Additional analyses:

Table S1 shows the results from QTL Express at the best position of a full parent-of-origin model [2] or that of a reduced model [4] (Table 2 of manuscript). Significance of the parent-of-origin effect was tested in two ways: an *F*-test of full versus Mendelian as described in Section 2 of the article; a *t*-test on the significance of i [2] using the estimate of i and its standard error. For both tests we used tabulated *P* values.

For five of the seven parent-of-origin specific QTL, the best position using the full model [2] of QTL Express is within 10 cM of our best QTL position

using reduced models with uni-parental expression [4] (Table 1). It shows furthermore that at all QTL positions from Table 2 of the article, the test for imprinting, based on either variance or size of i, is significant. The lower part of Table S2 illustrates that inclusion of the grand-dam effect does not affect the significance of the imprinting effects (compare with Table 3 of article).

We subsequently re-analysed our best QTL positions using GENSTAT, as described under Section 2.vii (Additional simulations and analyses). This way we could evaluate the effect of fitting fixed effects

Trait	Chr.	Best QTL from full model [2]			Best QTL from Table 2		
		Position	$F_{\rm imp}{}^a$	$t_i^{\ b}$	Position	$F_{\rm imp}^{a}$	$t_i^{\ b}$
AFE	1	1	0.47	-0.69	204	4.74*	-2.18*
BW40	1	294	5.08*	2.25*	239	6.32*	2.51*
HU40	1	117	6.68*	-2.58*	121	6.52*	-2.55*
FI40	1	332	8.83**	2.96**	338	8.07**	2.85**
FI40	36	8	4.27*	2.07*	13	5.19*	2.28*
EWb	3	230	6.02*	2.45**	233	5.77*	2.40*
ENa	30	1	10.19**	-3.2**	1	10.19**	-3.2**
Including	grand-dam e	ffect					
AFE	1	1	0.47	-0.68	204	3.83*	-1.95*
HU40	1	121	6.02*	-2.45*	121	6.02*	-2.45*
EWb	3	229	4.32*	2.08*	233	3.97*	1.99*

Table S1. Results for a full imprinting model in QTL Express

Hatch fitted as fixed effect in all analyses.

Including grand-dam effect

1

1

3

AFE

EWb

HU40

^a F-test of full [2] versus Mendelian [1] model at the position of the QTL.

^b t-test whether i [2] is significantly different from zero.

*, ** indicate tabulated P < 0.05 and 0.01, respectively.

Trait	GGA	Position	F ratios from full model ^{a}			Uni-parental model ^b		
			Mat	Pat	d	F	Effect	SE
AFE	1	204	0.18	12.61	0.86	12.7	-2.15	0.6
BW40	1	239	13.82	0.06	0.20	13.9	-67	18
HU40	1	121	11.7	0.01	0.05	10.35	1.6	0.5
FI40	1	338	11.78	0.02	0.45	11.84	-4.1	1.2
FI40	36	13	11.54	0.05	0.45	11.6	-3.02	0.90
EWb	3	233	0.0	10.39	0.23	10.38	1.41	0.43
ENa	30	1	0.1	17.16	0.2	17.15	-5.3	1.28

 Table S2. Results of full and reduced imprinting models using GENSTAT and QTL Express derived line-origin probabilities

^a Partial F ratio for adding an effect to the model, which already contains the other two effects. Mat, maternal; Pat, paternal;

9.23

0.02

9.24

2.32

0.05

0.2

9.83

10.32

9.50

-1.87

16.2

1.34

0.6

5.05

0.43

d, dominance. The inferred genetic models following parent-of-origin tests are in bold.

0.07

10.25

0.22

^b Estimates from a model fitting only the inferred uni-parental effect.

204

121

230

simultaneously as well as corroborating the results obtained with custom-written software.

Table S2 is very similar to Table 2 of the article, indicating that we can verify the uni-parentally expressed QTL independently from our custom-written software. Table S2 also shows that, for the present results, there is little effect of estimating the fixed effect jointly with the QTL compared with pre-adjusting phenotypes.

Additional simulations:

Table S3 shows the results of 1000 replicates for seven scenarios where an imprinted QTL was simulated. For details on the simulation study see de Koning *et al.* (2002). For smaller QTL effects, the difference in power between the reduced model [4] and the Mendelian and full model, respectively is substantial (Table S3).

 Table S3. Proportion of imprinted QTL detected using a Mendelian model,

 a full imprinting model, or the correct reduced model

QTL effect	QTL frequency ^a	Mendelian [1] a+d	Maternal [4] Mat	Full [3] or [2] Mat + Pat + d (a + d + i)
1	Fixed	1.00	1.00	1.00
0.5	Fixed	0.99	1.00	1.00
0.25	Fixed	0.50	0.90	0.78
0.15	Fixed	0.20	0.46	0.30
0.5	0.80/0.20	0.62	0.93	0.85
0.25	0.80/0.20	0.20	0.46	0.31
0.15	0.80/0.20	0.10	0.20	0.12

Detection is defined as proportion of analyses where the test statistic exceeded an empirical chromosome-wide 5% threshold.

^a QTL allele frequency in founder lines.

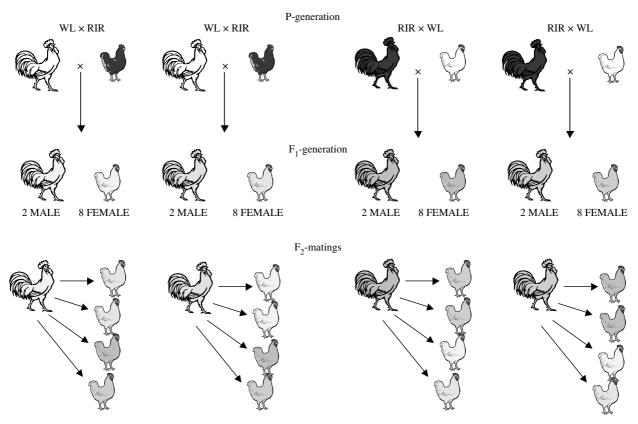


Fig. S1. Mating design of experimental chicken cross. Parental lines are Rhode Island Red (RIR) and White Leghorn (WL).