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Online Appendix

The first step in characterizing the equilibria of the asymmetric-information game is de-

scribing the equilibria of the brinkmanship subgame. Let Γ() denote the brinkmanship

continuation game given . A pure strategy in this subgame for is a pair {() (|)}
where () ∈ [() ()] is ’s bid and (|) ∈ {0 1} indicates whether  quits

((|) = 1) or stands firm ((|) = 0) after . (When we consider mixed strate-

gies, (|) ∈ [0 1] will be the probability that  quits.) Similarly, a pure strategy

for 0 is the analogous pair {0() 0(|)}. A strategy for  is a function (|) for
all  ∈ [ ] where (|) is the probability  quits after bid  given . We ease the

notation by suppressing the argument “” when it is not needed for clarity. A belief sys-

tem for the challenger is a function () which is the conditional probability of facing 0

given a bid of . Finally, a PBE of the brinkmanship continuation game is an assessment

∆ = {  0 0   } which is sequentially rational and in which  is derived from ’s

prior beliefs by Bayes’ rule when possible.

Three lemmas help characterize the PBEs of the brinkmanship game. Lemma 1A

demonstrates that neither  nor 0 ever bids an  ∈ (()).  is sure to stand

firm after such a bid and, consequently,  and 0 would have done better by bidding

. Lemma 2A shows that at most one  ∈ (  ] is played with positive probability in

a PBE. Lemma 3A shows no  ∈ (  ] is played with positive probability in any PBE

satisfying D1. Taken together, these lemmas imply that a PBE satisfying D1 can put

positive probability on at most  and ().

Lemma 1A: Let ∆ = {  0 0   } be a PBE of Γ(). Then  ∈ (()) and

0 ∈ (()).

Proof: Arguing by contradiction, suppose  bids an  ∈ (). Since    ,  strictly

prefers to stand firm after  regardless of ’s beliefs about the defender’s type. It follows

that ’s payoff to bidding  is max{−− (1−)(1−)−−}. Given that
  0,  would have done strictly better by bidding  and then standing firm to obtain
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(1− )(1− ) −  − . A similar argument holds for 
0.¥

To ease the proof of Lemma 2A, observe that irresolute defender’s preference over any

two distinct bids  ≥  and b ≥  depends solely on the probability that  backs

down after  and b. Indeed,  strictly prefers  to b if and only if ()  (b). To
see why, note that  is bluffing, i.e., sure to quit, whenever at least  since  

 by assumption (ii). More specifically, (e) − (e)  0 by assumption (ii), and

()−()  (e)−(e) for   e since is increasing in  and is decreasing.

Given that  is sure to quit following any  ≥  ,  strictly prefers  to b if and only if
()[(1− ) −  − ] + [1− ()][− −  ]  (b)[(1− ) −  − ] +

[1− (b)][− −  ] or ()  (b).
It is also useful to determine when 0 prefers higher bids to lower bids. Suppose

  b  . Assumption (i) ensures that 
0
() ≥ 0()  () ≥ () and hence

that 0 is sure to stand firm after  or b. Because 0 always stands firm, a higher

bid brings a higher cost if  stands firm, i.e., (1 − )0 −  − [(1 − )0 + ] is

decreasing in . As a result, 0 will only be willing to run risk   b if  is more more

likely to quit after  than after b. To be more precise, 0 strictly prefers  to b if and
only if ()[(1− )0 −  − ] + [1− ()][(1− )0 −  − [(1− )0 + ]] 

(b)[(1 − )0 −  − ] + [1 − (b)][(1 − )0 −  − b[(1 − )0 + ]]. This is

equivalent to ()  e0( b) ≡ (b) + [1− (b)( − b)[(1− )0 + ][(1− )0 −
[(1− )0 + ](

0
 − )]. 0 is indifferent when () = e0( b).

Lemma 2A: Let ∆ be a PBE in which  ∈ (  ] is played with positive probability.

Then no other b ∈ (  ] is played with positive probability.

Proof: The lemma holds vacuously if  ≤ e as (  ] = ∅. Assume   e, and suppose
that  and b are played with positive probability in ∆ with   b  . Then 0 must

put positive probability on both offers. Suppose not. If  alone put positive probability

on , then () = 0 and  is sure to stand firm (() = 0) since  is certain to back

down as   . But if () = 0,  can profitably deviate from  to bidding  and then

standing firm. Hence 0 must put positive probability on . Repeating the argument for
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b establishes that 0 must also put positive weight on b.
In order to put positive weight on  and b, 0 must be indifferent between them. This

implies 1 ≥ () = e0( b)  (b) ≥ 0. But this means that  strictly prefers  to b
as  is more likely to quit. This leaves (b) = 1 and yields the contradiction (b) = 1.¥
Lemma 3A: Let ∆ be a PBE satisfying D1. Then no  ∈ (  ] is played with positive

probability ∆.

Proof: The lemma again holds vacuously if  ≤ e. Arguing by contradiction when   e,
assume  ∈ (  ] is played with positive probability. Lemmas 1A and 2A imply that

the only other bids that might be played with positive probability are  and .

Both  and 0 must put positive probability . Observe first that ()  0. Other-

wise both types prefer to deviate to  and  would not be played with positive probability.

If only  plays , () = 0 and this leads to the contradiction () = 0. If 0 alone

plays , then () = 1 and () = 1. Moreover, 
0 must at least weakly prefer  to ,

so () ≥ e0( )  (). However, ()  () implies that  strictly prefers

 to  .  must therefore at least weakly prefer  to . This yields the contradiction

() ≤ 1− .

Because both  and 0 play  with positive probability, their respective equilibrium

payoffs are ()[(1−)−−−]+[1−()][−− ] = −−+()(1−
) and ()[(1−)0−−]+[1−()][(1−)0−−[(1−)0+]]. Now

consider any downward deviation  ∈ (  ). We show that D1 requires  to believe

that it is facing 0 for sure (i.e., () = 1). ’s best response given this belief is to quit

with () = 1. But this would make  a profitable deviation for both  and 0, and

this contradiction would establish the lemma.

To see that D1 eliminates  at , observe first that  is indifferent between standing

firm and quitting after  if it believes it is facing 0 with probability ( + )( −
)[(1− ) + ( + )(−)]. Hence, any () ∈ [0 1] can be rationalized as a
best response to some beliefs about the deviator’s type.

Moreover, 0 strictly prefers deviating to  if ()  e0( ) where e0( )  ()

when   .  weakly prefers bluffing at  to bluffing at  when () ≥ (). The set
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of ’s weakly profitable deviations for  is a strict subset of the set of deviations that

are strictly profitable for 0. Hence, D1 eliminates . ¥
The previous lemmas make it easy to specify a PBE satisfying D1. Lemma 1A implies

that both  and 0 bid  and all states subsequently stand firm whenever   e as this
implies   . Proposition 1A describes a separating PBE satisfying D1 when  ∈ (e ].
 and 0 respectively bid  and , and both types then stand firm.  stands firm after

 and does so with probability  after . More precisely, define the assessment ∆0 in

which  plays according to  = , () = 0 for  ≤  and () = 1 for   ;

0 plays according to 0 =  , 
0
() = 0 for  ≤ 0 and 0() = 1 for   0; and

 follows () = 0 for  6=  and () = 1 − . ’s beliefs are () = 0 if  = ,

() =  for  ∈ ( ), () = 1, and () = 0 for  ∈ (  ].

Proposition 1A: If  ∈ (e ], ∆0 is a PBE satisfying D1.

Proof: Verifying that ∆0 is a PBE is straightforward. Given () = 0 for  6=  , 

and 0 will bid either  or  since the payoff to  is strictly better than the payoff to

bidding any  ∈ { }. At () = 1 − ,  is indifferent between  and  , so 

is a best reply. 0 strictly prefers  to .  in turn strictly prefers standing firm after

 and is indifferent after  given that it believes it is facing 0 for sure (() = 1).

Accordingly, () = 0 and () = 1−  are best replies. ’s beliefs are also clearly

consistent with Bayes’ rule.

To demonstrate that ∆0 satisfies D1 consider any deviation   . As shown in

the proof of Lemma 3A, any () ∈ [0 1] can be rationalized as a best response to
some beliefs about the deviator’s type. Moreover, 0 stands firm after bidding  since

0() ≥ 0()  () ≥ . This implies the responses () for which  is weakly

profitable are defined by ()[(1− )0−− ]+ [1− ()][(1−)0−− [(1−
)0 + ] ≥ (1− )[(1− )0 −  − ] + [(1− )0 −  − [(1− )0 + ]].

This simplifies to () ≥ e0() ≡ 1− + [(1− )0 + ]( −).

As for , assumption (ii) ensures that  is certain to quit if it bids  and  stands

firm. That is,   ()  (e) and (e)  () since  is increasing and  is

decreasing and, by assumption (ii), (e)  (e). According, deviating to  is strictly
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profitable for  if ()[(1− ) −  − ] + [1− ()](− − )  (1− )(1−
) −  −  or ()  1− .

The set of ’s responses to  for which  is weakly profitable for 0 is a strict subset

of the set of responses for which  is strictly profitable for . That is, {() : () ≥e0()} ⊂ {() : ()  1 − }. D1 therefore eliminates 0 and requires  to put

probability one on  after   . ∆0 does this as () = 0 for   .

For  ∈ (), ’s unique best response is () = 0 regardless of its beliefs. As a

result, D1 has no bite, and any () ∈ [0 1] is consistent with D1. Hence, ’s out-of-
equilibrium beliefs in ∆0 satisfy D1.¥
D1 does not pin down a unique PBE. As Corollary 1A shows, other equilibria satisfying

D1 exist. This multiplicity of equilibria arises from ’s indifference between quitting and

standing firm following a bid of  = . To establish that equilibria other than ∆0 exist

and satisfy D1, observe first that  is indifferent only if  believes that it is facing 0

with probability one after a bid of . Any positive probability of facing  breaks ’s

indifference and leads  to stand firm. It follows that  must quit after a bid of  with

a high enough probability that 0 is willing to bid  rather than  but not so high that

 prefers bidding  to . To define this range, let  be the smallest probability of

quitting for which 0 is willing to bid  . Then  is the smallest  satisfying (1−)[(1−
)0−]−[+] ≤ [−−]+(1−)[(1−)[(1−)0−]− [+].

Corollary 1A shows that a PBE satisfying D1 exists for all () ∈ [ 1−]. Define

the PBE ∆ to be the same as ∆0 except that () =  for any  ∈ [ 1− ). Then

Corollary 1A: ∆ for  ∈ [ 1− ) are PBEs satisfying D1.1

Proof: By construction, 0 at least weakly prefers bidding  and then standing firm to

bidding  for  ∈ [ 1 − ). Verifying that ∆ is a PBE is straightforward. Repeating

the argument in Proposition 1A also shows that D1 eliminates 0 for all   . D1

thus requires () = 0 at    as is the case in ∆. ¥
Although many PBEs satisfy D1, only ∆0 satisfies an additional limit-point criterion.

1 Other PBEs exist as well, e.g., at () =  where 
0 is indifferent between bidding

 and .
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The main idea underlying this criterion is that if the set of bids was discrete, it would be

very unlikely that the defender could bid exactly . The discrete-bid criterion imposes

this condition.

To define this criterion, consider a discrete-bid analogue of the brinkmanship game

when   e.  must now select a bid from a finite set of offers 0   such that

 = 0  · · ·  −1      · · ·   =  with  − −1 ≤  for all  and a   0.

(The models of brinkmanship in Powell 1990 have this structure. Every step toward the

brink raises the risk of disaster by a fixed amount .) The key features of this discrete

set of offers is that the defender is no longer able to bid exactly  and there is a well

defined next highest bid above , namely, . At ,  is no longer indifferent between

quitting and standing firm if it is certain that it is facing 0. Rather,  strictly prefers

to quit.

Call the discrete-bid brinkmanship game described above Γ(). Define the assessment

∆ to be:  plays  with probability  and  with probability 1 −  where  ≡
( + )( − )[(1 − )(1 − ) ], () = 0 for any  ≤  and () = 1

for   . 
0 plays according to 0 = , 

0
() = 0 for  ≤ 0 and 0() = 1 for

  0.  follows () = 0 for  6=  and () = 1− . ’s beliefs are () = 0,

() =  for    ≤ −1, () = [ + (1− )], and () = 0 for   .

The next lemma shows that all the PBEs of Γ satisfying D1 are the same as ∆

except possibly at ’s beliefs following an out of equilibrium offer less than . These

beliefs have no effect on subsequent play.  and both  and 0 stand firm after this bid.

Proposition 2A demonstrates that if we let the maximal distance between adjacent offers

 go to zero, then the limit of ∆ is identical to ∆0 except possibly for ’s beliefs at ()

for  ∈ ( ). In this sense, D1 and the limit-criterion uniquely select ∆0.

Lemma 4A: Assume   e and let ∆ be any PBE of Γ satisfying D1. Then ∆ is

identical to ∆ except possibly for ’s beliefs () for    ≤ −1.

Proof: Let ∆ be a PBE satisfying D1. Repeating the argument in the proofs of Lemmas

1A and 2A shows that ∆ can only put positive weight on  and on one  ≥ . If

  , repeating the argument in the proof of Lemma 3A shows that  must believe
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that it is facing 0 after the downward deviation to −1 ≥ . That is, (−1) = 1.

’s best response given this belief and    is to quit, (−1) = 1. This, however,

makes −1 a profitable deviation. Hence, putting positive weight on    yields a

contradiction. As a result, ∆ can put positive probability on at most  and .

In fact, ∆ must put positive weight on . Suppose not. Then  is an out-of-

equilibrium bid, and () = 1 by D1. To see that D1 eliminates , note that 

quits after  if  stands firm.  therefore weakly prefers to deviate to  from  if

() ≥ 1 − . Algebra shows that 0 strictly prefers bidding  and standing firm

when () ≥ 1− . D1 therefore eliminates  and leaves () = 1.

A contradiction follows. If () = 1, ’s best reply is () = 1. This, however,

makes  a profitable deviation, and this contradiction ensures that ∆ must put positive

weight on .

∆ must put positive probability on  as well. Arguing again by contradiction, suppose

 and 0 pool on . Then () =  . ’s weak preference for  also implies () ≥
1− . But as shown below,  strictly prefers to stand firm if  and 0 pool on  and

 is sufficiently small. This yields the contradiction () = 0.

To establish that  stands firm after  if and0 pool on this bid and  is sufficiently

small, note that  stands firm if (1−)[− ]+ [(1−)− ]  −. This
is equivalent to   [ +( +)(−())]. As  goes to zero, this constraint

goes to   1 and is sure to hold.

That both  and  are played with positive probability implies that 
0 bids  and

 mixes between  and . Clearly the types cannot separate. If  plays  and 0

plays , then () = 1 and  prefers to deviate. If  plays  and 0 plays , then

() = 0 and  prefers to deviate to . Given that the types cannot separate and that

0 strictly prefers  whenever  weakly prefers , 
0 must play , i.e., 0 = , and

 must mix between  and .

In order for  to mix, it must be indifferent. This implies that  must mix after

 with () = 1 − . Because  is mixing, it must be indifferent between quitting

and standing firm. Let  be the probability that  bids . Then ’s indifference
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gives − −  = (1 − )[(1 − )(1 − ) +  ][(1 − ) −  −  ] + [(1 −
)(1 − ) +  ][ −  − ( + )] where (1 − )[(1 − )(1 − ) +  ] and

[(1 − )(1 − ) +  ] are the posteriors of facing  and 0 given . This yields

 = ( + )( −)[(1− )((1− ) + ( + )( −))].

Finally consider ’s out-of-equilibrium beliefs and actions () and () for   .

Deviation  is strictly profitable for  if ()  1 − . 0 weakly prefers to deviate

if () ≥ e0( )  () = 1 − . Thus, D1 eliminates 0 at . This leaves

() = 0, () = 0, and establishes the lemma. ¥
It immediately follows that ∆ converges to ∆0 except possibly for ’s beliefs at

 ∈ ( ). Since  ≥  − −1   −, we have  → 0 and () → 0 as  → 0.

This leaves

Proposition 2A: Assume   e. Then the assessment lim→0∆ is identical to ∆0

except possibly at the irrelevant beliefs () for  ∈ ( ).

Turning to a determination of ’s choice of  at the outset of the game, Lemma 1A

and Proposition 2A imply that the challenger’s payoff to bring  to bear is:

() =

½
 −  − () if 0    e
(1− )[1− ()] −  − () if e   ≤ .

As for the optimal , define (0) = 0 and (e) = lim↑ () = [1 − (e)]e −
 − (e) . We justify this specification of (e) below. For now, observe that ()

defined in this way over [0 ] has a well defined global maximizer. This follows from the

fact that  is weakly concave over (0 e) and strictly concave over (0 ] with (0) =

0  lim→0 () = − and lim↑ ()  lim↓ (). Moreover, this maximizer is

generically unique. That is, the set of feasible parameter values  and  for which

there are multiple maximizers is a set of measure zero. Let ∗∗ denote this maximizer.

To justify the specification of (e), we show below that the brinkmanship game fol-
lowing e has multiple equilibria satisfying D1, and ’s equilibrium payoffs vary across

these equilibria. However, these payoffs are above below by (e), and a unique equilib-
rium path yields (e). Hence which equilibrium is played after e has no effect on the
optimal choice of  if ∗∗ 6= e. If ∗∗ = e, the states must play an equilibrium with the
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unique path giving  a payoff of (e). Otherwise ’s payoff to  would discontinuously
jump down at e and  would not have a best reply to the defender’s strategy.

To see that∆(e) has multiple equilibria satisfying D1, let∆ be the assessment in which
both  and 0 bid , and all three states subsequently stand firm after any   . 

quits after  =  with any () ≤ . ’s beliefs at  ∈ ( ) can be anything,

and () = 1. These equilibria have the same equilibrium path and give a payoff of

(e) to . By contrast, ∆0 is also an equilibrium satisfying D1 and yields a payoff of

lim↓ () to .

To establish that ’s equilibrium payoffs are bounded above by (e), let  be the
equilibrium probability that  or 0 bids . Then ’s equilibrium payoff is [e − −
(e)(e + )]− (1− )[ + (e) ]. This payoff is increasing in  and equal to (e)
at  = 1. Finally, it is easy to see that the equilibrium path of ∆ is the unique path
giving  the payoff (e). Since  = 1,  and 0 must bid  which corresponds to the

path in ∆.
In determining the comparative statics, assume an interior solution,  0

(
∗∗) = 0.

Using  00
  0 gives sgn{∗∗} = sgn{2(

∗∗)}. Differentiation gives

 = −0 + (1 − )[(1 − ) − 0 ]. Trivially, 2 = −0  0 and

∗∗  0. Further, 2 = (1 − )[1 −  − 0]. But  0
(

∗∗) = 0 ensures

(1− )[1− − 0] = 0  0. Thus ∗∗  0. And, 2 = 0 − (1−
) = −0(1 − )  0, so ∗∗  0. As for (

∗∗) and (
∗∗),

write (
∗∗) = 1− (1− (∗∗)[1 + ∗∗ ]. The results follow immediately.
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