1

Relations of the estimates in the text to maximum likelihood estimates

The observations on the different types of polymorphism can be partitioned as n_1 , n_2 and n_3 , corresponding to type 1, type 2/3 and type 4/5/6 events, respectively; their sum is n. Let P_a be the probability that a polymorphism is ancestral. The estimate of t given in the text is equivalent to equating the observed fraction of 1 polymorphisms among 1/2/3 polymorphisms to their expected value minus 0.5, which is independent of P_a . The estimate of P_a is obtained by comparing the overall frequency of 1/2/3 polymorphisms among all polymorphisms to its expected value, which is dependent on t. We can parameterize the likelihood model for the data in terms of θ_1 and θ_2 , where θ_1 is the expected fraction of type 1 polymorphisms among types 1/2/3, and θ_2 is the expected fraction of type 1/2/3 polymorphisms among the total. The likelihood of the data can be written as:

$$L = \Pr\{n_1 | (n_1 + n_2)\} \Pr\{(n_1 + n_2)\}$$
(S1a)

so that

$$\ln L = \ln \left(\Pr\{n_1 \mid (n_1 + n_2)\} \right) + \ln \left(\Pr\{(n_1 + n_2)\} \right)$$
(S1b)

where

$$\ln \left(\Pr\{n_1 \mid (n_1 + n_2)\} \right) = C_1 + n_1 \ln \left(\theta_1\right) + n_2 \ln \left(1 - \theta_1\right) \quad (S2a)$$

$$\ln \left(\Pr\{(n_1 + n_2)\} \right) = C_2 + (n_1 + n_2) \ln (\theta_2) + n_3 \ln (1 - \theta_2) \quad (S2b)$$

and $\theta_1 = P_1/P_{2+3}$, $\theta_2 = (P_1 + P_{2+3})P_a$

Differentiating with respect to t and P_a , we have:

$$\frac{\P \ln L}{\P t} = \left(\frac{n_1}{q_1} - \frac{n_2}{(1 - q_1)}\right) \frac{\P q_1}{\P t} + \left(\frac{(n_1 + n_2)}{q_2} - \frac{n_3}{(1 - q_2)}\right) \frac{\P q_2}{\P t}$$
(S3a)

$$\frac{\|\ln L}{\|P_a\|} = \left(\frac{(n_1 + n_2)}{q_2} - \frac{n_3}{(1 - q_2)}\right) \frac{\|q_2\|}{\|P_a\|}$$
(S3b)

For a maximum of ln *L*, both derivatives must be zero. It follows that the multiplicand of the partial derivative of θ_2 in equation (S3a) is zero, since this is required for equation (S3b) to equal zero. Hence, the multiplicand of the partial derivative of θ_1 in Eqn. (S3a) is also zero.

The last result is equivalent to equating $(1 - \theta_1)/\theta_1$ to n_2/n_1 ; this in turn is equivalent to 0.5 plus equation (2) of the text, so that this estimate of *t* is also the ML estimate.

Similarly, setting equation (S3a) to zero with this estimate of *t* yields the estimate of P_a as $r_T = (n_1 + n_2)/\{(n_1 + n_2 + n_3)(P_1 + P_{2+3})\}$, the expression that was used in the text.

Variances of the estimates

From eqn. (11b) of Charlesworth et al. (2005), the estimated *a priori* probability of an ancestral polymorphism is given approximately for a reasonably large sample size by:

$$\overset{U}{P}_{d} = \frac{1}{3} + \frac{1}{2} \exp\left(-\frac{\dot{U}}{t}\right) + \frac{1}{6} \exp(-3\frac{\dot{U}}{t})$$
(S4)

so that

$$\frac{\mathrm{d}P_d}{\mathrm{d}t} = -\frac{1}{2} \left\{ \exp\left(-\overset{\check{U}}{t}\right) + \exp\left(-3\overset{\check{U}}{t}\right) \right\}$$
$$= -\frac{1}{2} \left(\overset{\check{U}-1}{x} + \overset{\check{U}-3}{x}\right)$$
(S5)

where $x = \exp(t)$, $t = \ln(x)$.

Using the delta-method formula for the variance of a function, we have:

$$V\{P_{d}\} \gg \frac{1}{4} \left(\frac{\dot{v}_{-1}}{x} + \frac{\dot{v}_{-3}}{x} \right)^{2} V\{\dot{t}\}$$
(S6)

By differentiating equation (S4) above, we find that:

$$\frac{\mathrm{d}x}{\mathrm{d}a} = \frac{\overset{\mathrm{U}}{x}}{\overset{\mathrm{U}}{(x-2a)}} \tag{S7}$$

so that

3

$$V\{\overset{\bigcup}{x}\} \gg \frac{\overset{\bigcup}{x}^2 V\{a\}}{(\overset{\bigcup}{x} - 2a)^2}$$
(S8)

where $a = (0.5f_1 + f_{2+3})/f_1$ and

$$V\{a\} = V\{f_{2+3}/f_1\}$$
 (S9a)

From equations (S4) and (S5) we find that:

$$V\{\check{t}\} \gg \frac{1}{\check{U}^2} V\{\check{x}\} = \frac{V\{a\}}{(\check{x}-2a)^2}$$
 (S9b)

Again using the delta method, we have:

$$V\{f_{2+3}/f_1\} \gg \frac{V\{f_{2+3}\}}{f_1^2} + \frac{f_{2+3}^2 V\{f_1\}}{f_1^4} - \frac{2f_{2+3}Cov\{f_1, f_{2+3}\}}{f_1^3}$$
(S10)

With k independent SNPs, the variances and covariances in equation (S10) are given by their multinomial expressions:

$$V\{f_1\} = f_1(1 - f_1)/k, \quad V\{f_{2+3}\} = f_{2+3}(1 - f_{2+3})/k, \ Cov = -f_1f_{2+3}/k \tag{S11}$$

Substituting these into equations (S8) and (S9) thus gives us estimates of the variances of the estimates x and t.

The estimated proportion of ancestral polymorphisms is obtained as r_T , given by the ratio of $f_1 + f_{2+3}$ to the estimate of P_d .

The variance of $r_{\rm T}$ is thus given approximately by the delta method as:

$$\frac{V\{f_1\} + V\{f_{2+3}\} + 2Cov\{f_1, f_{2+3}\}}{\overset{\bigcup}{P_d}} + \frac{(f_1 + f_{2+3})V\{\overset{\bigcup}{P_d}\}}{\overset{\bigcup}{P_d}} - \frac{2(f_1 + f_{2+3})Cov\{(f_1 + f_{2+3}), \overset{\bigcup}{P_d}\}}{\overset{\bigcup}{P_d}}$$
(S12)

where the variance of the estimate of P_d is obtained from equations (S4), (S9) and (S10).

Using equation (S4) and the delta method, we have

$$Cov\{f_1 + f_{2+3}\} \gg -\frac{1}{2} (\overset{\dot{U}^{-1}}{x} + \overset{\dot{U}^{-3}}{x}) Cov\{f_1 + f_{2+3}, \overset{\dot{U}}{t}\}$$
(S13a)

where

$$Cov\{f_1+f_{2+3}, t\} \gg \frac{1}{(x-2a)} Cov\{f_1+f_{2+3}, a\}$$
 (S13b)

and

$$Cov\{f_1 + f_{2+3}, a\} = \frac{V\{f_{2+3}\} + Cov\{f_1, f_{2+3}\}}{f_1} - \frac{f_{2+3}[V\{f_1\} + Cov\{f_1, f_{2+3}\}]}{f_1^2}$$
(S13c)

These expressions allow the approximate variances of the estimates t and P_a to be estimated.

Supplementary Table S1: Locus-by-locus breakdown of the (uncorrected) number of ancestral

	Type 1 (Shared)	D. pseudoobscura			D. miranda		
Locus		n	Type 2/3 (Ancestral)	Type 4/5 & 6 (' <i>de novo</i> ')	n	Type 2/3 (Ancestral)	Type 4/5 & 6 (' <i>de novo</i> ')
Autosomal							
ade3	0	16	2	7	15	0	4
crinkled	0	15	3	14	15	1	0
GA10135	0	16	0	10	15	0	3
GA10344	0	16	0	7	15	0	0
GA12147	1	15	0	10	16	0	4
GA12512	0	16	1	10	15	0	0
GA12664	0	16	1	13	16	0	3
GA12722	0	16	1	9	16	0	1
GA13578	0	15	1	6	15	0	1
GA14694	0	15	1	6	16	0	0
GA14715	0	15	0	2	14	1	1
GA15377	0	16	0	8	16	0	3
GA16473	0	15	1	7	15	0	2
GA17300	0	15	3	10	15	0	1
GA17553	0	16	1	7	16	0	2
GA17997	1	16	1	7	15	0	1
GA17998	0	16	1	5	16	0	1
GA18219	0	15	5	17	16	0	1
GA18470	0	16	0	4	15	0	1
GA18654	0	16	0	7	15	1	2
GA19119	0	16	3	7	15	0	3
GA19169	0	16	0	8	15	0	2
GA19326	0	16	1	1	15	0	1
GA19427	0	16	1	4	15	0	3
GA19649	0	15	2	10	16	0	5
GA19678	0	16	0	5	16	0	3
GA20117	0	16	2	7	16	0	1
GA20218	0	16	0	9	16	0	1
GA20407	0	16	0	4	15	0	0
GA22152	1	15	0	9	15	1	2
GA25303	1	16	3	11	14	0	5
GA25341	0	14	0	3	14	1	1
GA25997	0	16	1	9	16	0	2
lamin	0	16	1	5	16	0	1
Sub-total	4	532	36	258	521	5	61
X-linked							
GA10596	0	16	0	8	14	0	3
GA10819	1	16	1	11	13	0	0
C 111200	1	16	•	10	1.0	0	

GA11209

GA11389

GA12234

GA12817

GA12834

polymorphisms in 34 autosomal and 33 X-linked genes in D. pseudoobscura and D. miranda.

TOTAL	10	15.74*	62	456	15.24*	15	103
Sub-total	6	538	26	198	515	10	42
GA21946	0	15	1	12	14	0	0
GA21237	0	16	1	9	16	0	1
GA20842	0	16	0	5	16	0	5
GA20648	0	16	0	4	16	0	0
GA20067	0	16	2	3	16	0	1
GA19408	0	16	1	13	13	1	0
GA19265	1	16	1	9	16	0	4
GA19139	0	16	1	2	16	0	0
GA18107	0	16	0	11	16	0	0
GA17782	0	16	0	4	16	0	1
GA17599	0	16	0	1	16	1	0
GA17594	0	16	0	1	15	0	1
GA17590	1	16	1	3	16	2	0
GA17564	0	16	0	1	15	0	1
GA17354	0	16	0	1	16	1	1
GA16943	0	16	3	3	14	0	0
GA15687	0	16	0	6	16	0	0
GA15436	0	15	0	10	16	0	0
GA15393	0	16	0	0	12	1	1
GA15328	0	16	0	8	12	0	5
GA14705	1	16	0	4	16	1	0
GA14572	0	16	1	4	15	0	3
GA14176	0	16	0	10	10	0	1
GA14058	1	15	1	4	16	1	3
GA13913	0	15	0	0	16	0	0
GA12844 GA13242	0 0	15 16	3 0	16 1	14 16	0 0	0 0

6

(*) denotes an *average*, rather than a total.

Supplementary Table S2: Counts of transitions and transversions across both species for Xlinked (X) and autosomal (A) datasets. The ratio of transitions to transversions did not differ significantly between X and A ($\chi^2_{[1]} = 0.246$, p > 0.05); thus, the datasets were combined to give empirical rates of mutation for transitions and transversions.

	D. pseud	D. pseudoobscura		iranda	
	X	Α	Х	Α	TOTAL
Transitions	170	221	46	59	496
Transversions	79	113	17	22	231
TOTAL	249	334	63	81	727