
Genetics Research

A unified approach to characterize and conserve

adaptive and neutral genetic diversity in

subdivided populations.

Robin Wellmann∗, Jörn Bennewitz, Theo Meuwissen

May 13, 2014

Appendix: Definition of the core set

Assume that N − 1 individuals of the core set have already been created and
let b be the breed of the Nth individual. For creating the Nth individual of
this idealized offspring population, two gametes are randomly chosen from all
individuals of breed b from the current generation. This procedure defines a
sequence C = (CN)N∈IN of offspring populations, whereby CN consists of the first
N individuals from the core set. Because of random mendelian sampling, CN is a
random offspring population. Thus, for a function D measuring some property of
a population, the value D(CN) is also random, but it may convergue almost surely
for N → ∞. In this case, we are interested in the limit D(C) = limN→∞D(CN)
and D(C) is said to be the value of D for core set C. The value of D for a set
S of breeds is defined as the maximum value D can achieve in a core set if only
breeds from S are allowed to have nonzero contributions. That is,

D(S) = sup{D(C) : C is a core set with cb = 0 for b 6∈ S}

Appendix: Proofs

Equation 1:

TTDt(C) = cTVAt + cT

(
1

2
(g2

t1
T − 2gtg

T
t + 1g2T

t )

)
c. (1)

Proof:
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We have

TTDt(CN) =
1

N

∑
j∈CN

(gtj − µgt)
2

=
1

N

∑
j∈CN

g2tj − µ2
gt

=
1

N
1Tdiag(gtg

T
t )− (

1

N
1Tgt)

2

=
1

N
1Tdiag(gtg

T
t )− 1

N2
1Tgtg

T
t 1,

where gt ∈ IRN contains the genotypic values of all individuals from CN for trait
t.

Let Bb ⊂ {1, ..., N} be the set of individuals in the offspring population CN
belonging to breed b, Nb is the number of individuals from breed b in the off-
spring population CN , and 1b ∈ IRN is a vector with zeros and ones, where
1bi = 1 if individual i from the offspring population belongs to breed b. Let
S̃o = ( 1

N1
11, ...,

1
NB

1B) ∈ IRN×B and cb = Nb

N
. Since

1

N
1 = S̃oc ∈ IRN ,

we have

TTDt(CN) = cTmNt − cTMNtc,

with

MNt = S̃T
o gtg

T
t S̃o

mNt = S̃T
o diag(gtg

T
t ).

We have

MNtbl =
1

NbNl

1T
b gtg

T
t 1l =

(
1

Nb

∑
i∈Bb

gti

)(
1

Nl

∑
j∈Bl

gtj

)
,

mNtb =
1

Nb

1T
b diag(gtg

T
t ) =

1

Nb

∑
i∈Bb

g2ti.

The definition of TTD shows that adding a constant to all genotypic values
does not change the value of the objective function, so the vector with genotypic
values is

gt = (Z− 21pT
0 )at,

where at ∈ IRM is the vector with true SNP effects (atm = 0 if SNP m is not
a QTL), and p0 ∈ IRM is a vector containing arbitrary values. The matrix
Z ∈ IRN×M is the gene content matrix for the 1-alleles with entries 0,1, and 2.
We can write Zi = mi + si, where ZT

i is the ith row of matrix Z, mi ∈ IRM is
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the vector with maternal SNP alleles, si ∈ IRM is the vector with paternal SNP
alleles of individual i. We have

mNtb =
1

Nb

∑
i∈Bb

g2ti

=
1

Nb

∑
i∈Bb

aT
t (Zi − 2p0)(Z

T
i − 2pT

0 )at

= aT
t

(
1

Nb

∑
i∈Bb

(Zi − 2p0)(Z
T
i − 2pT

0 )

)
at

= aT
t

(
1

Nb

∑
i∈Bb

(mi + si − 2p0)(m
T
i + sTi − 2pT

0 )

)
at

= aT
t

(
1

Nb

∑
i∈Bb

(mi + si)(m
T
i + sTi )

)
at

+ aT
t

(
1

Nb

∑
i∈Bb

4p0p
T
0 − (mi + si)2pT

0 − 2p0(mi + si)
T

)
at

= aT
t

(
1

Nb

∑
i∈Bb

mim
T
i + mis

T
i + sim

T
i + sis

T
i

)
at

+ aT
t

(
1

Nb

∑
i∈Bb

4p0p
T
0 − 2mip

T
0 − 2sip

T
0 − 2p0m

T
i − 2p0s

T
i

)
at.

Note that

lim
Nb→∞

1

Nb

∑
i∈Bb

mip
T
0 = lim

Nb→∞

1

Nb

∑
i∈Bb

sip
T
0 = pbp

T
0 .

Since the offspring population was created by random mating within popula-
tions, the maternal and the paternal alleles of an individual were independently
chosen from the current population, so

lim
Nb→∞

1

Nb

∑
i∈Bb

mis
T
i = lim

Nb→∞

1

Nb

∑
i∈Bb

sim
T
i = pbp

T
b .

Let Hb be random M -vector containing the SNP alleles of a gamete randomly
chosen from individuals of breed b in the current population. Since maternal and
paternal alleles are identically distributed, we have

lim
Nb→∞

1

Nb

∑
i∈Bb

mim
T
i = lim

Nb→∞

1

Nb

∑
i∈Bb

sis
T
i = E(HbH

T
b ),

and E(Hb) = pb. Since the additive variance of trait t in population b is VAtb =
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2aT
t cov(Hb)at and gtb = (2pb − 2p0)

Tat, it follows that

mtb = lim
N→∞

mNtb

= aT
t

(
E(HbH

T
b ) + pbp

T
b + pbp

T
b + E(HbH

T
b )
)
at

+ aT
t

(
4p0p

T
0 − 2pbp

T
0 − 2pbp

T
0 − 2p0p

T
b − 2p0p

T
b

)
at

= aT
t

(
2E(HbH

T
b ) + 2pbp

T
b + 4p0p

T
0 − 4pbp

T
0 − 4 p0p

T
b

)
at

= aT
t

(
2cov(Hb) + 4pbp

T
b + 4p0p

T
0 − 4pbp

T
0 − 4 p0p

T
b

)
at

= 2aT
t cov(Hb)at + aT

t (2pb − 2p0)(2pb − 2p0)
Tat

= VAtb + g2tb.

Moreover,

Mtbl = lim
Nb,Nl→∞

MNtbl

= lim
Nb,Nl→∞

(
1

Nb

∑
i∈Bb

gti

)(
1

Nl

∑
j∈Bl

gtj

)
= gtbgtl.

Thus,

TTDt(C) = cTmt − cTMtc,

where

Mt = gtg
T
t ,

mtb = VAtb + g2tb,

gtb = (2pb − 2p0)
Tat.

Since 1Tc = 1, it follows that

TTDt(C) = cT (VAt + g2
t )− cTgtg

T
t c,

= cTVAt +
1

2

(
cTg2

t1
Tc + cT1g2T

t c− 2cTgtg
T
t c
)

= cTVAt + cT

(
1

2

(
g2
t1

T − 2gtg
T
t + 1g2T

t

))
c,

Equation 2:

NTDt(C) = cT (Vt(1 + F))− cT (2Vtf)c (2)

= Vtc
T (1− F) + Vtc

T
(
F1T − 2f + 1FT

)
c,
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Proof:

From Equation (1) it follows that

NTDt(C) = cTE(VAt) + cT

(
1

2
E(g2

t1
T − 2gtg

T
t + 1g2T

t )

)
c.

From conditions A) and B) we obtain

(1− F)Vt = E(VAt),

Vt
4α

(
F1T − 2f + 1FT

)
=

1

2
E
(
g2
t1

T − 2gtg
T
t + 1g2T

t

)
.

Thus,

NTDt(C) = Vtc
T (1− F) +

Vt
4α

cT
(
F1T − 2f + 1FT

)
c.

The analogous equation obtained by Bennewitz and Meuwissen (2005b) using a
pedigree based approach can be written as

NTDPed
t (C) = Vtc

T (1− FP) + Vtc
T
(
FP1T − 2fP + 1FP

T
)
c,

where fP denotes a pedigree based kinship matrix, FP = diag(fP), and Vt is a
scaling parameter. Since we would like that the marker based kinship matrix has
similar properties as the pedigree based kinship matrix, we use α = 1

4
.

In the following we derive the explicit formulas for computing f . From condi-
tion A) we get

fbb = 1− E(VAtb)

Vt

= 1−
∑M

m=1 2pbm(1− pbm)E(a2tm)

Vt

= 1−
pQTLσ

2
at

Vt

M∑
m=1

2pbm(1− pbm)

= 1− Ṽt
Vt

1

M
2pT

b (1− pb),
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where Ṽt = pQTLσ
2
atM . From condition B) we get for α = 1

4
:

fbl =
fbb + fll

2
− 1

4Vt
E(g2

tb − 2gtbgtl + g2
tl)

=
fbb + fll

2
− E((gtb − gtl)

2)

4Vt

=
fbb + fll

2
− E(((2pb − 2p0)

Tat − (2pl − 2p0)
Tat)

2)

4Vt

=
fbb + fll

2
− E(((2pb − 2pl)

Tat)
2)

4Vt

=
fbb + fll

2
− E((2pb − 2pl)

Tata
T
t (2pb − 2pl))

4Vt

=
fbb + fll

2
− (2pb − 2pl)

TCov(at)(2pb − 2pl)

4Vt

=
fbb + fll

2
−
pQTLσ

2
atM

4Vt

1

M
(2pb − 2pl)

T (2pb − 2pl)

=
fbb + fll

2
− Ṽt
Vt

1

M
(pb − pl)

T (pb − pl)

Thus,

fbl =
1− Ṽt

Vt

1
M

2pT
b (1− pb) + 1− Ṽt

Vt

1
M

2pT
l (1− pl)

2
− Ṽt
Vt

1

M
(pb − pl)

T (pb − pl)

= 1− Ṽt
Vt

1

M

(
pT
b (1− pb) + pT

l (1− pl) + (pb − pl)
T (pb − pl)

)
= 1− Ṽt

Vt

1

M

(
pT
b 1− pT

b pb + pT
l 1− pT

l pl + pT
b pb − 2pT

b pl + pT
l pl

)
= 1− Ṽt

Vt

1

M

(
pT
b 1 + pT

l 1− 2pT
b pl

)
= 1− Ṽt

2Vt

1

M

(
1T1− (2pb − 1)T (2pl − 1)

)
= 1− Ṽt

2Vt

(
1− 1

M
(2pb − 1)T (2pl − 1)

)

The scale parameter Vt may be chosen arbitrarily. However, in order to ensure

that fbb ≥ 0 for every vector pb containing allele frequencies, Vt ≥ Ṽt

2
should be

chosen. In the paper we used

Vt =
Ṽt
κ

=
pQTLσ

2
atM

κ

with κ = 2 in order to get a high variability of the marker based kinships. In this
case, the formula for fbl can be further simplified:
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fbl =
1

M
(2pb − 1)T (2pl − 1).

Thus,

f =
1

M

M∑
m=1

(2p(m) − 1)(2p(m) − 1)T .

Equation 4:

NGD(C) =
1

M

M∑
m=1

2 cTp(m) (1− cTp(m)) =
1− cT fc

2
, (4)

Proof:

The equality on the right hand side holds because

NGD(C) =
1

M

M∑
m=1

2cTp(m)(1− cTp(m))

=
1

M

M∑
m=1

2cTp(m) − 2cTp(m)p
T
(m)c

=
1

M

M∑
m=1

cTp(m)1
Tc + cT1pT

(m)c− 2cTp(m)p
T
(m)c

=
1

M
cT

(
M∑

m=1

(p(m)1
T + 1pT

(m) − 2p(m)p
T
(m))

)
c

=
1

M
cT

(
M∑

m=1

1

2
(11T − (11T − 2p(m)1

T − 21pT
(m) + 4p(m)p

T
(m)))

)
c

=
1

M
cT

(
M∑

m=1

1

2
(11T − (1− 2p(m))(1− 2p(m))

T )

)
c

=
1

2
cT

(
11T − 1

M

M∑
m=1

(1− 2p(m))(1− 2p(m))
T

)
c

=
1

2
cT
(
11T − f

)
c

=
1

2

(
1− cT fc

)
.
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