Nuclear Brinkmanship, Limited War, and Military Power

Online Appendix

The first step in characterizing the equilibria of the asymmetric-information game is de-
scribing the equilibria of the brinkmanship subgame. Let I'5(p) denote the brinkmanship
continuation game given p. A pure strategy in this subgame for D is a pair {p(p), ¢p(r|p)}
where p(p) € [r(p),7(p)] is D’s bid and gp(r|p) € {0,1} indicates whether D quits
(gp(r|p) = 1) or stands firm (gp(r|p) = 0) after . (When we consider mixed strate-
gies, qp(r|p) € [0,1] will be the probability that D quits.) Similarly, a pure strategy
for D' is the analogous pair {p/(p), ¢p(r|p)}. A strategy for C' is a function go(r|p) for
all r € [r,7] where go(r|p) is the probability C' quits after bid r given p. We ease the
notation by suppressing the argument “p” when it is not needed for clarity. A belief sys-
tem for the challenger is a function ¢(r) which is the conditional probability of facing D’
given a bid of r. Finally, a PBE of the brinkmanship continuation game is an assessment
A ={p,qp, /', qp,qc,t} which is sequentially rational and in which ¢ is derived from C’s
prior beliefs by Bayes’ rule when possible.

Three lemmas help characterize the PBEs of the brinkmanship game. Lemma 1A
demonstrates that neither D nor D’ ever bids an r € (r, Ro(p)). C' is sure to stand
firm after such a bid and, consequently, D and D’ would have done better by bidding
r. Lemma 2A shows that at most one r € (R¢,7] is played with positive probability in
a PBE. Lemma 3A shows no r € (R¢,7| is played with positive probability in any PBE
satisfying D1. Taken together, these lemmas imply that a PBE satisfying D1 can put
positive probability on at most r and Rc(p).

LEMMA 1A: Let A = {p,qp,p,qp,qc,t} be a PBE of U'g(p). Then p ¢ (r, Rc(p)) and
p & (r, Re(p))-

Proof: Arguing by contradiction, suppose D bids an r € (r, R¢). Since r < R, C strictly
prefers to stand firm after r regardless of C’s beliefs about the defender’s type. It follows
that D’s payoff to bidding r is max{—kp —rnp, (1 —p)(1 —r)vp —kp —rnp}. Given that
p > 0, D would have done strictly better by bidding r and then standing firm to obtain



(1—-p)(1 —r)vp — kp —rnp. A similar argument holds for D'.1

To ease the proof of Lemma 2A, observe that irresolute defender’s preference over any
two distinct bids r > Rc and 7 > R¢ depends solely on the probability that C' backs
down after r and 7. Indeed, D strictly prefers r to 7 if and only if go(r) > qo(7). To
see why, note that D is bluffing, i.e., sure to quit, whenever at least Ro since Ro >
Rp by assumption (ii). More specifically, Ro(p) — Rp(p) > 0 by assumption (ii), and
Re(p)—Rp(p) > Ro(p)—Rp(p) for p > psince Re is increasing in p and R is decreasing.
Given that D is sure to quit following any r > R¢, D strictly prefers r to 7 if and only if
qc(r)[(1 —r)op — kp — rnp] + [1 — qe(r)][—kp — rnc] > qe(P)[(1 — r)vp — kp — rnp] +
1 — qo(P)][—kp — rnc| or qo(r) > qo (7).

It is also useful to determine when D’ prefers higher bids to lower bids. Suppose
r > 7 > Rc. Assumption (i) ensures that R),(p) > R},(p) > 7(p) > 7(p) and hence
that D’ is sure to stand firm after r» or 7. Because D’ always stands firm, a higher
bid brings a higher cost if C' stands firm, i.e., (1 — p)v, — kp — r[(1 — p)v), + np] is
decreasing in r. As a result, D’ will only be willing to run risk » > 7 if C' is more more
likely to quit after » than after 7. To be more precise, D’ strictly prefers r to 7 if and
only if go(r)[(1 — r)vp — kp — rnp] + [1 — go(r)][(1 — p)vp — kp — r[(1 — p)vp +np]] >
qc(M)[(1 = r)vy — kp —rnp| + [1 — go(M)][(1 — p)v, — kp — 7[(1 — p)v), + np]]. This is
equivalent to go(r) > o (r,7) = qo(r) + [1 — ge(7)(r = )[(1 = p)vp + npl/[(1 — r)vp —
(1 = p)vp +npl(Ry —r)]. D' is indifferent when gc(r) = g (r, 7).

LEMMA 2A: Let A be a PBE in which r € (R, 7| is played with positive probability.
Then no other 7 € (Re,T] is played with positive probability.

Proof: The lemma holds vacuously if p < p as (R¢, 7] = &. Assume p > p, and suppose
that r and 7 are played with positive probability in A with r > 7 > Rs. Then D’ must
put positive probability on both offers. Suppose not. If D alone put positive probability
on r, then t(r) = 0 and C' is sure to stand firm (go(r) = 0) since D is certain to back
down as r > Rp. But if go(r) = 0, D can profitably deviate from r to bidding r and then

standing firm. Hence D’ must put positive probability on r. Repeating the argument for



7 establishes that D’ must also put positive weight on 7.

In order to put positive weight on r and 7, D’ must be indifferent between them. This
implies 1 > qo(r) = ¢ (r,7) > qc(r) > 0. But this means that D strictly prefers r to 7
as C' is more likely to quit. This leaves #(7) = 1 and yields the contradiction ¢(7) = 1.1

LEMMA 3A: Let A be a PBE satisfying D1. Then no r € (Re,T| is played with positive
probability A.

Proof: The lemma again holds vacuously if p < p. Arguing by contradiction when p > p,
assume r € (R¢, 7| is played with positive probability. Lemmas 1A and 2A imply that
the only other bids that might be played with positive probability are r and R¢.

Both D and D’ must put positive probability r. Observe first that go(r) > 0. Other-
wise both types prefer to deviate to r and r would not be played with positive probability.
If only D plays r, t(r) = 0 and this leads to the contradiction ¢o(r) = 0. If D’ alone
plays 7, then ¢(r) = 1 and g¢(r) = 1. Moreover, D' must at least weakly prefer r to R,
so qc(r) > qi(r, Re) > qo(Re). However, qo(r) > go(Re) implies that D strictly prefers
r to Rc. D must therefore at least weakly prefer r to r. This yields the contradiction
go(r) <1 —p.

Because both D and D’ play r with positive probability, their respective equilibrium
payoffs are qo(r)[(1—r)vp —kp —rn_p|+[1—qc(r)|[—kp —rnc] = —kp—rnc+qc(r)(1—
r)vp and qo(r)[(1=r)vp —kp —rnp]+[1—qc(r)][(1—p)vp —kp—r[(1—p)vp +np]]. Now
consider any downward deviation z € (R¢,r). We show that D1 requires C' to believe
that it is facing D’ for sure (i.e., t(z) = 1). C’s best response given this belief is to quit
with ¢o(z) = 1. But this would make z a profitable deviation for both D and D', and
this contradiction would establish the lemma.

To see that D1 eliminates D at z, observe first that C' is indifferent between standing
firm and quitting after z if it believes it is facing D’ with probability (pve + ne)(z —
Re)/[(1 —r)ve + (pve +ne)(z — Re)|. Hence, any go(z) € [0, 1] can be rationalized as a
best response to some beliefs about the deviator’s type.

Moreover, D’ strictly prefers deviating to z if go(z) > qi(z,7) where ¢ (z,7) < qc(r)

when z < r. D weakly prefers bluffing at z to bluffing at  when ¢o(2) > ¢c(r). The set



of C’s weakly profitable deviations for D is a strict subset of the set of deviations that
are strictly profitable for D’. Hence, D1 eliminates D. B

The previous lemmas make it easy to specify a PBE satisfying D1. Lemma 1A implies
that both D and D’ bid r and all states subsequently stand firm whenever p < p as this
implies 7 < R¢. Proposition 1A describes a separating PBE satisfying D1 when p € (p, p].
D and D' respectively bid r and R¢, and both types then stand firm. C' stands firm after
r and does so with probability p after Ro. More precisely, define the assessment Ag in
which D plays according to p = r, qp(r) = 0 for r < Rp and ¢p(r) = 1 for r > Rp;
D' plays according to p' = R¢, ¢p(r) = 0 for r < R, and ¢j(r) = 1 for r > R),; and
C follows go(r) = 0 for r # Re and qo(Re) = 1 — p. C’s beliefs are t(r) = 0if r = r,
t(r) =7 for r € (r,Rc), t(Rc) = 1, and t(r) = 0 for r € (R¢, 7).

PrOPOSITION 1A: Ifp € (p,P], Ao is a PBE satisfying D1.

Proof: Verifying that A is a PBE is straightforward. Given go(r) = 0 for r # Re, D
and D' will bid either r or R¢ since the payoff to r is strictly better than the payoff to
bidding any r ¢ {r, Rc}. At gc(Rc) = 1 —p, D is indifferent between r and R, so r
is a best reply. D’ strictly prefers Ro to r. C in turn strictly prefers standing firm after
r and is indifferent after Ro given that it believes it is facing D’ for sure (t(R¢) = 1).
Accordingly, go(r) = 0 and qc(Rc) = 1 — p are best replies. C’s beliefs are also clearly
consistent with Bayes’ rule.

To demonstrate that A, satisfies D1 consider any deviation r > Rc. As shown in
the proof of Lemma 3A, any gc(r) € [0,1] can be rationalized as a best response to
some beliefs about the deviator’s type. Moreover, D’ stands firm after bidding r since
Ry(p) > Ry(p) > 7(p) > r. This implies the responses gc(r) for which r is weakly
profitable are defined by qo(r)[(1 —1)v), — kp —rnp| +[1 —qc(r)][(1 — p)v), —kp —7[(1 —
p)vp +rnp] = (1= p)[(1 —r)vp — kp — rnpl + pl(1 — p)vp — kp — Re[(1 = p)vp + rnp].
This simplifies to qo(r) > qo(r) =1 — p + p[(1 — p)v), + rnpl(r — Re).

As for D, assumption (ii) ensures that D is certain to quit if it bids » and C stands
firm. That is, r > Rc(p) > Re(p) and Rp(p) > Rp(p) since Re is increasing and Rp is
decreasing and, by assumption (ii), Rc(p) > Rp(p). According, deviating to r is strictly
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profitable for D if qo(r)[(1 — r)vp — kp — rnp] + [1 — qe(r)|(=kp — rnp) > (1 — p)(1—
r)vp —kp —rnp or go(r) > 1 —p.

The set of C’s responses to r for which r is weakly profitable for D’ is a strict subset
of the set of responses for which r is strictly profitable for D. That is, {go(7) : qc(r) >
do(r)} € {qc(r) : qc(r) > 1 — p}. D1 therefore eliminates D' and requires C' to put
probability one on D after r > Re. Ag does this as t(r) = 0 for r > Re.

For r € (r, R¢), C’s unique best response is ¢o(r) = 0 regardless of its beliefs. As a
result, D1 has no bite, and any ¢(r) € [0,1] is consistent with D1. Hence, C’s out-of-
equilibrium beliefs in Ay satisfy D1.1

D1 does not pin down a unique PBE. As Corollary 1A shows, other equilibria satisfying
D1 exist. This multiplicity of equilibria arises from C’s indifference between quitting and
standing firm following a bid of » = R¢. To establish that equilibria other than Aq exist
and satisfy D1, observe first that C' is indifferent only if C' believes that it is facing D’
with probability one after a bid of Rc. Any positive probability of facing D breaks C’s
indifference and leads C' to stand firm. It follows that C' must quit after a bid of Ro with
a high enough probability that D’ is willing to bid R¢ rather than r but not so high that
D prefers bidding Rc to r. To define this range, let ¢, be the smallest probability of
quitting for which D’ is willing to bid R¢. Then g, is the smallest ¢ satisfying (1 —r)[(1—
p)vp —kp]—rlkp+np] < q[=kp —rnp]+(1=q)[(1 = Rc)[(1 — p)vp — kp] = Relkp +np].

Corollary 1A shows that a PBE satisfying D1 exists for all go(R¢) € [gp, 1 — p|. Define
the PBE A, to be the same as A except that ¢o(R¢) = g for any ¢ € g, 1 — p). Then

COROLLARY 1A: A, for q € [@,1 — p) are PBEs satisfying D1.!

Proof: By construction, D’ at least weakly prefers bidding R¢ and then standing firm to
bidding r for ¢ € [g», 1 — p). Verifying that A, is a PBE is straightforward. Repeating
the argument in Proposition 1A also shows that D1 eliminates D’ for all r > Rs. D1
thus requires ¢(r) = 0 at » > R as is the case in A,. W

Although many PBEs satisfy D1, only A satisfies an additional limit-point criterion.

1 Other PBEs exist as well, e.g., at gc(R¢) = ¢, where D’ is indifferent between bidding

Re and r.



The main idea underlying this criterion is that if the set of bids was discrete, it would be
very unlikely that the defender could bid exactly Ro. The discrete-bid criterion imposes
this condition.

To define this criterion, consider a discrete-bid analogue of the brinkmanship game
when p > p. C must now select a bid from a finite set of offers ry, ..., 7, such that
r=rg<-<rpa<Re<rp,<---<r,=Twithr; —r;_y <4 forall j andad > 0.
(The models of brinkmanship in Powell 1990 have this structure. Every step toward the
brink raises the risk of disaster by a fixed amount §.) The key features of this discrete
set of offers is that the defender is no longer able to bid exactly R¢ and there is a well
defined next highest bid above R, namely, r,,. At r,,, C'is no longer indifferent between
quitting and standing firm if it is certain that it is facing D’. Rather, C' strictly prefers
to quit.

Call the discrete-bid brinkmanship game described above I'(p). Define the assessment
As to be: D plays r,, with probability ps and r with probability 1 — ps where pu; =
7(pve + ne)(rm — Re)/[(1 — 7)(1 — r)vel, gp(ry) = 0 for any r; < Rp and gp(r;) =1
for r; > Rp. D' plays according to p/ = 7, ¢p(r;) = 0 for r; < R}, and ¢}(r;) = 1 for
r; > Rp. C follows qc(r;) = 0 for r # r,, and go(rm,) = 1 — p. C’s beliefs are ¢t(r) = 0,
t(r)=r1forr <r; <rp_q, t(rm) =7/[7+ (1 — 7)ps], and t(r;) = 0 for r; > r,.

The next lemma shows that all the PBEs of I'}; satisfying D1 are the same as A;
except possibly at C’s beliefs following an out of equilibrium offer less than Ro. These
beliefs have no effect on subsequent play. C' and both D and D’ stand firm after this bid.
Proposition 2A demonstrates that if we let the maximal distance between adjacent offers
d go to zero, then the limit of Ay is identical to Ay except possibly for C’s beliefs at ¢(r)

for r € (r, R¢). In this sense, D1 and the limit-criterion uniquely select A,.

LEMMA 4A: Assume p > p and let A be any PBE of T} satisfying D1. Then A is
identical to As except possibly for C'’s beliefs t(r;) forr <r; <rpm_q.

Proof: Let A be a PBE satisfying D1. Repeating the argument in the proofs of Lemmas
1A and 2A shows that A can only put positive weight on r and on one r; > r,. If

rj > Ty, repeating the argument in the proof of Lemma 3A shows that C' must believe
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that it is facing D’ after the downward deviation to 7;_; > r,,,. That is, t(r;_1) = 1.

(s best response given this belief and r,, > R is to quit, ¢ (rj—1) = 1. This, however,
makes 7;_; a profitable deviation. Hence, putting positive weight on r; > r,, yields a
contradiction. As a result, A can put positive probability on at most r and r,,.

In fact, A must put positive weight on r,,. Suppose not. Then r,, is an out-of-
equilibrium bid, and #(r,,) = 1 by D1. To see that D1 eliminates D, note that D
quits after r,, if C' stands firm. D therefore weakly prefers to deviate to r,, from r if
qgo(rm) > 1 — p. Algebra shows that D’ strictly prefers bidding r,, and standing firm
when g (r,) > 1 — p. D1 therefore eliminates D and leaves ¢(r,,) = 1.

A contradiction follows. If ¢(r,,) = 1, C’s best reply is qo(r,) = 1. This, however,
makes 7, a profitable deviation, and this contradiction ensures that A must put positive
weight on r,,.

A must put positive probability on r as well. Arguing again by contradiction, suppose
D and D' pool on 7,,. Then t(r,,) = 7. D’s weak preference for r,, also implies qc(r,,) >
1 — p. But as shown below, C' strictly prefers to stand firm if D and D’ pool on r,, and
9 is sufficiently small. This yields the contradiction go(r,,) = 0.

To establish that C stands firm after r,, if D and D’ pool on this bid and ¢ is sufficiently
small, note that C' stands firm if (1 —7)[ve —rne|+7[(1 —7m)pve —rmne] > —rne. This
is equivalent to 7 < ve/[ve + (pve + ne)(rm — Ro(p))]. As 6 goes to zero, this constraint
goes to 7 < 1 and is sure to hold.

That both r and r,, are played with positive probability implies that D’ bids r,, and
D mixes between r and r,,. Clearly the types cannot separate. If D plays r and D’
plays 7, then qco(r,,) = 1 and D prefers to deviate. If D plays r,, and D’ plays r, then
qco(rm) = 0 and D prefers to deviate to r. Given that the types cannot separate and that
D’ strictly prefers r,, whenever D weakly prefers r,,, D" must play r,,, i.e., p’ = r,,, and
D must mix between r and 7,,.

In order for D to mix, it must be indifferent. This implies that C' must mix after
rm with go(r,) = 1 — p. Because C' is mixing, it must be indifferent between quitting

and standing firm. Let ps be the probability that D bids 7,,. Then C’s indifference



gives —kc —rne = (1 = 7u5)/[(1 = 7)(1 = p5) + 7][(1 = r)ve — ke — rnel + 7/[(1 =
T)(1 = ps) + 7llpve — ke — rm(pvc + ne)] where (1 — 7u5)/[(1 — 7)(1 — p5) + 7] and
7/[(1 = 7)(1 — us) + 7] are the posteriors of facing D and D’ given r,,. This yields
ts = (pve + ne)(rm — Re) /[(1 = 7)((1 = r)ve + (pre + ne)(rm — Re))]-

Finally consider C’s out-of-equilibrium beliefs and actions ¢(r;) and go(r;) for j > m.
Deviation r; is strictly profitable for D if go(r;) > 1 — p. D’ weakly prefers to deviate
if go(r;) > qo(rj,mm) > qo(rm) = 1 — p. Thus, D1 eliminates D" at r;. This leaves
t(rj) =0, go(rj) = 0, and establishes the lemma. W

It immediately follows that As converges to Ay except possibly for C’s beliefs at
r € (r, Re¢). Since 6 > 1y — 1 > T — Re, we have ps — 0 and t(r,,) — 0 as 6 — 0.

This leaves

PROPOSITION 2A: Assume p > p. Then the assessment lims_oAs is identical to Ay
except possibly at the irrelevant beliefs t(r) for r € (r, Rc).

Turning to a determination of C’s choice of p at the outset of the game, Lemma 1A
and Proposition 2A imply that the challenger’s payoff to bring p to bear is:

Uc(p) = pve — ko —r(p)nc if 9<p<ﬁ
¢ (1—=7)[1—=r@)lpvc — ke —r(p)nc if p<p<p.

As for the optimal p, define Uc(0) = 0 and Uc(p) = limy13 Uc(p) = [1 — r(p)]pve —
ke — r(p)nc. We justify this specification of Ux(p) below. For now, observe that Ugs(p)
defined in this way over [0,p] has a well defined global maximizer. This follows from the
fact that Uc is weakly concave over (0,p) and strictly concave over (0,p] with Uq(0) =
0 > lim, .o Uc(p) = —k¢ and lim, 5 Uc(p) > lim, 5 Uc(p). Moreover, this maximizer is
generically unique. That is, the set of feasible parameter values vo and ne for which
there are multiple maximizers is a set of measure zero. Let p** denote this maximizer.

To justify the specification of U (p), we show below that the brinkmanship game fol-
lowing p has multiple equilibria satisfying D1, and C’s equilibrium payoffs vary across
these equilibria. However, these payoffs are above below by Ux(p), and a unique equilib-
rium path yields Uq(p). Hence which equilibrium is played after p has no effect on the
optimal choice of p if p™* # p. If p** = p, the states must play an equilibrium with the
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unique path giving C' a payoff of Ux(p). Otherwise C’s payoff to p would discontinuously
jump down at p and C would not have a best reply to the defender’s strategy.

To see that A(p) has multiple equilibria satisfying D1, let A; be the assessment in which
both D and D’ bid r, and all three states subsequently stand firm after any » < Ro. C
quits after r = Ro with any go(Re) < gp. C’s beliefs at r € (r, R¢) can be anything,
and t(Rc) = 1. These equilibria have the same equilibrium path and give a payoff of
Uc(p) to C. By contrast, Ag is also an equilibrium satisfying D1 and yields a payoff of
lim, ;5 Uc(p) to C.

To establish that C’s equilibrium payoffs are bounded above by Ucx(p), let z be the
equilibrium probability that D or D’ bids r. Then C’s equilibrium payoff is z[pvc — ko —
r(p)(pvec +ne)] — (1 — 2)[ke +r(p)ne]. This payoff is increasing in z and equal to Uc(p)
at z = 1. Finally, it is easy to see that the equilibrium path of Ay is the unique path
giving C' the payoff Us(p). Since z = 1, D and D’ must bid r which corresponds to the
path in Ag.

In determining the comparative statics, assume an interior solution, Uj(p**) = 0.
Using U/, < 0 gives sgn{0p**/dnc} = sgn{d*Uc(p**)/OncOp}. Differentiation gives
OUc/0p = —1r'ne + (1 — 7)[(1 — r)ve — r'pue]. Trivially, 0*°Us/OncOp = —1’ < 0 and
Ip*™* /Onc < 0. Further, 0?°Uc/Ovcdp = (1 — 7)[1 — r — r'p]. But UL(p*™) = 0 ensures
(1=7)[1 —r—1'p] = r'nc/ve > 0. Thus dp** /Ove > 0. And, 0?Uc/010p = r'pve — (1 —
rve = —r'ng/(1 — 1) < 0, so Op™ /0T < 0. As for ORc(p**)/0ve and ORc(p**)/Onc,
write Ro(p™) =1 — (1 —r(p**)/[1 + p™vc/nc|. The results follow immediately.



