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Online Appendix

The first step in characterizing the equilibria of the asymmetric-information game is de-

scribing the equilibria of the brinkmanship subgame. Let Γ() denote the brinkmanship

continuation game given . A pure strategy in this subgame for is a pair {() (|)}
where () ∈ [() ()] is ’s bid and (|) ∈ {0 1} indicates whether  quits

((|) = 1) or stands firm ((|) = 0) after . (When we consider mixed strate-

gies, (|) ∈ [0 1] will be the probability that  quits.) Similarly, a pure strategy

for 0 is the analogous pair {0() 0(|)}. A strategy for  is a function (|) for
all  ∈ [ ] where (|) is the probability  quits after bid  given . We ease the

notation by suppressing the argument “” when it is not needed for clarity. A belief sys-

tem for the challenger is a function () which is the conditional probability of facing 0

given a bid of . Finally, a PBE of the brinkmanship continuation game is an assessment

∆ = {  0 0   } which is sequentially rational and in which  is derived from ’s

prior beliefs by Bayes’ rule when possible.

Three lemmas help characterize the PBEs of the brinkmanship game. Lemma 1A

demonstrates that neither  nor 0 ever bids an  ∈ (()).  is sure to stand

firm after such a bid and, consequently,  and 0 would have done better by bidding

. Lemma 2A shows that at most one  ∈ (  ] is played with positive probability in

a PBE. Lemma 3A shows no  ∈ (  ] is played with positive probability in any PBE

satisfying D1. Taken together, these lemmas imply that a PBE satisfying D1 can put

positive probability on at most  and ().

Lemma 1A: Let ∆ = {  0 0   } be a PBE of Γ(). Then  ∈ (()) and

0 ∈ (()).

Proof: Arguing by contradiction, suppose  bids an  ∈ (). Since    ,  strictly

prefers to stand firm after  regardless of ’s beliefs about the defender’s type. It follows

that ’s payoff to bidding  is max{−− (1−)(1−)−−}. Given that
  0,  would have done strictly better by bidding  and then standing firm to obtain
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(1− )(1− ) −  − . A similar argument holds for 
0.¥

To ease the proof of Lemma 2A, observe that irresolute defender’s preference over any

two distinct bids  ≥  and b ≥  depends solely on the probability that  backs

down after  and b. Indeed,  strictly prefers  to b if and only if ()  (b). To
see why, note that  is bluffing, i.e., sure to quit, whenever at least  since  

 by assumption (ii). More specifically, (e) − (e)  0 by assumption (ii), and

()−()  (e)−(e) for   e since is increasing in  and is decreasing.

Given that  is sure to quit following any  ≥  ,  strictly prefers  to b if and only if
()[(1− ) −  − ] + [1− ()][− −  ]  (b)[(1− ) −  − ] +

[1− (b)][− −  ] or ()  (b).
It is also useful to determine when 0 prefers higher bids to lower bids. Suppose

  b  . Assumption (i) ensures that 
0
() ≥ 0()  () ≥ () and hence

that 0 is sure to stand firm after  or b. Because 0 always stands firm, a higher

bid brings a higher cost if  stands firm, i.e., (1 − )0 −  − [(1 − )0 + ] is

decreasing in . As a result, 0 will only be willing to run risk   b if  is more more

likely to quit after  than after b. To be more precise, 0 strictly prefers  to b if and
only if ()[(1− )0 −  − ] + [1− ()][(1− )0 −  − [(1− )0 + ]] 

(b)[(1 − )0 −  − ] + [1 − (b)][(1 − )0 −  − b[(1 − )0 + ]]. This is

equivalent to ()  e0( b) ≡ (b) + [1− (b)( − b)[(1− )0 + ][(1− )0 −
[(1− )0 + ](

0
 − )]. 0 is indifferent when () = e0( b).

Lemma 2A: Let ∆ be a PBE in which  ∈ (  ] is played with positive probability.

Then no other b ∈ (  ] is played with positive probability.

Proof: The lemma holds vacuously if  ≤ e as (  ] = ∅. Assume   e, and suppose
that  and b are played with positive probability in ∆ with   b  . Then 0 must

put positive probability on both offers. Suppose not. If  alone put positive probability

on , then () = 0 and  is sure to stand firm (() = 0) since  is certain to back

down as   . But if () = 0,  can profitably deviate from  to bidding  and then

standing firm. Hence 0 must put positive probability on . Repeating the argument for
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b establishes that 0 must also put positive weight on b.
In order to put positive weight on  and b, 0 must be indifferent between them. This

implies 1 ≥ () = e0( b)  (b) ≥ 0. But this means that  strictly prefers  to b
as  is more likely to quit. This leaves (b) = 1 and yields the contradiction (b) = 1.¥
Lemma 3A: Let ∆ be a PBE satisfying D1. Then no  ∈ (  ] is played with positive

probability ∆.

Proof: The lemma again holds vacuously if  ≤ e. Arguing by contradiction when   e,
assume  ∈ (  ] is played with positive probability. Lemmas 1A and 2A imply that

the only other bids that might be played with positive probability are  and .

Both  and 0 must put positive probability . Observe first that ()  0. Other-

wise both types prefer to deviate to  and  would not be played with positive probability.

If only  plays , () = 0 and this leads to the contradiction () = 0. If 0 alone

plays , then () = 1 and () = 1. Moreover, 
0 must at least weakly prefer  to ,

so () ≥ e0( )  (). However, ()  () implies that  strictly prefers

 to  .  must therefore at least weakly prefer  to . This yields the contradiction

() ≤ 1− .

Because both  and 0 play  with positive probability, their respective equilibrium

payoffs are ()[(1−)−−−]+[1−()][−− ] = −−+()(1−
) and ()[(1−)0−−]+[1−()][(1−)0−−[(1−)0+]]. Now

consider any downward deviation  ∈ (  ). We show that D1 requires  to believe

that it is facing 0 for sure (i.e., () = 1). ’s best response given this belief is to quit

with () = 1. But this would make  a profitable deviation for both  and 0, and

this contradiction would establish the lemma.

To see that D1 eliminates  at , observe first that  is indifferent between standing

firm and quitting after  if it believes it is facing 0 with probability ( + )( −
)[(1− ) + ( + )(−)]. Hence, any () ∈ [0 1] can be rationalized as a
best response to some beliefs about the deviator’s type.

Moreover, 0 strictly prefers deviating to  if ()  e0( ) where e0( )  ()

when   .  weakly prefers bluffing at  to bluffing at  when () ≥ (). The set
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of ’s weakly profitable deviations for  is a strict subset of the set of deviations that

are strictly profitable for 0. Hence, D1 eliminates . ¥
The previous lemmas make it easy to specify a PBE satisfying D1. Lemma 1A implies

that both  and 0 bid  and all states subsequently stand firm whenever   e as this
implies   . Proposition 1A describes a separating PBE satisfying D1 when  ∈ (e ].
 and 0 respectively bid  and , and both types then stand firm.  stands firm after

 and does so with probability  after . More precisely, define the assessment ∆0 in

which  plays according to  = , () = 0 for  ≤  and () = 1 for   ;

0 plays according to 0 =  , 
0
() = 0 for  ≤ 0 and 0() = 1 for   0; and

 follows () = 0 for  6=  and () = 1 − . ’s beliefs are () = 0 if  = ,

() =  for  ∈ ( ), () = 1, and () = 0 for  ∈ (  ].

Proposition 1A: If  ∈ (e ], ∆0 is a PBE satisfying D1.

Proof: Verifying that ∆0 is a PBE is straightforward. Given () = 0 for  6=  , 

and 0 will bid either  or  since the payoff to  is strictly better than the payoff to

bidding any  ∈ { }. At () = 1 − ,  is indifferent between  and  , so 

is a best reply. 0 strictly prefers  to .  in turn strictly prefers standing firm after

 and is indifferent after  given that it believes it is facing 0 for sure (() = 1).

Accordingly, () = 0 and () = 1−  are best replies. ’s beliefs are also clearly

consistent with Bayes’ rule.

To demonstrate that ∆0 satisfies D1 consider any deviation   . As shown in

the proof of Lemma 3A, any () ∈ [0 1] can be rationalized as a best response to
some beliefs about the deviator’s type. Moreover, 0 stands firm after bidding  since

0() ≥ 0()  () ≥ . This implies the responses () for which  is weakly

profitable are defined by ()[(1− )0−− ]+ [1− ()][(1−)0−− [(1−
)0 + ] ≥ (1− )[(1− )0 −  − ] + [(1− )0 −  − [(1− )0 + ]].

This simplifies to () ≥ e0() ≡ 1− + [(1− )0 + ]( −).

As for , assumption (ii) ensures that  is certain to quit if it bids  and  stands

firm. That is,   ()  (e) and (e)  () since  is increasing and  is

decreasing and, by assumption (ii), (e)  (e). According, deviating to  is strictly
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profitable for  if ()[(1− ) −  − ] + [1− ()](− − )  (1− )(1−
) −  −  or ()  1− .

The set of ’s responses to  for which  is weakly profitable for 0 is a strict subset

of the set of responses for which  is strictly profitable for . That is, {() : () ≥e0()} ⊂ {() : ()  1 − }. D1 therefore eliminates 0 and requires  to put

probability one on  after   . ∆0 does this as () = 0 for   .

For  ∈ (), ’s unique best response is () = 0 regardless of its beliefs. As a

result, D1 has no bite, and any () ∈ [0 1] is consistent with D1. Hence, ’s out-of-
equilibrium beliefs in ∆0 satisfy D1.¥
D1 does not pin down a unique PBE. As Corollary 1A shows, other equilibria satisfying

D1 exist. This multiplicity of equilibria arises from ’s indifference between quitting and

standing firm following a bid of  = . To establish that equilibria other than ∆0 exist

and satisfy D1, observe first that  is indifferent only if  believes that it is facing 0

with probability one after a bid of . Any positive probability of facing  breaks ’s

indifference and leads  to stand firm. It follows that  must quit after a bid of  with

a high enough probability that 0 is willing to bid  rather than  but not so high that

 prefers bidding  to . To define this range, let  be the smallest probability of

quitting for which 0 is willing to bid  . Then  is the smallest  satisfying (1−)[(1−
)0−]−[+] ≤ [−−]+(1−)[(1−)[(1−)0−]− [+].

Corollary 1A shows that a PBE satisfying D1 exists for all () ∈ [ 1−]. Define

the PBE ∆ to be the same as ∆0 except that () =  for any  ∈ [ 1− ). Then

Corollary 1A: ∆ for  ∈ [ 1− ) are PBEs satisfying D1.1

Proof: By construction, 0 at least weakly prefers bidding  and then standing firm to

bidding  for  ∈ [ 1 − ). Verifying that ∆ is a PBE is straightforward. Repeating

the argument in Proposition 1A also shows that D1 eliminates 0 for all   . D1

thus requires () = 0 at    as is the case in ∆. ¥
Although many PBEs satisfy D1, only ∆0 satisfies an additional limit-point criterion.

1 Other PBEs exist as well, e.g., at () =  where 
0 is indifferent between bidding

 and .
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The main idea underlying this criterion is that if the set of bids was discrete, it would be

very unlikely that the defender could bid exactly . The discrete-bid criterion imposes

this condition.

To define this criterion, consider a discrete-bid analogue of the brinkmanship game

when   e.  must now select a bid from a finite set of offers 0   such that

 = 0  · · ·  −1      · · ·   =  with  − −1 ≤  for all  and a   0.

(The models of brinkmanship in Powell 1990 have this structure. Every step toward the

brink raises the risk of disaster by a fixed amount .) The key features of this discrete

set of offers is that the defender is no longer able to bid exactly  and there is a well

defined next highest bid above , namely, . At ,  is no longer indifferent between

quitting and standing firm if it is certain that it is facing 0. Rather,  strictly prefers

to quit.

Call the discrete-bid brinkmanship game described above Γ(). Define the assessment

∆ to be:  plays  with probability  and  with probability 1 −  where  ≡
( + )( − )[(1 − )(1 − ) ], () = 0 for any  ≤  and () = 1

for   . 
0 plays according to 0 = , 

0
() = 0 for  ≤ 0 and 0() = 1 for

  0.  follows () = 0 for  6=  and () = 1− . ’s beliefs are () = 0,

() =  for    ≤ −1, () = [ + (1− )], and () = 0 for   .

The next lemma shows that all the PBEs of Γ satisfying D1 are the same as ∆

except possibly at ’s beliefs following an out of equilibrium offer less than . These

beliefs have no effect on subsequent play.  and both  and 0 stand firm after this bid.

Proposition 2A demonstrates that if we let the maximal distance between adjacent offers

 go to zero, then the limit of ∆ is identical to ∆0 except possibly for ’s beliefs at ()

for  ∈ ( ). In this sense, D1 and the limit-criterion uniquely select ∆0.

Lemma 4A: Assume   e and let ∆ be any PBE of Γ satisfying D1. Then ∆ is

identical to ∆ except possibly for ’s beliefs () for    ≤ −1.

Proof: Let ∆ be a PBE satisfying D1. Repeating the argument in the proofs of Lemmas

1A and 2A shows that ∆ can only put positive weight on  and on one  ≥ . If

  , repeating the argument in the proof of Lemma 3A shows that  must believe
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that it is facing 0 after the downward deviation to −1 ≥ . That is, (−1) = 1.

’s best response given this belief and    is to quit, (−1) = 1. This, however,

makes −1 a profitable deviation. Hence, putting positive weight on    yields a

contradiction. As a result, ∆ can put positive probability on at most  and .

In fact, ∆ must put positive weight on . Suppose not. Then  is an out-of-

equilibrium bid, and () = 1 by D1. To see that D1 eliminates , note that 

quits after  if  stands firm.  therefore weakly prefers to deviate to  from  if

() ≥ 1 − . Algebra shows that 0 strictly prefers bidding  and standing firm

when () ≥ 1− . D1 therefore eliminates  and leaves () = 1.

A contradiction follows. If () = 1, ’s best reply is () = 1. This, however,

makes  a profitable deviation, and this contradiction ensures that ∆ must put positive

weight on .

∆ must put positive probability on  as well. Arguing again by contradiction, suppose

 and 0 pool on . Then () =  . ’s weak preference for  also implies () ≥
1− . But as shown below,  strictly prefers to stand firm if  and 0 pool on  and

 is sufficiently small. This yields the contradiction () = 0.

To establish that  stands firm after  if and0 pool on this bid and  is sufficiently

small, note that  stands firm if (1−)[− ]+ [(1−)− ]  −. This
is equivalent to   [ +( +)(−())]. As  goes to zero, this constraint

goes to   1 and is sure to hold.

That both  and  are played with positive probability implies that 
0 bids  and

 mixes between  and . Clearly the types cannot separate. If  plays  and 0

plays , then () = 1 and  prefers to deviate. If  plays  and 0 plays , then

() = 0 and  prefers to deviate to . Given that the types cannot separate and that

0 strictly prefers  whenever  weakly prefers , 
0 must play , i.e., 0 = , and

 must mix between  and .

In order for  to mix, it must be indifferent. This implies that  must mix after

 with () = 1 − . Because  is mixing, it must be indifferent between quitting

and standing firm. Let  be the probability that  bids . Then ’s indifference
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gives − −  = (1 − )[(1 − )(1 − ) +  ][(1 − ) −  −  ] + [(1 −
)(1 − ) +  ][ −  − ( + )] where (1 − )[(1 − )(1 − ) +  ] and

[(1 − )(1 − ) +  ] are the posteriors of facing  and 0 given . This yields

 = ( + )( −)[(1− )((1− ) + ( + )( −))].

Finally consider ’s out-of-equilibrium beliefs and actions () and () for   .

Deviation  is strictly profitable for  if ()  1 − . 0 weakly prefers to deviate

if () ≥ e0( )  () = 1 − . Thus, D1 eliminates 0 at . This leaves

() = 0, () = 0, and establishes the lemma. ¥
It immediately follows that ∆ converges to ∆0 except possibly for ’s beliefs at

 ∈ ( ). Since  ≥  − −1   −, we have  → 0 and () → 0 as  → 0.

This leaves

Proposition 2A: Assume   e. Then the assessment lim→0∆ is identical to ∆0

except possibly at the irrelevant beliefs () for  ∈ ( ).

Turning to a determination of ’s choice of  at the outset of the game, Lemma 1A

and Proposition 2A imply that the challenger’s payoff to bring  to bear is:

() =

½
 −  − () if 0    e
(1− )[1− ()] −  − () if e   ≤ .

As for the optimal , define (0) = 0 and (e) = lim↑ () = [1 − (e)]e −
 − (e) . We justify this specification of (e) below. For now, observe that ()

defined in this way over [0 ] has a well defined global maximizer. This follows from the

fact that  is weakly concave over (0 e) and strictly concave over (0 ] with (0) =

0  lim→0 () = − and lim↑ ()  lim↓ (). Moreover, this maximizer is

generically unique. That is, the set of feasible parameter values  and  for which

there are multiple maximizers is a set of measure zero. Let ∗∗ denote this maximizer.

To justify the specification of (e), we show below that the brinkmanship game fol-
lowing e has multiple equilibria satisfying D1, and ’s equilibrium payoffs vary across

these equilibria. However, these payoffs are above below by (e), and a unique equilib-
rium path yields (e). Hence which equilibrium is played after e has no effect on the
optimal choice of  if ∗∗ 6= e. If ∗∗ = e, the states must play an equilibrium with the
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unique path giving  a payoff of (e). Otherwise ’s payoff to  would discontinuously
jump down at e and  would not have a best reply to the defender’s strategy.

To see that∆(e) has multiple equilibria satisfying D1, let∆ be the assessment in which
both  and 0 bid , and all three states subsequently stand firm after any   . 

quits after  =  with any () ≤ . ’s beliefs at  ∈ ( ) can be anything,

and () = 1. These equilibria have the same equilibrium path and give a payoff of

(e) to . By contrast, ∆0 is also an equilibrium satisfying D1 and yields a payoff of

lim↓ () to .

To establish that ’s equilibrium payoffs are bounded above by (e), let  be the
equilibrium probability that  or 0 bids . Then ’s equilibrium payoff is [e − −
(e)(e + )]− (1− )[ + (e) ]. This payoff is increasing in  and equal to (e)
at  = 1. Finally, it is easy to see that the equilibrium path of ∆ is the unique path
giving  the payoff (e). Since  = 1,  and 0 must bid  which corresponds to the

path in ∆.
In determining the comparative statics, assume an interior solution,  0

(
∗∗) = 0.

Using  00
  0 gives sgn{∗∗} = sgn{2(

∗∗)}. Differentiation gives

 = −0 + (1 − )[(1 − ) − 0 ]. Trivially, 2 = −0  0 and

∗∗  0. Further, 2 = (1 − )[1 −  − 0]. But  0
(

∗∗) = 0 ensures

(1− )[1− − 0] = 0  0. Thus ∗∗  0. And, 2 = 0 − (1−
) = −0(1 − )  0, so ∗∗  0. As for (

∗∗) and (
∗∗),

write (
∗∗) = 1− (1− (∗∗)[1 + ∗∗ ]. The results follow immediately.
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