A unified approach to characterize and conserve adaptive and neutral genetic diversity in subdivided populations.

Robin Wellmann*, Jörn Bennewitz, Theo Meuwissen

May 13, 2014

Appendix: Definition of the core set

Assume that $N-1$ individuals of the core set have already been created and let b be the breed of the N th individual. For creating the N th individual of this idealized offspring population, two gametes are randomly chosen from all individuals of breed b from the current generation. This procedure defines a sequence $\mathcal{C}=\left(\mathcal{C}_{N}\right)_{N \in \mathbb{N}}$ of offspring populations, whereby C_{N} consists of the first N individuals from the core set. Because of random mendelian sampling, \mathcal{C}_{N} is a random offspring population. Thus, for a function D measuring some property of a population, the value $D\left(\mathcal{C}_{N}\right)$ is also random, but it may convergue almost surely for $N \rightarrow \infty$. In this case, we are interested in the limit $D(\mathcal{C})=\lim _{N \rightarrow \infty} D\left(\mathcal{C}_{N}\right)$ and $D(\mathcal{C})$ is said to be the value of D for core set \mathcal{C}. The value of D for a set \mathcal{S} of breeds is defined as the maximum value D can achieve in a core set if only breeds from \mathcal{S} are allowed to have nonzero contributions. That is,

$$
D(\mathcal{S})=\sup \left\{D(\mathcal{C}): \mathcal{C} \text { is a core set with } c_{b}=0 \text { for } b \notin \mathcal{S}\right\}
$$

Appendix: Proofs

Equation 1:

$$
\begin{equation*}
T T D_{t}(\mathcal{C})=\mathbf{c}^{T} \mathbf{V}_{\mathbf{A} t}+\mathbf{c}^{T}\left(\frac{1}{2}\left(\overline{\mathbf{g}}_{t}^{2} \mathbf{1}^{T}-2 \overline{\mathbf{g}}_{t} \overline{\mathbf{g}}_{t}^{T}+\mathbf{1} \overline{\mathbf{g}}_{t}^{2 T}\right)\right) \mathbf{c} \tag{1}
\end{equation*}
$$

Proof:

[^0]We have

$$
\begin{aligned}
T T D_{t}\left(\mathcal{C}_{N}\right) & =\frac{1}{N} \sum_{j \in \mathcal{C}_{N}}\left(g_{t j}-\mu_{g_{t}}\right)^{2} \\
& =\frac{1}{N} \sum_{j \in \mathcal{C}_{N}} g_{t j}^{2}-\mu_{g_{t}}^{2} \\
& =\frac{1}{N} \mathbf{1}^{T} \operatorname{diag}\left(\mathbf{g}_{t} \mathbf{g}_{t}^{T}\right)-\left(\frac{1}{N} \mathbf{1}^{T} \mathbf{g}_{t}\right)^{2} \\
& =\frac{1}{N} \mathbf{1}^{T} \operatorname{diag}\left(\mathbf{g}_{t} \mathbf{g}_{t}^{T}\right)-\frac{1}{N^{2}} \mathbf{1}^{T} \mathbf{g}_{t} \mathbf{g}_{t}^{T} \mathbf{1}
\end{aligned}
$$

where $\mathbf{g}_{t} \in \mathbb{R}^{N}$ contains the genotypic values of all individuals from \mathcal{C}_{N} for trait t.

Let $B_{b} \subset\{1, \ldots, N\}$ be the set of individuals in the offspring population \mathcal{C}_{N} belonging to breed b, N_{b} is the number of individuals from breed b in the offspring population \mathcal{C}_{N}, and $\mathbf{1}_{b} \in \mathbb{R}^{N}$ is a vector with zeros and ones, where $1_{b i}=1$ if individual i from the offspring population belongs to breed b. Let $\tilde{\mathbf{S}}_{o}=\left(\frac{1}{N_{1}} \mathbf{1}_{1}, \ldots, \frac{1}{N_{B}} \mathbf{1}_{B}\right) \in \mathbb{R}^{N \times B}$ and $c_{b}=\frac{N_{b}}{N}$. Since

$$
\frac{1}{N} \mathbf{1}=\tilde{\mathbf{S}}_{o} \mathbf{c} \in \mathbb{R}^{N}
$$

we have

$$
T T D_{t}\left(\mathcal{C}_{N}\right)=\mathbf{c}^{T} \mathbf{m}_{N t}-\mathbf{c}^{T} \mathbf{M}_{N t} \mathbf{c}
$$

with

$$
\begin{aligned}
\mathbf{M}_{N t} & =\tilde{\mathbf{S}}_{o}^{T} \mathbf{g}_{t} \mathbf{g}_{t}^{T} \tilde{\mathbf{S}}_{o} \\
\mathbf{m}_{N t} & =\tilde{\mathbf{S}}_{o}^{T} \operatorname{diag}\left(\mathbf{g}_{t} \mathbf{g}_{t}^{T}\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
M_{N t b l} & =\frac{1}{N_{b} N_{l}} \mathbf{1}_{b}^{T} \mathbf{g}_{t} \mathbf{g}_{t}^{T} \mathbf{1}_{l}=\left(\frac{1}{N_{b}} \sum_{i \in B_{b}} g_{t i}\right)\left(\frac{1}{N_{l}} \sum_{j \in B_{l}} g_{t j}\right), \\
m_{N t b} & =\frac{1}{N_{b}} \mathbf{1}_{b}^{T} \operatorname{diag}\left(\mathbf{g}_{t} \mathbf{g}_{t}^{T}\right)=\frac{1}{N_{b}} \sum_{i \in B_{b}} g_{t i}^{2} .
\end{aligned}
$$

The definition of TTD shows that adding a constant to all genotypic values does not change the value of the objective function, so the vector with genotypic values is

$$
\mathbf{g}_{t}=\left(\mathbf{Z}-2 \mathbf{1} \mathbf{p}_{0}^{T}\right) \mathbf{a}_{t}
$$

where $\mathbf{a}_{t} \in \mathbb{R}^{M}$ is the vector with true SNP effects $\left(a_{t m}=0\right.$ if SNP m is not a QTL), and $\mathbf{p}_{0} \in \mathbb{R}^{M}$ is a vector containing arbitrary values. The matrix $\mathbf{Z} \in \mathbb{R}^{N \times M}$ is the gene content matrix for the 1-alleles with entries 0,1 , and 2 . We can write $\mathbf{Z}_{i}=\mathbf{m}_{i}+\mathbf{s}_{i}$, where \mathbf{Z}_{i}^{T} is the i th row of matrix $\mathbf{Z}, \mathbf{m}_{i} \in \mathbb{R}^{M}$ is
the vector with maternal SNP alleles, $\mathbf{s}_{i} \in \mathbb{R}^{M}$ is the vector with paternal SNP alleles of individual i. We have

$$
\begin{aligned}
m_{N t b} & =\frac{1}{N_{b}} \sum_{i \in B_{b}} g_{t i}^{2} \\
& =\frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{a}_{t}^{T}\left(\mathbf{Z}_{i}-2 \mathbf{p}_{0}\right)\left(\mathbf{Z}_{i}^{T}-2 \mathbf{p}_{0}^{T}\right) \mathbf{a}_{t} \\
& =\mathbf{a}_{t}^{T}\left(\frac{1}{N_{b}} \sum_{i \in B_{b}}\left(\mathbf{Z}_{i}-2 \mathbf{p}_{0}\right)\left(\mathbf{Z}_{i}^{T}-2 \mathbf{p}_{0}^{T}\right)\right) \mathbf{a}_{t} \\
& =\mathbf{a}_{t}^{T}\left(\frac{1}{N_{b}} \sum_{i \in B_{b}}\left(\mathbf{m}_{i}+\mathbf{s}_{i}-2 \mathbf{p}_{0}\right)\left(\mathbf{m}_{i}^{T}+\mathbf{s}_{i}^{T}-2 \mathbf{p}_{0}^{T}\right)\right) \mathbf{a}_{t} \\
& =\mathbf{a}_{t}^{T}\left(\frac{1}{N_{b}} \sum_{i \in B_{b}}\left(\mathbf{m}_{i}+\mathbf{s}_{i}\right)\left(\mathbf{m}_{i}^{T}+\mathbf{s}_{i}^{T}\right)\right) \mathbf{a}_{t} \\
& +\mathbf{a}_{t}^{T}\left(\frac{1}{N_{b}} \sum_{i \in B_{b}} 4 \mathbf{p}_{0} \mathbf{p}_{0}^{T}-\left(\mathbf{m}_{i}+\mathbf{s}_{i}\right) 2 \mathbf{p}_{0}^{T}-2 \mathbf{p}_{0}\left(\mathbf{m}_{i}+\mathbf{s}_{i}\right)^{T}\right) \mathbf{a}_{t} \\
& =\mathbf{a}_{t}^{T}\left(\frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{m}_{i} \mathbf{m}_{i}^{T}+\mathbf{m}_{i} \mathbf{s}_{i}^{T}+\mathbf{s}_{i} \mathbf{m}_{i}^{T}+\mathbf{s}_{i} \mathbf{s}_{i}^{T}\right) \mathbf{a}_{t} \\
& +\mathbf{a}_{t}^{T}\left(\frac{1}{N_{b}} \sum_{i \in B_{b}} 4 \mathbf{p}_{0} \mathbf{p}_{0}^{T}-2 \mathbf{m}_{i} \mathbf{p}_{0}^{T}-2 \mathbf{s}_{i} \mathbf{p}_{0}^{T}-2 \mathbf{p}_{0} \mathbf{m}_{i}^{T}-2 \mathbf{p}_{0} \mathbf{s}_{i}^{T}\right) \mathbf{a}_{t} .
\end{aligned}
$$

Note that

$$
\lim _{N_{b} \rightarrow \infty} \frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{m}_{i} \mathbf{p}_{0}^{T}=\lim _{N_{b} \rightarrow \infty} \frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{s}_{i} \mathbf{p}_{0}^{T}=\mathbf{p}_{b} \mathbf{p}_{0}^{T}
$$

Since the offspring population was created by random mating within populations, the maternal and the paternal alleles of an individual were independently chosen from the current population, so

$$
\lim _{N_{b} \rightarrow \infty} \frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{m}_{i} \mathbf{s}_{i}^{T}=\lim _{N_{b} \rightarrow \infty} \frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{s}_{i} \mathbf{m}_{i}^{T}=\mathbf{p}_{b} \mathbf{p}_{b}^{T} .
$$

Let \mathbf{H}_{b} be random M-vector containing the SNP alleles of a gamete randomly chosen from individuals of breed b in the current population. Since maternal and paternal alleles are identically distributed, we have

$$
\lim _{N_{b} \rightarrow \infty} \frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{m}_{i} \mathbf{m}_{i}^{T}=\lim _{N_{b} \rightarrow \infty} \frac{1}{N_{b}} \sum_{i \in B_{b}} \mathbf{s}_{i} \mathbf{s}_{i}^{T}=E\left(\mathbf{H}_{b} \mathbf{H}_{b}^{T}\right),
$$

and $E\left(\mathbf{H}_{b}\right)=\mathbf{p}_{b}$. Since the additive variance of trait t in population b is $V_{A t b}=$
$2 \mathbf{a}_{t}^{T} \operatorname{cov}\left(\mathbf{H}_{b}\right) \mathbf{a}_{t}$ and $\bar{g}_{t b}=\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{0}\right)^{T} \mathbf{a}_{t}$, it follows that

$$
\begin{aligned}
m_{t b} & =\lim _{N \rightarrow \infty} m_{N t b} \\
& =\mathbf{a}_{t}^{T}\left(E\left(\mathbf{H}_{b} \mathbf{H}_{b}^{T}\right)+\mathbf{p}_{b} \mathbf{p}_{b}^{T}+\mathbf{p}_{b} \mathbf{p}_{b}^{T}+E\left(\mathbf{H}_{b} \mathbf{H}_{b}^{T}\right)\right) \mathbf{a}_{t} \\
& +\mathbf{a}_{t}^{T}\left(4 \mathbf{p}_{0} \mathbf{p}_{0}^{T}-2 \mathbf{p}_{b} \mathbf{p}_{0}^{T}-2 \mathbf{p}_{b} \mathbf{p}_{0}^{T}-2 \mathbf{p}_{0} \mathbf{p}_{b}^{T}-2 \mathbf{p}_{0} \mathbf{p}_{b}^{T}\right) \mathbf{a}_{t} \\
& =\mathbf{a}_{t}^{T}\left(2 E\left(\mathbf{H}_{b} \mathbf{H}_{b}^{T}\right)+2 \mathbf{p}_{b} \mathbf{p}_{b}^{T}+4 \mathbf{p}_{0} \mathbf{p}_{0}^{T}-4 \mathbf{p}_{b} \mathbf{p}_{0}^{T}-4 \mathbf{p}_{0} \mathbf{p}_{b}^{T}\right) \mathbf{a}_{t} \\
& =\mathbf{a}_{t}^{T}\left(2 \operatorname{cov}\left(\mathbf{H}_{b}\right)+4 \mathbf{p}_{b} \mathbf{p}_{b}^{T}+4 \mathbf{p}_{0} \mathbf{p}_{0}^{T}-4 \mathbf{p}_{b} \mathbf{p}_{0}^{T}-4 \mathbf{p}_{0} \mathbf{p}_{b}^{T}\right) \mathbf{a}_{t} \\
& =2 \mathbf{a}_{t}^{T} \operatorname{cov}\left(\mathbf{H}_{b}\right) \mathbf{a}_{t}+\mathbf{a}_{t}^{T}\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{0}\right)\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{0}\right)^{T} \mathbf{a}_{t} \\
& =V_{A t b}+\bar{g}_{t b}^{2} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
M_{t b l} & =\lim _{N_{b}, N_{l} \rightarrow \infty} M_{N t b l} \\
& =\lim _{N_{b}, N_{l} \rightarrow \infty}\left(\frac{1}{N_{b}} \sum_{i \in B_{b}} g_{t i}\right)\left(\frac{1}{N_{l}} \sum_{j \in B_{l}} g_{t j}\right) \\
& =\bar{g}_{t b} \bar{g}_{t l} .
\end{aligned}
$$

Thus,

$$
T T D_{t}(\mathcal{C})=\mathbf{c}^{T} \mathbf{m}_{t}-\mathbf{c}^{T} \mathbf{M}_{t} \mathbf{c}
$$

where

$$
\begin{aligned}
\mathbf{M}_{t} & =\overline{\mathbf{g}}_{t} \overline{\mathbf{g}}_{t}^{T} \\
m_{t b} & =V_{A t b}+\bar{g}_{t b}^{2}, \\
\bar{g}_{t b} & =\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{0}\right)^{T} \mathbf{a}_{t}
\end{aligned}
$$

Since $\mathbf{1}^{T} \mathbf{c}=1$, it follows that

$$
\begin{aligned}
T T D_{t}(\mathcal{C}) & =\mathbf{c}^{T}\left(\mathbf{V}_{\mathbf{A} t}+\overline{\mathbf{g}}_{t}^{2}\right)-\mathbf{c}^{T} \overline{\mathbf{g}}_{t} \overline{\mathbf{g}}_{t}^{T} \mathbf{c} \\
& =\mathbf{c}^{T} \mathbf{V}_{\mathbf{A} t}+\frac{1}{2}\left(\mathbf{c}^{T} \overline{\mathbf{g}}_{t}^{2} \mathbf{1}^{T} \mathbf{c}+\mathbf{c}^{T} \mathbf{1} \overline{\mathbf{g}}_{t}^{2 T} \mathbf{c}-2 \mathbf{c}^{T} \overline{\mathbf{g}}_{t} \overline{\mathbf{g}}_{t}^{T} \mathbf{c}\right) \\
& =\mathbf{c}^{T} \mathbf{V}_{\mathbf{A} t}+\mathbf{c}^{T}\left(\frac{1}{2}\left(\overline{\mathbf{g}}_{t}^{2} \mathbf{1}^{T}-2 \overline{\mathbf{g}}_{t} \overline{\mathbf{g}}_{t}^{T}+\mathbf{1} \overline{\mathbf{g}}_{t}^{2 T}\right)\right) \mathbf{c}
\end{aligned}
$$

Equation 2:

$$
\begin{align*}
N T D_{t}(\mathcal{C}) & =\mathbf{c}^{T}\left(V_{t}(\mathbf{1}+\mathbf{F})\right)-\mathbf{c}^{T}\left(2 V_{t} \mathbf{f}\right) \mathbf{c} \tag{2}\\
& =V_{t} \mathbf{c}^{T}(\mathbf{1}-\mathbf{F})+V_{t} \mathbf{c}^{T}\left(\mathbf{F} \mathbf{1}^{T}-2 \mathbf{f}+\mathbf{1} \mathbf{F}^{T}\right) \mathbf{c}
\end{align*}
$$

Proof:
From Equation (1) it follows that

$$
N T D_{t}(\mathcal{C})=\mathbf{c}^{T} E\left(\mathbf{V}_{\mathbf{A} t}\right)+\mathbf{c}^{T}\left(\frac{1}{2} E\left(\overline{\mathbf{g}}_{t}^{2} \mathbf{1}^{T}-2 \overline{\mathbf{g}}_{t} \overline{\mathbf{g}}_{t}^{T}+\mathbf{1} \overline{\mathbf{g}}_{t}^{2 T}\right)\right) \mathbf{c}
$$

From conditions A) and B) we obtain

$$
\begin{aligned}
(1-\mathbf{F}) V_{t} & =E\left(\mathbf{V}_{\mathbf{A} t}\right) \\
\frac{V_{t}}{4 \alpha}\left(\mathbf{F} \mathbf{1}^{T}-2 \mathbf{f}+\mathbf{1} \mathbf{F}^{T}\right) & =\frac{1}{2} E\left(\overline{\mathbf{g}}_{t}^{2} \mathbf{1}^{T}-2 \overline{\mathbf{g}}_{t} \overline{\mathbf{g}}_{t}^{T}+\mathbf{1} \overline{\mathbf{g}}_{t}^{2 T}\right) .
\end{aligned}
$$

Thus,

$$
N T D_{t}(\mathcal{C})=V_{t} \mathbf{c}^{T}(1-\mathbf{F})+\frac{V_{t}}{4 \alpha} \mathbf{c}^{T}\left(\mathbf{F} \mathbf{1}^{T}-2 \mathbf{f}+\mathbf{1} \mathbf{F}^{T}\right) \mathbf{c}
$$

The analogous equation obtained by Bennewitz and Meuwissen (2005b) using a pedigree based approach can be written as

$$
N T D_{t}^{P e d}(\mathcal{C})=V_{t} \mathbf{c}^{T}\left(\mathbf{1}-\mathbf{F}_{\mathbf{P}}\right)+V_{t} \mathbf{c}^{T}\left(\mathbf{F}_{\mathbf{P}} \mathbf{1}^{T}-2 \mathbf{f}_{\mathbf{P}}+\mathbf{1} \mathbf{F}_{\mathbf{P}}^{T}\right) \mathbf{c}
$$

where $\mathbf{f}_{\mathbf{P}}$ denotes a pedigree based kinship matrix, $\mathbf{F}_{\mathbf{P}}=\operatorname{diag}\left(\mathbf{f}_{\mathbf{P}}\right)$, and V_{t} is a scaling parameter. Since we would like that the marker based kinship matrix has similar properties as the pedigree based kinship matrix, we use $\alpha=\frac{1}{4}$.

In the following we derive the explicit formulas for computing f. From condition A) we get

$$
\begin{aligned}
f_{b b} & =1-\frac{E\left(V_{A t b}\right)}{V_{t}} \\
& =1-\frac{\sum_{m=1}^{M} 2 p_{b m}\left(1-p_{b m}\right) E\left(a_{t m}^{2}\right)}{V_{t}} \\
& =1-\frac{p_{Q T L} \sigma_{a_{t}}^{2}}{V_{t}} \sum_{m=1}^{M} 2 p_{b m}\left(1-p_{b m}\right) \\
& =1-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M} 2 \mathbf{p}_{b}^{T}\left(\mathbf{1}-\mathbf{p}_{b}\right),
\end{aligned}
$$

where $\tilde{V}_{t}=p_{Q T L} \sigma_{a_{t}}^{2} M$. From condition B) we get for $\alpha=\frac{1}{4}$:

$$
\begin{aligned}
f_{b l} & =\frac{f_{b b}+f_{l l}}{2}-\frac{1}{4 V_{t}} E\left(\overline{\mathbf{g}}_{t b}^{2}-2 \overline{\mathbf{g}}_{t b} \overline{\mathbf{g}}_{t l}+\overline{\mathbf{g}}_{t l}^{2}\right) \\
& =\frac{f_{b b}+f_{l l}}{2}-\frac{E\left(\left(\overline{\mathbf{g}}_{t b}-\overline{\mathbf{g}}_{t l}\right)^{2}\right)}{4 V_{t}} \\
& =\frac{f_{b b}+f_{l l}}{2}-\frac{E\left(\left(\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{0}\right)^{T} \mathbf{a}_{t}-\left(2 \mathbf{p}_{l}-2 \mathbf{p}_{0}\right)^{T} \mathbf{a}_{t}\right)^{2}\right)}{4 V_{t}} \\
& =\frac{f_{b b}+f_{l l}}{2}-\frac{E\left(\left(\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{l}\right)^{T} \mathbf{a}_{t}\right)^{2}\right)}{4 V_{t}} \\
& =\frac{f_{b b}+f_{l l}}{2}-\frac{E\left(\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{l}\right)^{T} \mathbf{a}_{t} \mathbf{a}_{t}^{T}\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{l}\right)\right)}{4 V_{t}} \\
& =\frac{f_{b b}+f_{l l}}{2}-\frac{\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{l}\right)^{T} \operatorname{Cov}\left(\mathbf{a}_{t}\right)\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{l}\right)}{4 V_{t}} \\
& =\frac{f_{b b}+f_{l l}}{2}-\frac{p_{Q T L} \sigma_{a_{t}}^{2} M}{4 V_{t}} \frac{1}{M}\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{l}\right)^{T}\left(2 \mathbf{p}_{b}-2 \mathbf{p}_{l}\right) \\
& =\frac{f_{b b}+f_{l l}}{2}-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M}\left(\mathbf{p}_{b}-\mathbf{p}_{l}\right)^{T}\left(\mathbf{p}_{b}-\mathbf{p}_{l}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f_{b l} & =\frac{1-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M} 2 \mathbf{p}_{b}^{T}\left(\mathbf{1}-\mathbf{p}_{b}\right)+1-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M} 2 \mathbf{p}_{l}^{T}\left(\mathbf{1}-\mathbf{p}_{l}\right)}{2}-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M}\left(\mathbf{p}_{b}-\mathbf{p}_{l}\right)^{T}\left(\mathbf{p}_{b}-\mathbf{p}_{l}\right) \\
& =1-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M}\left(\mathbf{p}_{b}^{T}\left(\mathbf{1}-\mathbf{p}_{b}\right)+\mathbf{p}_{l}^{T}\left(\mathbf{1}-\mathbf{p}_{l}\right)+\left(\mathbf{p}_{b}-\mathbf{p}_{l}\right)^{T}\left(\mathbf{p}_{b}-\mathbf{p}_{l}\right)\right) \\
& =1-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M}\left(\mathbf{p}_{b}^{T} \mathbf{1}-\mathbf{p}_{b}^{T} \mathbf{p}_{b}+\mathbf{p}_{l}^{T} \mathbf{1}-\mathbf{p}_{l}^{T} \mathbf{p}_{l}+\mathbf{p}_{b}^{T} \mathbf{p}_{b}-2 \mathbf{p}_{b}^{T} \mathbf{p}_{l}+\mathbf{p}_{l}^{T} \mathbf{p}_{l}\right) \\
& =1-\frac{\tilde{V}_{t}}{V_{t}} \frac{1}{M}\left(\mathbf{p}_{b}^{T} \mathbf{1}+\mathbf{p}_{l}^{T} \mathbf{1}-2 \mathbf{p}_{b}^{T} \mathbf{p}_{l}\right) \\
& =1-\frac{\tilde{V}_{t}}{2 V_{t}} \frac{1}{M}\left(\mathbf{1}^{T} \mathbf{1}-\left(2 \mathbf{p}_{b}-\mathbf{1}\right)^{T}\left(2 \mathbf{p}_{l}-\mathbf{1}\right)\right) \\
& =1-\frac{\tilde{V}_{t}}{2 V_{t}}\left(1-\frac{1}{M}\left(2 \mathbf{p}_{b}-\mathbf{1}\right)^{T}\left(2 \mathbf{p}_{l}-\mathbf{1}\right)\right)
\end{aligned}
$$

The scale parameter V_{t} may be chosen arbitrarily. However, in order to ensure that $f_{b b} \geq 0$ for every vector \mathbf{p}_{b} containing allele frequencies, $V_{t} \geq \frac{\tilde{V}_{t}}{2}$ should be chosen. In the paper we used

$$
V_{t}=\frac{\tilde{V}_{t}}{\kappa}=\frac{p_{Q T L} \sigma_{a_{t}}^{2} M}{\kappa}
$$

with $\kappa=2$ in order to get a high variability of the marker based kinships. In this case, the formula for $f_{b l}$ can be further simplified:

$$
f_{b l}=\frac{1}{M}\left(2 \mathbf{p}_{b}-\mathbf{1}\right)^{T}\left(2 \mathbf{p}_{l}-\mathbf{1}\right)
$$

Thus,

$$
\mathbf{f}=\frac{1}{M} \sum_{m=1}^{M}\left(2 \mathbf{p}_{(m)}-\mathbf{1}\right)\left(2 \mathbf{p}_{(m)}-\mathbf{1}\right)^{T}
$$

Equation 4:

$$
\begin{equation*}
N G D(\mathcal{C})=\frac{1}{M} \sum_{m=1}^{M} 2 \mathbf{c}^{T} \mathbf{p}_{(m)}\left(1-\mathbf{c}^{T} \mathbf{p}_{(m)}\right)=\frac{1-\mathbf{c}^{T} \mathbf{f c}}{2} \tag{4}
\end{equation*}
$$

Proof:
The equality on the right hand side holds because

$$
\begin{aligned}
N G D(\mathcal{C}) & =\frac{1}{M} \sum_{m=1}^{M} 2 \mathbf{c}^{T} \mathbf{p}_{(m)}\left(1-\mathbf{c}^{T} \mathbf{p}_{(m)}\right) \\
& =\frac{1}{M} \sum_{m=1}^{M} 2 \mathbf{c}^{T} \mathbf{p}_{(m)}-2 \mathbf{c}^{T} \mathbf{p}_{(m)} \mathbf{p}_{(m)}^{T} \mathbf{c} \\
& =\frac{1}{M} \sum_{m=1}^{M} \mathbf{c}^{T} \mathbf{p}_{(m)} \mathbf{1}^{T} \mathbf{c}+\mathbf{c}^{T} \mathbf{1} \mathbf{p}_{(m)}^{T} \mathbf{c}-2 \mathbf{c}^{T} \mathbf{p}_{(m)} \mathbf{p}_{(m)}^{T} \mathbf{c} \\
& =\frac{1}{M} \mathbf{c}^{T}\left(\sum_{m=1}^{M}\left(\mathbf{p}_{(m)} \mathbf{1}^{T}+\mathbf{1} \mathbf{p}_{(m)}^{T}-2 \mathbf{p}_{(m)} \mathbf{p}_{(m)}^{T}\right)\right) \mathbf{c} \\
& =\frac{1}{M} \mathbf{c}^{T}\left(\sum_{m=1}^{M} \frac{1}{2}\left(\mathbf{1 1} \mathbf{1}^{T}-\left(\mathbf{1 1} \mathbf{1}^{T}-2 \mathbf{p}_{(m)} \mathbf{1}^{T}-2 \mathbf{1}_{(m)}^{T}+4 \mathbf{p}_{(m)} \mathbf{p}_{(m)}^{T}\right)\right)\right) \mathbf{c} \\
& =\frac{1}{M} \mathbf{c}^{T}\left(\sum_{m=1}^{M} \frac{1}{2}\left(\mathbf{1 1} \mathbf{1}^{T}-\left(\mathbf{1}-2 \mathbf{p}_{(m)}\right)\left(\mathbf{1}-2 \mathbf{p}_{(m)}\right)^{T}\right)\right) \mathbf{c} \\
& =\frac{1}{2} \mathbf{c}^{T}\left(\mathbf{1 1} \mathbf{1}^{T}-\frac{1}{M} \sum_{m=1}^{M}\left(\mathbf{1}-2 \mathbf{p}_{(m)}\right)\left(\mathbf{1}-2 \mathbf{p}_{(m)}\right)^{T}\right) \mathbf{c} \\
& =\frac{1}{2} \mathbf{c}^{T}\left(\mathbf{1 1} \mathbf{1}^{T}-\mathbf{f}\right) \mathbf{c} \\
& =\frac{1}{2}\left(1-\mathbf{c}^{T} \mathbf{f}\right) .
\end{aligned}
$$

[^0]: * corresponding author: University of Hohenheim, Department of Animal Husbandry and Animal Breeding, D-70599 Stuttgart, Germany. Email: r.wellmann@uni-hohenheim.de

