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Supplement to hydro-mechanical model (Sections 3.b.1-2 and Figs. 4-7) 
 

The hydro-mechanical model used in this contribution is based on the work of Ghani 

et al. (2013, 2015) and Koehn et al. (2020). The approach is similar to the approach 

for poro-elasticity and flow in granular media with a compressible fluid or air as well 

as fluidization in a fault gouge and instabilities during sedimentation (Flekkøy et al., 

2002; Johnsen et al. 2006, 2008a, 2008b; Vinningland et al., 2007a, 2007b, 2010, 

2012; Goren et al. 2010, 2011; Niebling et al. 2010a, 2010b). The 2-dimensional 

modeling scheme is implemented in the modeling environment “Elle” (Bons et al., 

2008; Piazolo et al. 2019), with solid and fluid being treated on two different grids. 

The model represents a vertical cross-section through a crustal domain of 1x1km at 

a depth of 1km. The bottom and sides of the model are confined (zero strain 

boundary normal to the boundary), whereas the upper boundary is controlled by 

gravity (constant stress boundary). Initial fluid pressures are hydrostatic with 

additional fluid being injected/locally produced in areas with variable geometry.  

The fluid is described by the fluid pressure Pf in cells of the square fluid grid. Inertia 

is not considered assuming a low Reynolds number and Darcy’s law is used to 

describe the fluid movement. Continuity equations for solid and fluid on the grain 

scale are (Ghani et al., 2013; Koehn et al., 2020)  

 
𝜕! 1− 𝜙 𝜌! + ∇ ∙ 1− 𝜙 𝜌!𝑢! = 0 

 
𝜕! 𝜙𝜌! + ∇ ∙ 𝜙𝜌!𝑢! = 0 

 
where	𝜌!	and	𝜌!	are the solid and fluid densities,	𝑢!	and		𝑢!	are the solid and fluid 

velocities and	𝜙	the local porosity of the solid. The Darcy equation can be used to 

calculate a local velocity 𝜙 uf of the fluid for a pressure change according to the local 

permeability on a unit area  



 

𝜙 𝑢! − 𝑢! = −
𝐾
𝜇 ∇𝑃 

 
where 𝜇 is the fluid viscosity and P the fluid pressure. The permeability 𝐾 is 

calculated from the local porosity according to the Kozeny-Carman relation (Carman, 

1937) 

 

𝐾 𝜙!,! =
𝑟! 𝜙!,!

!

45 1 − 𝜙!,!
!    

with r the grain radius. The fluid state equation is considered using the fluid 

compressibility 𝛽, as a proportional approximation of the fluid density to pressure 

variation 

 
𝜌! = 𝜌! 1 + 𝛽𝑃  

 
with 𝜌! the fluid density at some reference pressure. When 𝜌! and 𝑢! are substituted 

into equation 5, 𝜕!𝜙 is eliminated and the following diffusion equation for the fluid 

overpressure is derived (Gidaspow, 1994; Goren et al., 2010, 2011; Ghani et al., 

2013; Koehn et al., 2020) 
 

𝜙𝛽
𝜕𝑃
𝜕𝑡

+ 𝑢!∇ ∙ 𝑃 = ∇ ∙ 1 + 𝛽𝑃
𝐾
𝜇
∇P  − 1 + 𝛽𝑃  ∇ ∙ 𝑢! 

 
with the left hand side of the equation representing the Lagrangian derivative of the 

fluid pressure, the first term on the right hand side the Darcy diffusion of the fluid 

pressure and the third term a source term dealing with pressure change as a 

function of particle movement. 

For the solid a triangular lattice is used with elastic springs that have a normal and 

an angular force. The movement of nodes is a function of the momentum exchange 

between the solid and fluid in a unit volume cell dV, with a solid of mass dm=𝜌!𝑑𝑉, 

and inter-particle force fe , the fluid force fp and gravitational loading fg, so that 

𝑑𝑚 !"!
!"
= 𝑓! + 𝑓! + 𝑓!       

Once springs have exceeded a breaking threshold (either for extension or for the 

angular forces) they are thought to break and are removed from the network. 

However the particles in the network maintain a repulsive force in case fractures 



close. Fluid forces that act on each particle in the elastic grid are calculated from the 

difference of the neighboring fluid pressure cells and then applied on the area that 

the elastic node represents.  

𝑓! = − 𝑠 𝑟! − 𝑟!
∇𝑃
𝜌! !!

                      (𝑒𝑞 12) 

with ∇𝑃 the fluid pressure gradient, 𝜌!  the solid fraction, k running over the four fluid 

grid nodes near the particle, 𝑠 𝑟! − 𝑟!  is a smoothing function that satisfies the 

weighted distribution of particle mass relative to its position (Ghani et al., 2013). A 

gravitational vertical force is applied on the elastic nodes depending on the depth of 

the upper boundary (representing the overlying rocks) and gravitational forces from 

neighbouring nodes. The gravity force on single particles in addition to the load of 

the overlying sediments is calculated from the particle density 𝜑, the acceleration 

due to gravity g, the real volume of the particle VR and a scale factor w (w=0.74; 

Sachau & Koehn, 2012) 
𝑓! = 𝑉!𝜑𝑔𝑤                    (𝑒𝑞 13) 

The model loop includes a) solving the elastic part of the equation with given 

boundary conditions and the fluid pressure gradients, b) once the elastic model is 

relaxed the spring with the highest probability will break and the model is relaxed 

again until no more springs break, c) evolution of the fluid pressure via the diffusion 

equation as a function of solid movement and porosity. The time scale is mainly 

given by the fluid pressure diffusion.   

	
	
Supplement to Dynamics	of	hydrofracture	flow	on	a	crustal	scale (Sections 3.b.4 and 

Figs. 9-10) 
 

The modelling results that are presented in section 4.b.4, are also part of the study of 

de Riese et al. (2020). The simulations are developed using a two-dimensional 

cellular automaton, based on the sandpile modelling approach by Bak et al. (1988), 

which was the first model of a dynamical system that displayed self-organised 

criticality (SOC). The falling sand grains of the sandpile model are replaced in our 

approach by increments of fluid pressure, until the failure criterion is reached. At this 

point the system experiences a sudden and transient discharge through 

hydrofractures, which propagate in avalanches. Miller and Nur (2000) used a similar 



model to simulate the development of hydrofractures, while Bons and van Milligen 

(2001) simulated the production, accumulation and the transport of melt within the 

crust also with a similar cellular automaton in one dimension only. More recently, 

Wangen et al. (2022) modelled the expulsion of brine by hydraulic fracturing from 

tight rocks undergoing compaction using used the model of Miller and Nur (2000). 

The approach used in the present contribution (and de Riese et al., 2020) allows the 

investigation of the transition from systems dominated by Darcian flow to scenarios 

where hydrofractures control fluid flow though the crust. 

 

1. Diffusional Pressure Dissipation 

 

A rigid matrix model with a constant porosity (𝜙) is assumed (see de Riese et al. 

(2020) for details). Fluid pressure and the amount of fluid in the pore space are 

related through the compressibility 𝐾 (in Pa-1) of the fluid: 

 

𝑑𝑃 =
𝑑𝑉
𝐾𝑉!

 

 

V0 is the reference volume of fluid at ∆P=0 (hydrostatic pressure), 𝑑𝑉 additional 

volume of fluid added to the pore space. The fluid flux (Jf) is then related to a change 

in pressure in time (e.g. Barenblatt et al., 1989): 

 

𝑑𝑃
𝑑𝑡 =

1
𝜙𝛼

𝑑𝑉
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−1
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𝑑𝐽!
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where 𝜅 describes the permeability (in m2) and z is the depth (in m). This equation is 

similar to Fick’s second law for diffusion. Following this law, pressure gradients are 

able to be dissipated in a diffusional way with an effective diffusivity 𝐷 = 𝜅/𝜂𝜙𝛼 (in 

m2/s). 

 

2. Model 

 

A two-dimensional matrix with 100 x 100 elements with an element size of 100 m 

represents a 10 km vertical section through the Earth’s crust. A fixed fluid flux of J = 



10-11 m/s is used, which is typical for metamorphic fluid flux in the crust at a depth of 

10-15 km (Ingebritsen and Manning, 1999). Fluid enters at the base of the model 

and is transported towards the top. The model is laterally wrapping, i.e. fluid leaving 

the model on one side enters again on the other side. We track the overpressure for 

each element, where ∆P is defined as the difference between the actual fluid 

pressure (Pf) and the hydrostatic fluid pressure Phydro. At the top row Phydro. is set to 

zero, and Phydro increases with 104 Pa/m with depth z. The flow of fluid is implicitly 

modelled by tracking the evolution of ∆P using the pressure diffusion equation (S2).  

 

The loop used in the simulations works as follows: Every time step each element in 

the bottom row is selected in random order and fluid pressure is added. After the 

fluid production causes an increase in fluid pressure, the possible initiation of a 

hydrofracture is evaluated for every element in the model. If the fluid pressure 

reaches lithostatic pressure a hydrofracture forms, which is simulated by “breaking” 

the element where this happens and at least one of its neighbours. If a fracture is 

initiated, a propagation loop starts. As only one hydrofracture can exist at a time 

step, all elements in the matrix which are “broken” form one connected cluster. The 

first step of the fracture propagation subloop is an equalization of the pressure within 

the cluster, which is the average of the individual pressures of all cluster elements. 

Next, the element on the edge of the cluster with highest pressure is selected. If the 

failure criterion (𝑃 − 𝑃!"#! > 0) is reached, one randomly selected neighbour element 

that has not yet failed is added to the cluster. This subloop is repeated, until either 

(1) none of the elements in the cluster reaches the failure criterion, or (2) the cluster 

reaches the surface. In this case, the pressure in all cluster elements is set to zero, 

which means that fluid pressure is reduced to hydrostatic and the excess fluid is 

released at the surface. When fracture propagation ends, all elements in the cluster 

are reset to “unbroken”, which implies an instantaneous healing of the fracture. At 

the end, once pressures are increased in all elements of the bottom row and all 

resulting hydrofractures are dealt with, Darcian flow is simulated using an explicit, 

forward finite difference scheme.  

 

In this model, fractures heal after one calculation step. Healing is therefore 

effectively instantaneous relative to the diffusional flow. Equation (2) indicates that 

the effective pressure diffusion coefficient D is a function of porosity, fluid viscosity, 



compressibility, and permeability. The pressure diffusion coefficient is varied in our 

simulations, which implies a variation in permeability (all other variables are kept 

constant). This approach allows the investigation of the transition from hydrofracture 

(low D) to Darcian-flow dominated (high D) behaviour. The variables in this model 

are scaled. A detailed description of the scaling can be found in de Riese et al. 

(2020).  
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