Spatial distribution of spotted-wing drosophila (Diptera: Drosophilidae) and other insects in fruit of a sweet cherry (Rosaceae) orchard: supplemental material

Amanda C. Chamberlain, Robert Lalonde, and Howard M. A. Thistlewood

Supplementary Table S1. Pesticides applied in study orchard with date and type of material in 2015.

	Common name of active ingredient	Application date	Activity type
	boscalid + pyraclostrobin	4 May	fungicide
Pristine WG	glyphosate	25 May	herbicide
Cheminova	Spinosad	10 June	insecticide
Naturalyte GF120	Spinosad Naturalyte GF120	16 June	insecticide
Naturalyte GF120	Spinosad	19 June	insecticide
Senator thiophanate-	19 June	fungicide	
Naturalyte GF120	Spinosad	22 June	insecticide
Naturalyte GF120	Spinosad	29 June	insecticide
Naturalyte GF120	spinosad	14 July	insecticide

${ }^{a}$ Selective fruit bait for suppression of Rhagoletis species, ($0.2 \mathrm{~g} \mathrm{~L}^{-1}$ of a.i.), maximum of 60 mL per tree.

Supplementary Table S2. Cherry cultivars, number of fruit examined in preliminary samples on given dates for presence of Drosophila suzukii, and estimated date of first infestation.

Cultivar	Number of fruit	Date collected	First infestation
Montmorency	10	15 June	
"	6	24 June	24 June
Santina	$180^{\mathbf{a}}$	10 June	10 June
"	3	15 June	
Sonata	20	15 June	15 June
"	4	24 June	
Lapins	20	15 June	15 June
"	3	24 June	
"	10	6 July	
Skeena	20	15 June	24 June
"	6	24 June	
"	10	6 July	
Sweetheart	20	15 June	6 July
"	9	24 June	
"	10	6 July	
Staccato	15	15 June	6 July
"	10	24 June	
"	10	6 July	

[^0]Supplementary Table S3. Two-way analysis of variance of Drosophila suzukii adults emerging from cultivar Sonata cherries by row, height, and row X height.

Source	Sum of squares	df	Mean square	\boldsymbol{F}-ratio	\boldsymbol{P}-value
Corrected model	126.763^{a}	5	25.353	1.779	0.1170
Error	4247.185	298	14.252		
Corrected total	4373.947	303			

$\mathrm{df}=$ degrees of freedom.
${ }^{\mathrm{a}} R^{2}=0.029, R^{2}(\mathrm{Adj})=0.013.$.

Supplementary Table S4. Two-way analysis of variance of Drosophila suzukii adults emerging from cultivar Skeena cherries by row, height, and row X height.

Source	Sum of squares	df	Mean square	\boldsymbol{F}-ratio	\boldsymbol{P}-value
Corrected model	433.527^{a}	5	86.705	2.299	0.0449
Row	178.112	2	89.056	2.361	0.0959
Height	0.487	1	0.487	0.013	0.9096
Row X height	251.906	2	125.953	3.340	0.0367
Error	11993.029	318	37.714		
Corrected total	12426.556	323			

$\mathrm{df}=$ degrees of freedom.
${ }^{\mathrm{a}} R^{2}=0.035, R^{2}(\mathrm{Adj})=0.020$.

Supplementary Table S5. Two-way analysis of variance of Drosophila suzukii adults emerging from cultivar Sweetheart cherries by row, height, and row X height.

Source	Sum of squares	df	Mean square	\boldsymbol{F}-ratio	\boldsymbol{P}-value
Corrected Model	$165.246^{\mathbf{a}}$	5	33.049	0.960	0.442
Error	12496.971	363	34.427		
Corrected Total	12662.217	368			

$\mathrm{df}=$ degrees of freedom.
${ }^{\mathrm{a}} R^{2}=0.013, R^{2}(\mathrm{Adj})=-0.000$.

Supplementary Table S6. Two-way analysis of variance of Drosophila suzukii adults emerging from cultivar Staccato cherries by row, height, and row X height.

Source	Sum of squares	df	Mean squar	\boldsymbol{F}-ratio	\boldsymbol{P}-value
Corrected model	$651.086^{\mathbf{a}}$	5	130.217	130.217	5.1984
Row	199.712	2	99.856	3.986	0.0194
Height	448.127	1	448.127	17.890	0.0001
Row X height	12.051	2	6.026	0.241	0.7863
Error	9042.909	361	25.050		
Corrected total	9693.995	366			

$d f=$ degrees of freedom.
${ }^{\mathrm{a}} R^{2}=0.067, R^{2}(\mathrm{Adj})=0.054$.

Supplementary Table S7. Two-way analysis of variance of Drosophila suzukii adults emerging from cultivar Sonata cherries by row, aspect, and row X aspect.

Source	Sum of squares	df	Mean square	\boldsymbol{F}-ratio	\boldsymbol{P}-value
Corrected model	232.293^{a}	5	46.459	3.343	0.0059
Row	107.528	2	53.764	3.868	0.0219
Aspect	80.035	1	80.035	5.759	0.0170
Row X aspect	46.329	2	23.164	1.667	0.1906
Error	4141.654	298	13.898		
Corrected total	4373.947	303			

$\mathrm{df}=$ degrees of freedom.
${ }^{\mathrm{a}} R^{2}=0.053, R^{2}(\mathrm{Adj})=0.037$.

Supplementary Table S8. Two-way analysis of variance of Drosophila suzukii adults emerging from cultivar Skeena cherries by row, aspect, and row X aspect.

Source	Sum of squares	df	Mean square	\boldsymbol{F}-ratio	\boldsymbol{P}-value
Corrected model	203.861^{a}	5	40.772	1.061	0.3821
Error	12222.695	318	38.436		
Corrected total	12426.556	323			

$\mathrm{df}=$ degrees of freedom.
${ }^{\mathrm{a}} R^{2}=0.016, R^{2}(\mathrm{Adj})=0.001$.

Supplementary Table S9. Two-way analysis of variance of Drosophila suzukii
adults emerging from cultivar Sweetheart cherries by row, aspect, and row X aspect.

Source	Sum of squares	df	Mean square	F-ratio	\boldsymbol{P}-value
Corrected model	$208.715^{\text {a }}$	5	41.743	1.217	0.3006
Error	12453.502	363	34.307		
Corrected total	12662.217	368			

$d f=$ degrees of freedom.
${ }^{\mathrm{a}} R^{2}=0.016, R^{2}(\mathrm{Adj})=0.003$.

Supplementary Table S10. Two-way analysis of variance of Drosophila suzukii adults emerging from cultivar Staccato cherries by row, aspect, and row X aspect.

Source	Sum of squares	df	Mean square	\boldsymbol{F}-ratio	\boldsymbol{P}-value
Corrected model	$654.890^{\mathbf{a}}$	5	130.978	5.231	0.0001
Row	190.877	2	95.439	3.812	0.0230
Aspect	316.161	1	316.161	12.627	0.0004
Row X aspect	145.581	2	72.790	2.907	0.0559
Error	9039.105	361	25.039	25.039	
Corrected total	9693.995	366	26.486		

$d f=$ degrees of freedom.
${ }^{\mathrm{a}} \mathrm{R}^{2}=0.068, \mathrm{R}^{2}(\mathrm{Adj})=0.055$.

[^0]: ${ }^{\text {a }}$ Date of first collection was 10 June.

