− α) = (1− λ)/(λ− ε), so that the estimate converges to (ε− ελ)/(λ− ελ).

Proposition 4

Proposition 2 establishes B’s optimal behavior in a no-deal equilibrium, and Proposition 3

establishes A’s beliefs in such an equilibrium. Here, we show that A’s best response to B’s

strategy must be of the form given in the statement of the proposition.

First observe that, in equilibrium, any offer A makes must render B1 indifferent between

acceptance and rejection, or, if that is infeasible, must give B nothing (i.e., q = 1). It was

shown in the proof of Proposition 2 that it is always possible for A to satisfy B: B1 would

strictly prefer to accept q ≤ min{p+ cB, 1}, and B2 would strictly prefer to accept any offer

whatsoever. Since B1’s continuation value of acceptance varies continuously in A’s current

offer, either there is an offer that renders B1 indifferent between war and peace, or B will

accept any offer regardless of stage. If there is an offer that renders B1 indifferent between

war and peace, it cannot be in equilibrium for A to offer more: by Proposition 2, such an

offer has no effect on B’s behavior, so that A’s generosity is wasted. It was also shown

in the proof of Proposition 2 that it cannot be in equilibrium for A to offer less (A would

strictly prefer to attack). Thus, equilibrium requires that B accept an offer that renders B1

indifferent between acceptance and rejection, and that A’s offer must be this one, when it

is feasible. Similarly, if this offer is not feasible, then A’s offer must be q = 1, and B must

accept it. These requirements pin down the offers A will make in equilibrium.

Starting from any subgame prior to war or proliferation, and up to the occurrence of

a first-stage signal that would reset A’s estimate of the probability she faces B2 to 0, A’s

strategy consists of a vector of offers ~q to be made after each subsequent consecutive null

signal of B’s stage, and a vector of probabilities that A will attack after each consecutive null
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signal, ~π. After receiving i consecutive null stage signals, let V A
i be A’s continuation value

of making an offer just sufficient to satisfy B1 in that round (or q = 1 if this is infeasible)

rather than attacking.

We will show that, in any subgame of any no-deal equilibrium, V A
i must strictly decrease

in i. This implies that there may come a point at which A has received enough consecutive

null signals that her estimate of the probability she faces B2 is high enough to merit attacking

rather than tolerating further risk of proliferation. It also implies that once A has reached

this threshold, she will attack with certainty after any higher number of consecutive null

signals, in accordance with the proposition.

We restrict consideration to equilibria in which there exists some ı̄ such that, for all i ≥ ı̄,

πi ∈ {0, 1}. That is, we require that in equilibrium, once A has received sufficiently many

consecutive null signals of B’s stage, then A will not randomize over whether to attack in this

period, or after any number of additional consecutive null signals. This restriction simplifies

the proof, but it also rules out some empirically implausible equilibria. By Proposition 3,

as additional consecutive null signals are received, A’s estimate of the probability that she

faces B2 converges, so that any strategy excluded by this restriction would require A to

randomize over attacking at some point arbitrarily close to her estimate’s limit. But it can

be shown that, if there is an equilibrium of the subgame starting from that point, in which

A would randomize in that period, then there is a Pareto-superior equilibrium in which A

would not attack in that period or after any further consecutive null signals. (Not attacking

in that period raises the total value of the subgame, rendering B willing to agree to a less

generous offer and leading A to strictly prefer making this offer to attacking.)

With this restriction in place, we start from a subgame occurring after A has received

i > ı̄ consecutive null signals, to show that V A
i−1 > V A

i in any no-deal equilibrium. We will

make use of the following general form of the players’ continuation values when A makes an
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offer rather than attacking after i consecutive null signals.

V B2
i = 1− qi + δ

[
λV B

n + (1− λ)
[
σWB + (1− σ)V B2

i+1

]]
V B1
i = 1− qi + δε

[
λV B

n + (1− λ)
[
σWB + (1− σ)V B2

i+1

]]
+ δ(1− ε)

[
σV B

0 + (1− σ)V B1
i+1

]
V A
i = qi + δ [ρiε+ (1− ρi)]λV A

n + δ [ρiε+ (1− ρi)] (1− λ)σWA

+ δρi(1− ε)σV A
0 + δ [ρi(1− ε) + ρiε(1− λ) + (1− ρi)(1− λ)] (1− σ)Ṽ A

i+1

where V A
n ≡

pn+cB
1−δ is A’s continuation value once B has acquired nuclear weapons, V A

0 is

A’s continuation value once she receives a signal that B’s program remains in the first stage,

Ṽ A
i+1 is A’s continuation value in equilibrium after receiving i + 1 null signals, and ρi is

A’s estimate of the probability that B’s program remains in the first stage after receiving i

consecutive null signals since the last first-stage signal (or the start of the game).

Consider the probabilities that A will attack after i and i + 1 consecutive null signals:

(πi, πi+1). We divide the possible values of this ordered pair into five cases to be analyzed in

turn:

1. (π, 1): The only possible differences in the equations for B’s continuation values at i−1

and at i are in the offers A will make and the values B will receive in the subsequent

round, in the absence of a non-null signal or successful acquisition of nuclear weapons.

Since, in the absence of those events, B will receive his war value after i+1 consecutive

null signals with certainty, but will receive at least his war value after i consecutive null

signals (and more if he is at or reaches the second stage), it follows that the discounted

terms of V B1
i−1 will be at least as large as those of V B1

i , and hence that the offer A must

make to satisfy B1 after i−1 signals will be no more generous than that required after i

signals, so that qi−1 ≥ qi. Since Ṽ A
i = Ṽ A

i+1 = WA (using the fact that randomizing over

attacking is in equilibrium only if both attacking and not yield the same continuation

value), the equations for V A
i−1 and V A

i differ only in their estimates of the probability
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that B is in the first stage and in the offer A must make. By Proposition 3, ρi−1 > ρi.

So, relative to V A
i−1, V

A
i has increased transition probabilities to V A

n and WA and

decreased transition probabilities to V A
0 and Ṽ A

i+1. Since V A
n < WA ≤

{
V A
0 , Ṽ

A
i+1

}
, and

qi−1 ≥ qi, then it must be that V A
i−1 > V A

i .

2. (0, π), with 0 ≤ π < 1: Let j ≥ i + 1 be the first number of consecutive null signals

larger than i at which πj > 0, if any such number exists. (We deal with the case where

it does not below.) If it does, then by reasoning similar to that for the previous case,

the discounted terms of V B1
j−2 will be at least as large as those of V B1

j−1: only the latter

transitions to a positive probability of war in the absence of a non-null stage signal

or proliferation, and since every additional consecutive null signal brings a probability

of war at least 0 = πj−1, the overall probability that the game will end in war is

higher starting from j − 1 than from j − 2. Thus, it must be that qj−2 ≥ qj−1. The

same argument from in the previous case for comparing V A
j−2 to V A

j−1 applies, with the

exception that these two values also differ in the value of the continuation game A

faces in the absence of a non-null stage signal or proliferation. At j − 2, the absence

of these events will lead to a value of V A
j−1, which must be at least WA in equilibrium,

whereas at j−1, it leads to V A
j−2 = WA, so that it must be that V A

j−2 > V A
j−1. Then, by

induction, it must be that the discounted terms of V B1
i−1 are at least as large as those

of V B1
i , so that qi−1 ≥ qi, V

A
i > V A

i+1, and thus V A
i−1 > V A

i .

3. (π, 0), with π > 0: This pair cannot occur in equilibrium. The previous case implies

that, whatever the value of πi+2, since πi+1 = 0, it must be that V A
i+1 ≥ WA, and since

V A
i+1 < V A

i , it must be that V A
i > WA, implying that π > 0 cannot be in equilibrium.

4. πi > 0, 0 < πi+1 < 1: This pair cannot occur in equilibrium. The previous case

implies that πi+2 6= 0; if it is equal to 1, the first case implies that πi > 0 cannot be in

equilibrium. Finally, if πi+2 ∈ (0, 1), then let j > i + 2 be the first larger number of
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consecutive null signals for which πj is either 0 or 1; j exists by virtue of our restriction

on equilibria strategies, and the previous case implies that πj = 1. But then the first

case above implies that πj−2 = 0, and the second case implies that πj−3 = 0 if it

exists, and so on all the way back to πi+1, so that this last value cannot be positive in

equilibrium.

5. The excluded possibility in the second case above is that ~π may be of the form

(π, 0, 0, . . . ), so that if A did not attack at the first opportunity, then A would not

attack no matter how many additional consecutive null signals she received. Because

B1’s continuation value varies continuously in each component of ~q, and every future

round until a reset due to a first-stage signal looks the same to B1, except for possible

variation in future offers from A, then there must be a constant offer q∗ that is just

sufficient to satisfy B1 in every round, or else ~q = q∗ = 1 is sufficient.

Observe that any vector other than ~q = q∗ cannot be in equilibrium. Obviously this

is true for any other constant vector, which must either be too generous or too stingy

to B1. So consider any non-constant vector. If every component of this vector is at

least q∗, then B1 will not accept any of the offers that are above q∗, since the value

B1 receives from this vector starting from that point must be less than the value he

receives from the constant vector of q∗, and hence less than his war value. Similarly,

if every component is at most q∗, then every offer less than q∗ is too generous, since

at each such point B will receive strictly greater than his war value. In either case,

A could profitably deviate by changing her offer to q∗ or attacking. Thus, any non-

constant vector that is in equilibrium must have components above, and components

below, q∗. If, say, the ith component qi is greater than q∗, then at least one component

subsequent to qi must be less than q∗ to “make up the difference” to B1 and keep

his continuation value at i at least equal to his war value. Because B1 discounts
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subsequent offers, the sequence of differences between q∗ and subsequent offers below

q∗ must have a discounted present value to B1 of at least (qi − q∗)/δ. Because these

decreases must be made up by subsequent offers less generous than q∗, the sequence

of increases above q∗ in these latter subsequent offers must have a discounted present

value of at least (qi− q∗)/δ2. By repeating the argument, the discounted present value

of needed changes in subsequent offers from q∗ can be made arbitrarily large, but of

course the whole value of the game is finite—at most 1/(1 − δ)—so a non-constant

vector cannot be in equilibrium.

This implies that A’s continuation value, given that B’s program remains in the first

stage, does not differ across rounds, since A will make the same offer in every round,

B1 will accept it and invest, and the transition probabilities to the second stage,

proliferation, war, or a reset due to a first-stage signal are the same; call this value V A
1 .

Similarly, A’s continuation value, given that B’s program is in the second stage, does

not differ across rounds and is denoted V A
2 . Thus, we have V A

i = q∗+ρiV
A
1 +(1−ρi)V A

2

for all i. We know that V A
2 < WA, by the presumption that A would attack if she

knew she faced B2. Since ~π = 0, equilibrium requires that V A
i ≥ WA; this in turn

implies that V A
1 > V A

2 . By Proposition 3, ρi is strictly decreasing in i, so it follows

that V A
i is strictly decreasing in i.

This is enough to establish the result. Starting from any component of ~π, suppose it is 0.

Then the cases above imply that the previous component, and every one preceding it, must

also be 0, and that V A
i strictly increases as we move back to fewer consecutive null signals.

Suppose the starting component is instead some π ∈ (0, 1). Then the previous component,

and every one preceding it, must be zero, and V A
i again strictly increases in decreasing i.

Finally, suppose the starting component is 1. Then the preceding component is either 1,

π ∈ (0, 1), or 0; for all three possibilities, V A
i strictly declines as we move back. We can then

move the starting component back one consecutive null signal, and repeat. Thus, V A
i must
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be strictly decreasing in i, and ~π must be non-decreasing in i, with at most one component

that is strictly between 0 and 1, in any no-deal equilibrium.

A2 Empirical Evidence

We follow Montgomery and Mount (2014) (henceforth MM) in taking India’s program to

have acquired nuclear weapons capability by the time of its “peaceful nuclear explosive”

in 1974, and in dividing Iran’s program into pre- and post-revolution episodes and Iraq’s

into pre- and post-Gulf War episodes, since in both cases the program effectively had to

be restarted from the first stage. For the same reason, we also divide Iran’s program at

the last of Iraq’s successful strikes against the Bushehr reactor in 1988, Iraq’s program at

Israel’s successful strike on the Osiraq reactor in 1981, and North Korea’s program at the

1994 Agreed Framework.

We update the preventive attacks data from Fuhrmann and Kreps (2010) (henceforth

FK), which end at the year 2000, by adding the 2003 US invasion of Iraq and Israel’s 2007

strike on Syria’s nuclear program. We also make several changes to the data. First, we

stipulate that in the absence of the Gulf War, Iraq would have acquired nuclear weapons.

This reflects the conventional wisdom about what would have occurred were it not for the

Gulf War, which was not caused by Iraq’s nuclear program and can thus be taken as an

exogenous interruption of the proliferation-prevention interaction. Next, we assume that

in the cases of Libya in 2003, the United States seriously considered preventive attack, and

Iran in 2003 and 2005, the United States and/or Israel seriously considered preventive attack.

These events occurred after the FK data ends (at 2000), and can only be tentatively imputed

given the lack of declassified primary sources on these cases.2 Finally, we also drop Pakistan’s

SCoA against India in 1984, and the US/UK attacks against Iraq in 1993 and 1998, on the

2Our test results are qualitatively unaffected if these changes are dropped.
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grounds that all three were primarily intended for retaliation or punishment rather than for

prevention, and thus are not appropriate for testing our theory. According to the appendix

of FK, Pakistan considered attacking only in retaliation against an anticipated attack by

India against Pakistan’s nuclear facilities, rather than to prevent India acquiring the bomb

(which it had already mastered in 1974) (A7). The US and UK attacked Iraq in order to

punish it for not complying with the settlement imposed on it after the Gulf War. The

nuclear facilities struck were known to be inactive and under inspectors’ seal, and the intent

of the strikes was coercive, not preventive (Devroy and Gellman, 1993; Pollack, 2002, Ch.

3).

We include additional data for the nine episodes not covered by the compilation of intel-

ligence estimates in MM: the US, Japan, the UK, Australia, Egypt, Iran’s program under

the Shah and during the Iran-Iraq War, Iraq’s program before the Osirak strike, and Syria.

We do not need estimates of the US or UK programs, since there was no viable potential

attacker in both these cases, as argued in the main body on page 25. In the cases of Australia

(Walsh, 1997), Egypt (Walsh, 2001), Iraq 1973–81 (Braut-Hegghammer, 2011), Iran 1974–78

and 1984–88 (Koch and Wolf, 1997), and Syria 2001–07 (Albright and Brannan, 2008), we

assume no potential attacker estimated these programs to be nearing success, since all were

clearly in the first stage, having not yet even completed construction of a suitable reactor,

the sole path to fissile material these states were pursuing. For Japan 1943–45, the most

likely potential attacker is the US, which assessed Japan as lacking the industrial capacity

to develop nuclear weapons and so ignored its program (Grunden, 1998). Finally, for Iran

after 2002 (the last estimate in MM), sources suggest that the US and Israel estimated Iran’s

program to be within four years of success from 2003 to early 2005 (Nuclear Threat Initia-

tive, 2011; Corera, 2006, Ch. 3). However, in 2005, new developments apparently led the US

to push the time Iran was expected to get nuclear weapons back to at least 2010 (National

Intelligence Council, 2007, 9). Additionally, the appendix to FK implies that Israel would
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have had a near-success estimate of Pakistan’s program in 1979, due to intelligence shared by

the US (A5). We also assume that the USSR had a near-success estimate of South Africa’s

program after 1976, since unlike the US, the Soviets were tracking the program closely, and

detected South Africa’s construction of a test site (A8). Last, we read the account of US

intelligence on North Korea’s program from 1995 to 2006 given in the appendix to MM as

implying that the US estimated, by 2001, that North Korea had already obtained nuclear

weapons sometime in the mid-1990s, and thus never estimated its program to be nearing

success in the 1995 to 2006 episode.3

A2.1 Measures for Hypothesis 2

For the 22 episodes included in the test, we first need to establish when the likely potential

attackers started closely watching the program in question. Unfortunately, we do not have

intelligence estimates from any potential attacker except the US. We take the conservative

approach of setting the first year of intelligence monitoring for each state to be either the

first time serious consideration of attack occurs or the year of the first US estimate that

appears in MM, whichever is earlier. In many cases, intelligence is shared between the US

and other potential attackers (e.g. Israel, South Korea, UK), so that our measured year

will be accurate for these other attackers as well. Other cases mainly involve states toward

which the US is less hostile, and MM finds that the US generally pays less attention to the

programs of states toward which it is more friendly. This suggests that the likely potential

attackers in these cases would start monitoring the programs at least as early as the US, but

including earlier years would only strengthen our results.

For the seven episodes included in this test that MM does not cover, we measured the

3Given the uncertainty surrounding this episode, one might be inclined to exclude it from the test.
Similarly, it could be argued that in the cases of Australia, Egypt, South Korea, Iran 1974–78, Argentina,
and Brazil, no potential attacker would ever find it worthwhile to attack these programs, and they should
thus also be excluded. Dropping these episodes does not qualitatively alter our results.
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beginning of intelligence monitoring as follows. US monitoring of Japan must have begun

by 1945, since the US at some point during the war assessed Japan’s industrial capacity

to pursue the bomb (Grunden, 1998). US monitoring of Australia began by no later than

1968, when the US sent an ACDA/AEC team to investigate Australia’s hesitance to sign

the NPT (Walsh, 1997). Monitoring of Egypt began even earlier than Egypt’s program,

with an NIE on its program in 1963 (Central Intelligence Agency, 1963). The US engaged

in nuclear cooperation with Iran under the Shah, and from the beginning considered the

possibility of a weapons program (Burr, 2009). Sadot (2015) dates the beginning of Israel’s

careful monitoring of Iraq’s nuclear program to 1974. Iran’s restarted program was attacked

in its first year of existence, so we assume Iraq’s intelligence monitoring of it had begun by

then. Finally, while there are reports that Israel began monitoring Syria’s nuclear program

in 2004 (Thomas, 2015), we have not been able to confirm these elsewhere. We instead date

the start of monitoring from the US discovery of the site of Syria’s reactor, in 2005 (Albright

and Brannan, 2008).

Similarly, we must measure when the end of any opportunity for preventive attack oc-

curred, a non-trivial task given that the year when nuclear weapons were actually acquired

is not known with certainty in some cases (e.g., Israel, Pakistan). We set the end of each

episode to be either the last year in which an attack was seriously considered or the lesser

of the years of acquisition given in SW and JG, whichever is later.

Next we need to determine when a program was estimated to be “nearing success.” For

the same reasons as above, we use the US estimates in MM, and define “nearing success” as

occurring when the lower bound of the estimate’s most likely range of time until the state

in question will get nuclear weapons is four years or less.
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A3 Comparative Statics: Propositions and Intuitions

We proceed to analyze the effects of the exogenous parameters on expected behavior in the

absence of a deal. We assume throughout that the players’ discount rate, δ, is relatively

high. If lower values of δ are allowed, the statement of the comparative statics becomes

more complicated. However, only relatively high values of δ seem plausible empirically.

Table A1 summarizes the results. The rows contain the exogenous parameters, as well as

the endogenous parameter k, which is how long A will wait before attacking in the absence

of new intelligence that B’s program has not advanced to the second stage. Some of the

parameters can affect the outcomes in two general ways: directly, by altering the probability

of different paths through the game even as equilibrium k remains constant; and indirectly,

by changing the equilibrium value of k, which itself affects the expected outcomes. So, each

of these parameters has separate listings for its direct effect on each property and its indirect

effect through k, in addition to its overall effect. + and − indicate uniformly positive and

uniformly negative effects; 0 indicates no effect; +/− indicates that the direction of effect

depends on the other parameters; one sign is circled if it tends to predominate.

Lemma 2. Increasing k leads to a higher probability of proliferation, lower probability of

war and mistaken war, and a longer expected time to proliferation or war.

The longer A is willing to wait before attacking in the absence of new intelligence (k),

the more chances B will have for his investment to bear fruit, so that the probability of

proliferation increases and the probability of war decreases. Correspondingly, there are more

chances for the game to end before A’s mounting suspicion leads her to attack in the absence

of new intelligence, so that the probability of mistaken war—recall, in which A attacks when

B’s program has not actually advanced to the second stage—decreases. Finally, because A

will wait longer before attacking, the interaction between the two players is also expected to

last longer before proliferation or war occurs.
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Endogenous Outcomes

k Pr(Proliferation) Pr(War) Pr(Mistaken War) Expected Time

k + − − +

p− pn − − + + −

cA + cB + + − − +

λ +/	 +/	 ⊕/− ⊕/− +/	
direct + − 0 −

through k +/	 ⊕/− ⊕/− +/	

ε +/	 +/	 ⊕/− ⊕/− +/	
direct + − − −

through k +/	 ⊕/− ⊕/− +/	

σ ⊕/− +/	 ⊕/− +/	 +/	
direct +/	 ⊕/− − +/	

through k ⊕/− +/	 +/	 ⊕/−

Table A1: Comparative Statics
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Intuitively, k is governed by a tradeoff. Waiting longer before attacking gives A more

time to enjoy the surplus from avoiding war, as well as more time for new intelligence on B’s

program to come in, possibly revealing that it remains at the first stage, so that A needn’t

attack after all. But it also exposes A to an increasingly large risk that B’s program will

succeed, forcing A to offer better concessions once B has nuclear weapons. The equilibrium

value of k roughly balances this tradeoff: waiting until later to attack exposes A to more

risk than the additional surplus from peace is worth, while attacking earlier eliminates too

small a risk to justify the lost surplus. The balance is rough because A can only attack at

discrete intervals, so that the decision to attack will not come at the exact point in time at

which the value of attacking now and that of delaying one instant more are perfectly equal.4

Because the risks of peace and cost of war are not perfectly balanced, small-enough

changes in the exogenous parameters will not alter the terms of the tradeoff enough to

cause A to prefer to attack an entire period sooner (or later). Thus, small changes in the

parameters may have different effects than large changes, as we will see next.

Proposition 5. A sufficiently large increase in p − pn, or sufficiently large decrease in

cA + cB, will decrease equilibrium k and thereby lower the probability of proliferation, raise

the probabilities of war and mistaken war, and shorten the expected time to proliferation or

war. Small-enough changes will not affect the likelihood of the outcomes.

The larger the shift in power (p− pn) due to B getting nuclear weapons, the greater the

risk for A of waiting any longer, and the quicker A resorts to attack. Delaying the attack

offers the advantage of putting off its costs (cA + cB), but the smaller these are, the less

reason there is for A to dally. Thus, if the shift increases enough, or the costs decrease

4This occurs because, in our model, time passes in discrete periods rather than continuously, but we do
not view this result as an artifact of the model setup. A continuous-time model would entail the implausible
assumption that the leadership of state A must continuously reconsider the choice of policy toward the
proliferant. It seems more realistic to assume, as our model does, that having decided to tolerate the
proliferant’s program for now, the government of A will turn to other issues until some time has passed or
new intelligence has come in, so that a bureaucratically costly reevaluation of policy toward the proliferant
comes to seem justified.
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enough, A will attack sooner, so that the probabilities of war and mistaken war increase and

the interaction will end sooner. By contrast, if the changes are small enough, the best time

to attack will not change, and the likelihood of different outcomes will remain the same.

Proposition 6. A small-enough increase in λ will increase the probability of proliferation,

decrease the probability of war, leave the probability of mistaken war unchanged, and decrease

the length of the game, without affecting k. If ε is low enough, and λ is close enough to ε, then

a large-enough increase in λ may increase k, overall raising the probability of proliferation

and the expected length of the game, but lowering the probabilities of war and mistaken war.

Otherwise, large-enough increases in λ generally decrease k, overall lowering the probability

of proliferation and length, but raising the probability of war and mistaken war.

Although small changes in the ease with which the proliferant can master the second stage

and acquire nuclear weapons (λ) do not affect how long A will wait before attacking, they

do affect the likelihood of different outcomes directly. Given the same number of chances for

B’s program to succeed before A attacks, an easier second stage of development raises the

probability that proliferation occurs before A attacks, making proliferation more likely, war

less likely, and the expected length of the game shorter. By contrast, since mistaken war can

only occur if B’s program is still in the first stage when A’s patience runs out, the ease of

mastering the second stage does not affect the probability of mistaken war.

Larger increases in λ have competing indirect effects on how long A is willing to wait. On

the one hand, in any given period, it becomes more likely that B’s program will advance from

its present stage to successfully producing nuclear weapons, raising the risk of proliferation,

so that A is encouraged to attack sooner. On the other hand, higher λ means that in any

given period, A will estimate that B’s program is less likely to have reached the second stage

(because if it had, the ease of mastering that stage means that A should have observed B

getting nuclear weapons by now). This latter effect tends to encourage A to delay attacking

and so reinforces the direct effects of increased λ: increasing the probability of proliferation
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and expected length of the game, while lowering the probabilities of war and mistaken war.

However, this latter indirect effect can only possibly outweigh the former when two conditions

are met. First, the change in A’s estimate due to increased λ must be large; this occurs when

λ ≈ ε. Second, A must be much better off when B’s program is in the first stage rather

than the second; this requires that ε be low, so that the probability of B acquiring nuclear

weapons is much lower from the first stage than from the second.

If either of these conditions is not met, then a rise in λ will lead A to attack sooner. The

indirect effects of the rise in λ generally outweigh its direct effects, so that the probability

of proliferation and expected length of the game go down, while the probabilities of war and

mistaken war go up. In other words, A more than compensates for the rise in λ by attacking

sooner, so that a proliferant that finds it easier to master the second stage of development is

counter-intuitively less likely to get the weapons. The reason this overcompensation occurs is

that, the smaller k is to start, the larger will be the decrease in the probability of proliferation

as A reduces k yet further. So, as λ rises and k ratchets down, the decrease in the probability

of proliferation due to A attacking sooner exceeds the increase due to rising λ.

Proposition 7. A small-enough increase in ε will increase the probability of proliferation,

decrease the probabilities of war and mistaken war, and decrease the length of the game,

without affecting k. A large-enough increase generally decreases k and the game’s length,

overall lowering the probability of proliferation, while raising those of war and mistaken war.

Just as with λ, a small increase in ε will not affect how long A will wait before attacking,

but the fact that the first stage of weapons development is easier to master means B is more

likely to proliferate before A attacks, so that war is less likely and the expected length of the

game declines. Unlike with λ, the increased ease of moving to the second stage means that,

if A’s patience runs out and A attacks without certainty that B’s program has reached the

second stage, A is less likely to be mistaken.
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Larger increases in ε generally reduce A’s willingness to wait before attacking. In any

given period, it becomes more likely that B will get nuclear weapons, for two reasons: first,

because B is more likely to master both stages in one period, since the first stage has become

easier; second, because A’s estimate that B has already reached the second stage by that

period will be higher. The latter reason also implies that the arrival of new intelligence that

would allay A’s suspicions and make it possible for A to put off the costs of war is also less

likely, again encouraging A to attack sooner rather than later.

Similar to λ, the indirect effects through k of a higher ε generally outweigh its direct

effects, so that the probability of proliferation and expected length of the game counter-

intuitively go down, while the probabilities of war and mistaken war go up. This occurs

for the same reason: as A decreases the time she is willing to wait before attacking, the

probability of proliferation falls more and more as k decreases.

Proposition 8. Increases in σ will generally increase k and reduce the likelihood of mis-

taken war. If σ and equilibrium k are low enough, increasing σ may increase the probability

of proliferation and the expected length of the game, while reducing the probability of war.

Otherwise, increasing σ generally reduces the probability of proliferation and the expected

length of the game, while increasing the probability of war.

Finally, we turn to the effects of changes in A’s ability to monitor the progress of B’s

program (σ). First, an increase in σ generally makes A more willing to wait before attacking

in the absence of new intelligence—if she waits, a new signal is more likely to come in. This

reduces the risk that A might attack prematurely while B’s program remained in the first

stage, wasting the surplus from peace she could otherwise safely enjoy, and also the risk of

B getting another try at proliferation when his program has already advanced to the second

stage without A detecting it. As we saw from Lemma 2 above, this reduces the probability

of a mistaken war occurring. But a rise in σ, even if it is too small to change k, will also

directly reduce the probability of a mistake. A mistaken war can only occur if A goes long
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enough without receiving a signal of the stage of B’s program, so that A is willing to attack

in the absence of definitive intelligence. Increasing σ makes it less likely that A would ever

go this long without new intelligence, so that a war launched on the basis of a (possibly

erroneous) estimate is less likely to occur.

However, an increase in σ has two opposed direct effects on the likelihood of proliferation

and war and the expected length of the game. On the one hand, better monitoring means

that A is more likely to catch B when his program is in the second stage, leading to immediate

attack. On the other hand, A is also more likely to detect that B’s program remains in the

first stage, “resetting” A’s estimate and so giving B more time to make progress in his

program and increasing the chance that the program will succeed. For low enough σ and

equilibrium k, the latter effect can dominate: B is likely to be in the first stage for most

of the (short) game, so that a (rare) stage signal to A is likely to lead to a reset, giving B

more time to succeed. If either of these conditions is not met, then B is more likely to reach

the second stage and be exposed to detection and subsequent preventive attack, so that the

former effect generally dominates.

When σ’s direct effect is opposite to its indirect effect through k, the former generally

dominates. While increased σ makes A willing to wait longer before attacking without

definitive intelligence, it quickly becomes very unlikely that A would ever go that long

without new intelligence being received. Thus, the reduction in the probability of war that

comes from lowering the risk of mistaken wars is quickly zeroed out, while the increase in

the probability of war that comes from being more likely to catch B once his program has

reached the second stage continues to increase. Thus, increasing σ under these conditions will

increase the probability of war and decrease the probability of proliferation, while reducing

the expected length of the game.
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A4 Comparative Statics Proofs

For the remaining proofs, in accordance with the assumption stated above, we take δ to

be high (that is, close to 1). We also use numerical simulations of the no-deal equilibria

to establish some of our claims: specifically, those that include the modifier “generally” in

the statements of the propositions in the main body of the paper. The R code for these

simulations is available from the authors on request.

Lemma 2

Proposition 4 establishes that the probability that A will attack in a given period is non-

decreasing in the number of consecutive null signals A has received up to the signal (or lack

thereof) of that period. So, increasing k to k′ can only affect the transition probabilities to

war or proliferation in those subgames in which A has received a number of consecutive null

signals between k and k′ − 1. In each of those subgames, where previously A would have

attacked with certainty, ending the game, A will now only do so if she receives a second-

stage signal; in the absence of such a signal, B will get additional opportunities to invest and

possibly succeed in developing nuclear weapons. Thus, the probabilities of war and mistaken

war occurring decrease and the probability of proliferation increases in those subgames, and

hence overall, and the game lasts longer in expectation.

Proposition 5

First observe that p, pn, cA, and cB affect the distribution of paths through a no-deal equilib-

rium only through their effect on k: once equilibrium k is determined, only the parameters

λ, ε, and σ affect the probability of each possible path. Given the equilibrium value of k,

labelled k∗, A must prefer attacking after k∗ consecutive null signals to instead making a

minimally-satisfactory offer to B (labelled q∗k) and waiting to attack until the k∗ + 1 signal
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has been received, or:

WA ≥ qk∗ + δ(1− ρk∗)
[
λV A

n + (1− λ)WA
]

+ δρk∗
[
ελV A

n + ε(1− λ)WA + (1− ε)
[
σV A

0 + (1− σ)WA
]]

(2)

By Proposition 4, qk∗ must be the least generous offer that will satisfy B1, or:

qk∗ = min
{

1, 1 + δ
[
ελV B

n + (1− ε)σV B
0 + [(1− ε)(1− σ) + ε(1− λ)]WB

]
−WB

}
Because k must be a natural number, qk (through V B

0 ), ρk, and V A
0 do not change contin-

uously in k, and thus condition 2 will almost never (in the measure-theoretic sense) bind.

This implies that small-enough changes in the exogenous parameters, which can all vary con-

tinuously, will not cause the inequality to be violated and so will not alter the equilibrium

value of k. We use this fact throughout the subsequent proofs.

Similarly, A must prefer attacking after k∗ consecutive null signals to instead attacking

in the previous period, after k∗ − 1 signals, or:

WA ≤ qk∗−1 + δ(1− ρk∗−1)
[
λV A

n + (1− λ)WA
]

+ δρk∗−1
[
ελV A

n + ε(1− λ)WA + (1− ε)
[
σV A

0 + (1− σ)WA
]]

p, pn, cA, and cB affect this condition only by altering the values of WA, V A
n , V A

0 , and

qk∗−1. Let ∆ ≡ p − pn − (cA + cB), and note that ∆ increases in p − pn and decreases in

cA + cB. We show that as ∆ increases, this condition becomes harder to satisfy, so that A

should shift to attacking sooner, decreasing equilibrium k. Re-arranging terms and using
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our assumption that δ is close to 1, we arrive at:

ρk∗−1(1− ε)σ
(
V A
0 −WA

)
≥ (1− ρk∗−1)λ

∆

1− δ
+ ρk∗−1ελ

∆

1− δ
(3)

Plainly the right side increases in ∆, making the condition harder to satisfy. The only

remaining issue is to establish how the left side varies in the parameters, in particular V A
0 −

WA.

First we show that if p increases or pn decreases, then holding k∗ constant, V A
0 must

decline relative to WA. By Proposition 4, each equilibrium offer is set to either the minimum

offer that B1 will accept, or 1 if the former is not feasible. Holding the equilibrium offers

constant, as p increases or pn decreases, B’s war value decreases relative to his possible

pre-war continuation values (since these include the possibility of eventually getting V B
n ).

This means the equilibrium offers will also shift upward (if they were not already 1) since

B1 would accept less generous offers than before. However, the new offers cannot bring A

back to her original value of V A
0 −WA. The change in these offers does not change the value

of the game, so that the new offers at most simply shift back to A the share of the surplus

she was previously enjoying, given that she is facing B1. If any of the budget constraints

(i.e., that the offers cannot be more than 1) bind, then A will get less of the surplus than

before, so that V A
0 −WA goes down even with the stingier offers to B. Moreover, there is a

positive probability that at some future point A will be (unknowingly) facing B2 rather than

B1, and there is no way for A to make offers stingy enough to compensate for B2’s greater

probability of eventually getting V B
n without causing B1 to reject the offers. Thus V A

0 −WA

must decline as p goes up or pn goes down, and the left side of condition 3 declines, making

it harder to satisfy.

Now consider a decrease in cA. This has no effect on WB and V B
n , so that the equilibrium

offers to B will not change. It also does not alter V A
n , but WA increases. Since V A

0 is an
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expectation taken over discounted sums of the equilibrium offers and the eventual outcome

of either V A
n or WA, then V A

0 cannot rise any faster in cA than WA does. Thus, V A
0 −WA

either stays the same or declines as cA rises, making condition 3 (weakly) harder to satisfy.

Finally, consider a decrease in cB. Observe that, holding the equilibrium offers constant,

B’s future continuation values will decline relative to WB. Both WB and V B
n increase as cB

decreases, but by the same amount, so that there is no rise in V B
n relative to WB, but the

value B will receive from offers prior to war or proliferation declines relative to WB. Thus,

to satisfy B1, A must make more generous offers. WA does not depend on cB, but V n
A falls

as cB decreases. Since V A
n falls and the new equilibrium offers must be more generous to B,

V A
0 must decline as cB decreases, making condition 3 harder to satisfy.

Proposition 6

First consider a small-enough increase in λ. This will leave k∗ unchanged, but directly

affect the probabilities of alternative paths through the equilibrium. In every period prior

to proliferation or war, the probability that B’s investment will successfully produce nuclear

weapons in the next period is either ελ or λ, so that both these go up with an increase in λ.

War occurs only if B is caught in the second stage or if A reaches k∗ consecutive signals and

attacks, each of which is less likely since B is more likely to have produced nuclear weapons

before either occurs, and no more likely to have reached the second stage when A gets a stage

signal. Mistaken war is equally likely, since it occurs only if B remains in the first stage after

A has received k∗ consecutive null stage signals, the probability of which is not affected by

λ (only by ε and σ). The expected length of the game decreases since the expected time

B’s program will remain in the first stage is unchanged, while the expected time it will

remain in the second stage decreases, and the probability of transitioning between the two

is unaffected.

In simulations, there are cases in which a large-enough increase in λ increases k∗. This
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occurs only when ε is relatively low and close to λ. From condition 2 above, we can see

why this would be true. Increasing λ has three effects on the condition. First, it shifts

probability weight on the right side of the condition from WA to V A
n , decreasing the right

side and leading A to be willing to attack sooner. Second, however, by Proposition 3,

increasing λ also increases ρk∗ , so that probability weight is shifted from the first bracketed

term to the second. Since V A
n < WA ≤ V A

0 , the first bracketed term is lower than the second,

so that the reduction in ρk∗ increases the right side of the condition. Third, increasing λ, by

increasing the probability the game ends in (costless) proliferation rather than costly war,

increases the surplus, and thus can increase V A
0 , as A is able to make less generous offers to

B since B gets more out of investment. The last two effects will only overwhelm the first if

ε is sufficiently low, so that the first bracketed term is lower than the second by enough, and

sufficiently close to λ, so that the increase in ρk∗ is high enough. Figure A1 demonstrates

this possibility for a particular case. Otherwise, large-enough increases in λ decrease k∗.

The indirect effect of a large-enough increase in λ through k outweighs its direct effects on

the probabilities of the various outcomes when the two effects are in opposite directions. To

see why, first observe that as k∗ decreases, the incremental decrease in the overall probability

of proliferation increases: the fewer chances B has to invest before A attacks, the bigger the

effect of reducing the number of chances. This implies that each jump down in the probability

of proliferation (and jump up in that of war) is larger as k∗ is further reduced. Moreover,

the condition for A to prefer attacking even sooner (condition 3) becomes tighter as k∗

goes down. This occurs because, as k∗ decreases, the probability of war goes up and the

surplus of the game decreases, so that V A
0 gets smaller and qk∗ declines. Thus, A will attack

sooner in reaction to a smaller and smaller increase in the probability that B will eventually

proliferate.
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Figure A1: Equilibrium k increases in λ (ε = .2, σ = .825, δ = .8, p = .9, pn = .55, cA = .05,
cB = .01).

30



Proposition 7

First consider a small-enough increase in ε. This will leave the equilibrium value of k un-

changed, but directly affect the probabilities of alternative paths through the equilibrium.

In any period in which B’s program has reached the second stage, the value of ε has no

effect on the probabilities of various outcomes. In any period in which B’s program is in

the first stage, increasing ε will increase the probability of immediate proliferation and of

moving to the second stage. Observe that, in any given period prior to proliferation or war,

the probability of the game subsequently ending with proliferation is higher if B’s program is

second-stage than if it is first-stage. This is implied by the proof of Proposition 2: the higher

chance of proliferation upon reaching the second stage is what motivates B to always invest

while his program remains in the first stage. Thus, increasing ε must increase the probability

of proliferation overall, and because the game can only end in proliferation or war, the overall

probability of war must decrease. The probability of mistaken war decreases, because this

can only occur if B’s program has failed to advance to the second stage by the time A has

received k∗ consecutive null stage signals, and raising ε makes it more likely B will have

reached the second stage by this point, and less likely that this point will be reached at all.

Finally, since the expected length of the game is obviously shorter if B’s program is in the

second stage than if it is in the first, increasing ε also shortens the game in expectation.

Large-enough changes in ε will affect k∗. From condition 2 above, increasing ε lowers the

second bracketed term, and transfers probability weight through its effect on ρk∗ to the first

bracketed term, which is less than the second, further reducing the right side. However, by

increasing the probability the game ends in (costless) proliferation rather than costly war,

increasing ε can result in increased V A
0 , as A is able to make less generous offers to B since

B1 gets more out of investment. This latter effect is modest, since the requirement to satisfy

B1 with these offers restricts B’s ability to fully compensate A for the increasing probability

of proliferation (A is fully compensated if she faces B1, but she is more likely to be facing
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Figure A2: Equilibrium k is non-monotonic in ε (σ = .3, λ = .3625, δ = .6, p = .9, pN = .55,
cA = .05, cB = .01).

B2 in a given period). Moreover, B’s ability to compensate A in this way is limited by the

constraint that q ≤ 1. Thus, while there are cases in which an increase in ε will increase k∗,

these are very rare in simulations. Figure A2 offers an example of such a case.

Otherwise, large-enough increases in ε decrease k∗, and their indirect effect through k

outweighs their direct effects on the probabilities of the various outcomes, by the same

argument as in the proof of Proposition 6.

Proposition 8

First consider the direct effects of increasing σ, holding k∗ constant. Proliferation directly

from the first stage becomes more likely, as there is a greater chance of A receiving a stage sig-

nal while B’s program is in the first stage, resetting A’s estimate and giving B more chances
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to invest, which also increases the expected length of the game. However, proliferation from

the second stage becomes less likely, as B2 is more likely to get caught and attacked before

his program succeeds, which also shortens the expected length of the game. Which of these

effects dominates depends on σ and k∗: the lower these are, the higher the proportion of

the game’s length B’s program will be in the first stage and the more likely mistaken wars

are, and the more increasing σ will tend to directly increase the probability of proliferation

and the expected length. To demonstrate this possibility, consider the case when k∗ = 1.

Then the probability of proliferation is P = ελ + (1 − ε)σP = ελ
1−(1−ε)σ , which increases in

σ. As k∗ rises, B’s program is more likely to reach the second stage before A attacks, and

so the decrease in the probability of proliferation from the second stage and in the expected

length comes to dominate. To demonstrate this, consider the case when k∗ =∞ (i.e., where

A never attacks based only on suspicion, but only once a second-stage signal is received).

It is easily shown that the probability of proliferation is P = λ
λ+σ−λσ , which decreases in

σ. However, the direct effect of increasing σ on the probability of mistaken war is always

negative, since mistaken war can only happen if A receives k∗ consecutive null stage signals,

which is obviously less likely as the probability of a signal goes up.

To see the effect of σ on k∗, consider condition 2. Increasing σ shifts probability weight

from WA to V A
0 , increasing the right side. However, it can also reduce V A

0 by forcing A

to make more generous offers to satisfy B1, since B is less likely to eventually proliferate.

In some cases, the latter effect can dominate, so that increasing σ decreases k∗, but it is

extremely rare in simulations. Figure A3 offers an example of such a case.

Otherwise, large-enough increases in σ increase k∗. This decreases the probability of

mistaken war by Lemma 2, in agreement with σ’s direct effect. In simulations, the direct

effect of σ generally dominates when it disagrees with the indirect effect through k∗, so that

larger increases in σ reduce the probability of proliferation and expected length of the game.
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Figure A3: Equilibrium k is non-monotonic in σ (ε = .4, λ = .0625, δ = .9, p = .9, pN = .55,
cA = .05, cB = .01).

34



References

Albright, David and Paul Brannan. 2008. The Al Kibar Reactor: Extraordinary Camouflage,

Troubling Implications. Institute for Science and International Security.
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