Relations of the estimates in the text to maximum likelihood estimates

The observations on the different types of polymorphism can be partitioned as n_{1}, n_{2} and n_{3}, corresponding to type 1 , type $2 / 3$ and type $4 / 5 / 6$ events, respectively; their sum is n. Let P_{a} be the probability that a polymorphism is ancestral. The estimate of t given in the text is equivalent to equating the observed fraction of 1 polymorphisms among 1/2/3 polymorphisms to their expected value minus 0.5 , which is independent of P_{a}. The estimate of P_{a} is obtained by comparing the overall frequency of $1 / 2 / 3$ polymorphisms among all polymorphisms to its expected value, which is dependent on t. We can parameterize the likelihood model for the data in terms of θ_{1} and θ_{2}, where θ_{1} is the expected fraction of type 1 polymorphisms among types $1 / 2 / 3$, and θ_{2} is the expected fraction of type $1 / 2 / 3$ polymorphisms among the total. The likelihood of the data can be written as:

$$
\begin{equation*}
L=\operatorname{Pr}\left\{n_{1} \mid\left(n_{1}+n_{2}\right)\right\} \operatorname{Pr}\left\{\left(n_{1}+n_{2}\right)\right\} \tag{S1a}
\end{equation*}
$$

so that

$$
\begin{equation*}
\ln L=\ln \left(\operatorname{Pr}\left\{n_{1} \mid\left(n_{1}+n_{2}\right)\right\}\right)+\ln \left(\operatorname{Pr}\left\{\left(n_{1}+n_{2}\right)\right\}\right) \tag{S1b}
\end{equation*}
$$

where

$$
\begin{gather*}
\ln \left(\operatorname{Pr}\left\{n_{1} \mid\left(n_{1}+n_{2}\right)\right\}\right)=C_{1}+n_{1} \ln \left(\theta_{1}\right)+n_{2} \ln \left(1-\theta_{1}\right) \tag{S2a}\\
\ln \left(\operatorname{Pr}\left\{\left(n_{1}+n_{2}\right)\right\}\right)=C_{2}+\left(n_{1}+n_{2}\right) \ln \left(\theta_{2}\right)+n_{3} \ln \left(1-\theta_{2}\right) \tag{S2b}
\end{gather*}
$$

and $\theta_{1}=P_{1} / P_{2+3}, \theta_{2}=\left(P_{1}+P_{2+3}\right) P_{\mathrm{a}}$

Differentiating with respect to t and P_{a}, we have:

$$
\begin{gather*}
\frac{\ln L}{t}=\left(\frac{n_{1}}{1}-\frac{n_{2}}{\left(11_{1}\right)}\right) \frac{1}{t}+\left(\frac{\left(n_{1}+n_{2}\right)}{2}-\frac{n_{3}}{\left(1-2_{2}\right)}\right) \frac{2}{t} \tag{S3a}\\
\frac{\ln L}{P_{\mathrm{a}}}=\left(\frac{\left(n_{1}+n_{2}\right)}{2}-\frac{n_{3}}{\left(1-{ }_{2}\right)}\right) \frac{2}{P_{\mathrm{a}}} \tag{S3b}
\end{gather*}
$$

For a maximum of $\ln L$, both derivatives must be zero. It follows that the multiplicand of the partial derivative of θ_{2} in equation (S3a) is zero, since this is required for equation (S3b) to equal zero. Hence, the multiplicand of the partial derivative of θ_{1} in Eqn. (S3a) is also zero.

The last result is equivalent to equating $\left(1-\theta_{1}\right) / \theta_{1}$ to n_{2} / n_{1}; this in turn is equivalent to 0.5 plus equation (2) of the text, so that this estimate of t is also the ML estimate.

Similarly, setting equation (S3a) to zero with this estimate of t yields the estimate of P_{a} as $r_{\mathrm{T}}=\left(n_{1}+n_{2}\right) /\left\{\left(n_{1}+n_{2}+n_{3}\right)\left(P_{1}+P_{2+3}\right)\right\}$, the expression that was used in the text .

Variances of the estimates

From eqn. (11b) of Charlesworth et al. (2005), the estimated a priori probability of an ancestral polymorphism is given approximately for a reasonably large sample size by:

$$
\begin{equation*}
P_{d}=\frac{1}{3}+\frac{1}{2} \exp (-t)+\frac{1}{6} \exp (-3 t) \tag{S4}
\end{equation*}
$$

so that

$$
\begin{align*}
\frac{\mathrm{d} P_{d}}{\mathrm{~d} t} & =-\frac{1}{2}\{\exp (-t)+\exp (-3 t)\} \\
& =-\frac{1}{2}\left(x^{-1}+x^{-3}\right) \tag{S5}
\end{align*}
$$

where $x=\exp (t), t=\ln (x)$.

Using the delta-method formula for the variance of a function, we have:

$$
\begin{equation*}
V\left\{P_{d}\right\} \quad \frac{1}{4}\left(x^{-1}+x^{-3}\right)^{2} V\{t\} \tag{S6}
\end{equation*}
$$

By differentiating equation (S4) above, we find that:

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} a}=\frac{x}{(x-2 a)} \tag{S7}
\end{equation*}
$$

so that

$$
\begin{equation*}
V\{x\} \frac{x^{2} V\{a\}}{(x-2 a)^{2}} \tag{S8}
\end{equation*}
$$

where $a=\left(0.5 f_{1}+f_{2+3}\right) / f_{1}$ and

$$
\begin{equation*}
V\{a\}=V\left\{f_{2+3} / f_{1}\right\} \tag{S9a}
\end{equation*}
$$

From equations (S4) and (S5) we find that:

$$
\begin{equation*}
V\{t\} \quad \frac{1}{x^{2}} V\{x\}=\frac{V\{a\}}{(x-2 a)^{2}} \tag{S9b}
\end{equation*}
$$

Again using the delta method, we have:

$$
\begin{equation*}
V\left\{f_{2+3}\left\{f_{1}\right\} \quad \frac{V\left\{f_{2+3}\right\}}{f_{1}^{2}}+\frac{f_{2+3}^{2} V\left\{f_{1}\right\}}{f_{1}^{4}}-\frac{2 f_{2+3} \operatorname{Cov}\left\{f_{1}, f_{2+3}\right\}}{f_{1}^{3}}\right. \tag{S10}
\end{equation*}
$$

With k independent SNPs, the variances and covariances in equation (S10) are given by their multinomial expressions:

$$
\begin{equation*}
V\left\{f_{1}\right\}=f_{1}\left(1-f_{1}\right) / k, \quad V\left\{f_{2+3}\right\}=f_{2+3}\left(1-f_{2+3}\right) / k, \operatorname{Cov}=-f_{1} f_{2+3} / k \tag{S11}
\end{equation*}
$$

Substituting these into equations (S8) and (S9) thus gives us estimates of the variances of the estimates x and t.

The estimated proportion of ancestral polymorphisms is obtained as r_{T}, given by the ratio of $f_{1}+f_{2+3}$ to the estimate of P_{d}.

The variance of r_{T} is thus given approximately by the delta method as:

$$
\begin{equation*}
\frac{V\left\{f_{1}\right\}+V\left\{f_{2+3}\right\}+2 \operatorname{Cov}\left\{f_{1}, f_{2+3}\right\}}{P_{\mathrm{d}}^{2}}+\frac{\left(f_{1}+f_{2+3}\right) V\left\{P_{\mathrm{d}}\right\}}{P_{\mathrm{d}}^{4}}-\frac{2\left(f_{1}+f_{2+3}\right) \operatorname{Cov}\left\{\left(f_{1}+f_{2+3}\right), P_{d}\right\}}{P_{\mathrm{d}}^{3}} \tag{S12}
\end{equation*}
$$

where the variance of the estimate of P_{d} is obtained from equations (S4), (S9) and (S10). Using equation (S4) and the delta method, we have

$$
\begin{equation*}
\operatorname{Cov}\left\{f_{1}+f_{2+3}\right\} \quad-\frac{1}{2}\left(x^{-1}+x^{-3}\right) \operatorname{Cov}\left\{f_{1}+f_{2+3}, t\right\} \tag{S13a}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Cov}\left\{f_{1}+f_{2+3}, t\right\} \quad \frac{1}{(x-2 a)} \operatorname{Cov}\left\{f_{1}+f_{2+3}, a\right\} \tag{S13b}
\end{equation*}
$$

and
$\operatorname{Cov}\left\{f_{1}+f_{2+3}, a\right\}=\frac{V\left\{f_{2+3}\right\}+\operatorname{Cov}\left\{f_{1}, f_{2+3}\right\}}{f_{1}}-\frac{f_{2+3}\left[V\left\{f_{1}\right\}+\operatorname{Cov}\left\{f_{1}, f_{2+3}\right\}\right]}{f_{1}^{2}} \quad(\mathrm{~S} 13 \mathrm{c})$

These expressions allow the approximate variances of the estimates t and P_{a} to be estimated.

Supplementary Table S1: Locus-by-locus breakdown of the (uncorrected) number of ancestral

polymorphisms in 34 autosomal and $33 X$-linked genes in D. pseudoobscura and D. miranda.

Locus	Type 1 (Shared)	D. pseudoobscura			D. miranda		
		n	Type 2/3 (Ancestral)	Type $4 / 5$ \& 6 ('de novo')	n	Type 2/3 (Ancestral)	Type $4 / 5 \& 6$ ('de novo’)
Autosomal							
ade3	0	16	2	7	15	0	4
crinkled	0	15	3	14	15	1	0
GA10135	0	16	0	10	15	0	3
GA10344	0	16	0	7	15	0	0
GA12147	1	15	0	10	16	0	4
GA12512	0	16	1	10	15	0	0
GA12664	0	16	1	13	16	0	3
GA12722	0	16	1	9	16	0	1
GA13578	0	15	1	6	15	0	1
GA14694	0	15	1	6	16	0	0
GA14715	0	15	0	2	14	1	1
GA15377	0	16	0	8	16	0	3
GA16473	0	15	1	7	15	0	2
GA17300	0	15	3	10	15	0	1
GA17553	0	16	1	7	16	0	2
GA17997	1	16	1	7	15	0	1
GA17998	0	16	1	5	16	0	1
GA18219	0	15	5	17	16	0	1
GA18470	0	16	0	4	15	0	1
GA18654	0	16	0	7	15	1	2
GA19119	0	16	3	7	15	0	3
GA19169	0	16	0	8	15	0	2
GA19326	0	16	1	1	15	0	1
GA19427	0	16	1	4	15	0	3
GA19649	0	15	2	10	16	0	5
GA19678	0	16	0	5	16	0	3
GA20117	0	16	2	7	16	0	1
GA20218	0	16	0	9	16	0	1
GA20407	0	16	0	4	15	0	0
GA22152	1	15	0	9	15	1	2
GA25303	1	16	3	11	14	0	5
GA25341	0	14	0	3	14	1	1
GA25997	0	16	1	9	16	0	2
lamin	0	16	1	5	16	0	1
Sub-total	4	532	36	258	521	5	61
X-linked							
GA10596	0	16	0	8	14	0	3
GA10819	1	16	1	11	13	0	0
GA11209	1	16	2	10	16	0	1
GA11389	0	16	3	6	16	1	6
GA12234	0	16	0	7	16	0	1
GA12817	0	16	1	6	16	0	2
GA12834	0	15	3	5	14	1	1

GA12844	0	15	3	16	14	0	0
GA13242	0	16	0	1	16	0	0
GA13913	0	15	0	0	16	0	0
GA14058	1	15	1	4	16	1	3
GA14176	0	16	0	10	14	0	1
GA14572	0	16	1	4	15	0	3
GA14705	1	16	0	4	16	1	0
GA15328	0	16	0	8	12	0	5
GA15393	0	16	0	0	12	1	1
GA15436	0	15	0	10	16	0	0
GA15687	0	16	0	6	16	0	0
GA16943	0	16	3	3	14	0	0
GA17354	0	16	0	1	16	1	1
GA17564	0	16	0	1	15	0	1
GA17590	1	16	1	3	16	2	0
GA17594	0	16	0	1	15	0	1
GA17599	0	16	0	1	16	1	0
GA17782	0	16	0	4	16	0	1
GA18107	0	16	0	11	16	0	0
GA19139	0	16	1	2	16	0	0
GA19265	1	16	1	9	16	0	4
GA19408	0	16	1	13	13	1	0
GA20067	0	16	2	3	16	0	1
GA20648	0	16	0	4	16	0	0
GA20842	0	16	0	5	16	0	5
GA21237	0	16	1	9	16	0	1
GA21946	0	15	1	12	14	0	0
Sub-total	6	538	26	198	515	10	42
TOTAL	10	15.74*	62	456	15.24*	15	103

$\left(^{*}\right)$ denotes an average, rather than a total.

Supplementary Table S2: Counts of transitions and transversions across both species for X linked (X) and autosomal (A) datasets. The ratio of transitions to transversions did not differ significantly between X and $A\left(\chi^{2}{ }_{[1]}=0.246, p>0.05\right)$; thus, the datasets were combined to give empirical rates of mutation for transitions and transversions.

	D. pseudoobscura		D. miranda		TOTAL
	X	A	X	A	
Transitions	170	221	46	59	496
Transversions	79	113	17	22	231
TOTAL	249	334	63	81	727

