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Figure S1 The Finnish national boundary was approximated by 28 points and a triangular geometry used to solve the diffusion-reaction model numerically. The coordinates are in the units of the Finnish grid system YKJ.
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Fig. S2 The model predicted probability of invasion of the deer ked (dark=0, white=1) between each two consecutive surveys in comparison with the observed spread (thin line) based on model 0 with parameters set to the posterior mean. 
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Fig. S3 The model predicted probability of invasion of the deer ked (dark= 0, white=1) between each two consecutive surveys in comparison with the observed spread (thin line) based on model 3 with parameters set to the posterior mean.
Centring the moose density data
We centred the moose density (M) data and standardized the variance to one by setting
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(Eq. A1)
where M is the raw data of the moose density and 
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 the mean over all hunting districts and years.
Implementation in MatLab
We solved the models numerically with the PDE solver of MatLab. The solver for parabolic equations in MatLab uses the notation
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(Eq. A2)
where d, c, a, and f are spatially variable parameters. To implement the model described in the main text, we set d=1, f=0 (f≠0 would describe a source term and is thus not relevant here), and c = D. As we have a = -r(1-u/K), the parameter a actually depends on the dynamic variable u, which form is not allowed for in the MatLab solver. We solved this by running the model for one time-step (a year) at a time, and then updating the value of a based on the current density. Applying such a yearly effect of carrying capacity is also justified for the reason that moose and deer ked have distinct breeding seasons once a year. We set the domain correspond to Finland, approximated the boundary with 28 nodes, and applied a Delaunay triangulation (Fig. 1A). The resulting triangles had edges of no longer than 60km (mean 24.5km). We assumed Neuman (reflecting) boundary conditions. In the MatLab implementation the parameters a and c are defined at the centres of weight of the triangles, whereas the dynamic variable, i.e. the deer ked density u, is defined at the nodes of the triangulation.
We approximated both uob (the observed density) and us (the solution to the model) by piecewise linear functions, and computed the discrepancy between these two following the formulae of Ovaskainen et al. (2008). Denoting the difference between the observed and modelled solution of deer ked density at each of the three nodes of a given triangle T by d1, d2, d3, we have
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(Eq. A3)
where A is the area of a triangle with nodes located at ((x1, y1), (x2, y2), (x3, y3)),

[image: image8.wmf](

)

2

)

(

)

(

)

(

1

2

2

1

3

1

1

3

2

3

3

2

y

x

y

x

y

x

y

x

y

x

y

x

A

-

+

-

+

-

=


.




(Eq. A4)
Technical details on parameter estimation
We sampled the posterior distributions of the models 0-3 by the Metropolis-Hasting algorithm following the adaptive strategy described in Ovaskainen et al. (2008). We adapted the proposal distributions during a burn-in consisting of 1,000 iterations, with the aim of obtaining an acceptance ratio of ca. α=0.44. We then ran the chain (with fixed proposal distributions) for 10,000 iteration rounds to obtain a sample from the posterior distribution.
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Fig. S4 Mixing of the MCMC (Monte Carlo Markov Chain) algorithm with a total of 11,000 iterations, out of which the first 1,000 iterations were discarded as burn-in. The first column shows the mixing of the parameter, the second column the variance of the proposal distribution which was held constant after the burn-in, and the last column the acceptance rate. Based on model 3.
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