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Detrital zircon U–Pb geochronology
Sixteen samples were analysed for detrital zircon U–Pb geochronology; 15 diamictite samples [Figure 1] from the Yudnamutana Subgroup (FR1_005_02, FR1_009_01, FR2_007_01, FR2_024_01, FR3_005, FR3_006, FR3_009, FR3_034, FR3_065, FR3_073, FR3_084a, FR3_109, FR3_139, ML_017, & ML_018), one diamictite sample from the correlative Yancowinna Subgroup (GSNSWKB002), and one conglomerate sample from the lowermost Nepouie Subgroup (FR3_004). The distribution of these samples was intended to provide good geographic and stratigraphic coverage across the basin system for strata of interest.
Rock samples were prepared for detrital zircon analysis by crushing, sieving, panning and, where necessary due to low zircon yield, heavy liquid separation. Any grain that remotely resembled a zircon was picked to minimise human bias, an issue highlighted by Sláma & Košler (2012) and Dröllner et al. (2021). Where permitted by zircon yields, at least 300 zircons were picked per sample, otherwise all zircons in the sample were picked. Cathodoluminescence images were obtained on either a FEI Quanta 600 scanning electron microscope (for zircon analysed in 2020) or a Cameca SXFive Electron Microprobe (for zircon analysed in 2021). All zircons were analysed using a RESOlution-LR 193 nm ArF excimer laser ablation (LA) system coupled with an Agilent 7900x inductively coupled plasma mass spectrometer (ICP-MS) to obtain a suite of elemental data for U–Pb geochronology and rare earth element (REE) analysis. All analytical instruments used are housed at Adelaide Microscopy, University of Adelaide, Australia.
Primary calibration reference materials were the zircon standard GJ-1 (Jackson et al., 2004; Horstwood et al., 2016) for U–Pb ratios, and the glass standard NIST610 (Jochum et al., 2011) for Pb isotope ratios and trace element data. The internal standard element for trace element data was 91Zr with a value of 431,400 ppm (43.14 wt%) assigned to unknowns. Zircon standards Plešovice (Sláma et al., 2008; Horstwood et al., 2016) and 91500 (Wiedenbeck et al., 1995; Wiedenbeck et al., 2004; Horstwood et al., 2016) were used as validation reference materials to check accuracy. Unknowns were bracketed by two analyses of GJ-1, followed by a combined two to three analyses of Plešovice and 91500, and two analyses of NIST610 every 20–30 unknowns. A 30 second gas blank followed by either a 40 second or 30 second ablation (session on 2021-03-30) time was used with a laser repetition rate of 5 Hz. A spot size of 29 μm and a nominal fluence of 2 Jcm-2 was used for zircon, and a spot size of 43 μm using a nominal fluence of 3.5 Jcm-2 was used for NIST610. Data were processed using LADR (Norris & Danyushevsky, 2018), version 1.1.06 and output as ‘Full Analytical Uncertainty’. No common Pb corrections were applied to the data. Isotopic ratios used for reference materials GJ-1, Plešovice, and 91500 were the Chemical Abrasion Isotope Dilution Thermal Ionisation Mass Spectrometry (CA-ID-TIMS) values (uncorrected for thorium disequilibria and common-Pb) of Horstwood et al. (2016). Weighted means and dispersion statistics for all standards are available from the link in data availability.
Statistical analysis of the zircon U–Pb data follows the method of Lloyd et al. (2020). Data are considered concordant if within ± 10%, and a meaningful age if the two-standard error (2SE) uncertainty is ≤10%—if a datum satisfies both parameters it is termed a Filtered Age. Maximum depositional ages are determined from the youngest single grain; however, use a stricter 2% concordance filter. All uncertainties are quoted at 2SE level. Kernel density estimates (KDEs), and multidimensional scaling plots (MDS) were generated using IsoplotR (Vermeesch, 2018). Key zircon trace element data are presented graphically using methods following Verdel, Campbell & Allen (2021) and additionally lanthanoid data are represented using violin plots and lambda representation (O’Neill, 2016; Anenburg, 2020). 
Metadata for the LA-ICP-MS sessions, data for all analyses, cathodoluminescence images, and R code used to generate plots are available from the links in data and code availability.
In-situ Rb–Sr geochronology
Two siltstone/shale samples (3404236 & 3404235) were acquired for in-situ Rb–Sr geochronology from the Sturt Formation within drillhole SR13/2 located on the north-eastern margin of the Stuart Shelf, South Australia. 
Polished rock blocks in 25 mm round epoxy mounts were first mapped for their mineral composition and petrography using a Hitachi SU3800 SEM (Subarkah et al., 2021; Subarkah et al., 2022). Back scatter electron (BSE) image tiles were collected at a 10 mm working distance and 20 kV acceleration voltage. Mineral liberation analysis maps (MLA) maps of samples were collected at 0.35 µm/pixel resolution. Samples were then analysed using an Agilent 8900x ICP-MS/MS coupled to a RESOlution-LR 193 nm ArF excimer LA system. All instruments are housed at Adelaide Microscopy, the University of Adelaide. Methods follow Redaa et al. (2021) and Subarkah et al. (2021). Briefly, N2O was used as the reaction gas to mass separate 87Sr from 87Rb with Sr measured as the reacted 87Sr16O product ion mass at 103. A nominal laser fluence of 3.5 Jcm-2 with a 67 μm circular spot, a 5 Hz repetition rate, and 40 second ablation time preceded by a 30 second gas blank were used. Primary calibration reference materials were NIST610 (Jochum et al., 2011) for Sr isotope ratios, and the Mica-Mg (Govindaraju, 1995) pressed nanopowder pellet for Rb—Sr ratios. Accuracy was checked by analysing MDC (crystalline phlogopite) and Högsbo (crystalline muscovite) (Hogmalm et al., 2017; Redaa et al., 2021) as validation reference materials. Unknowns were bracketed by two analyses of NIST610 and three analyses of Mica-Mg every thirty unknowns.
Data were reduced in LADR (Norris & Danyushevsky, 2018) version 1.1.07 and output as ‘Full Analytical Uncertainty’. Indicator elements such as Zr, Si, Ti, and lanthanoids were monitored during data reduction to filter the detrital component of each analysis (Subarkah et al., 2022). Isochrons were calculated using IsoplotR (Vermeesch, 2018) using a 87Rb decay constant (λ) of (1.3972 ± 0.0045) x 10-11 a-1 (Villa et al., 2015). Error correlations (ρ) were calculated in LADR by using a workaround to proxy the Rb–Sr data as U–Pb data. Except for translating headers from Rb to U and Sr to Pb using a cross-platform PowerShell module, all other parameters are the same resulting in identical ratio outputs but allowing for calculation of error correlations. Uncertainties are quoted at 2SE level (accounting for overdispersion), initially without decay constant uncertainty propagation. The decay constant uncertainty is propagated into the quoted 2SE uncertainty (accounting for overdispersion) during the discussion when comparing to other geochronometric systems. The Rb–Sr data are available from the links provided in data availability.
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