Supplementary materials:
Participants
The initial sample contained 690 schizophrenia patients and 619 healthy subjects. The data have been partially described elsewhere (1). All the patients had a diagnosis of schizophrenia confirmed by trained psychiatrists using the Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID-I, patient edition). The exclusion criteria were a history of somatic or neurologic disorders, serious medical illness, substance dependence, pregnancy, electroconvulsive therapy within the last six months, or a diagnosis of any other axis I disorder. All patients were receiving antipsychotic monotherapy, and none were taking antidepressants or mood stabilizers. Medication dosage was converted to chlorpromazine equivalents. Forty percent of our sample was experiencing their first episode, and the remaining patients had experienced a relapse of schizophrenia. The Positive and Negative Syndrome Scale (PANSS) was used to assess the positive, negative, and general psychopathology symptoms in the patients. All the recruited patients were in a state of acute psychosis and had a PANSS total scale higher than or equal to 60. The healthy controls, who had no current or previous axis I psychiatric disorders, were recruited from the local community near each site through advertisements. None of the HCs had any personal history of psychotic illness nor any family history of psychosis in their first-, second-, or third-degree relatives. All the participants were Han Chinese in origin, right-handed, and had no contraindications to MRI scanning. All images were carefully reviewed by four examiners, and those with artifacts such as motion, ghosting, low signal to noise ratio, or insufficient gray/white matter contrast were excluded. After extensive quality checking of the brain imaging data, 662 patients and 613 HCs were included in the analysis.
T1-weighted scans processing
[bookmark: OLE_LINK15][bookmark: OLE_LINK16][bookmark: OLE_LINK9][bookmark: OLE_LINK8]All the T1-weighted images were processed using Statistical Parametric Mapping (SPM8, Wellcome Department of Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm/) and Voxel-Based Morphometry toolbox version 8 (VBM8). Briefly, the images were bias-corrected and segmented into different tissues including GM, WM, and CSF images. The tissue images were then spatially normalized and resampled to a resolution of 1.5 × 1.5 × 1.5 mm3. To preserve the regional volumetric information, the segmented and normalized images were modulated by the Jacobian determinants of the transformation matrices derived from the normalization process (2). Finally, the modulated GM and WM partitions were smoothed with an 8 mm full width at half maximum Gaussian kernel for the subsequent statistical analysis. Smoothing enables the GM and WM volumes to be more normally distributed and compensates for inaccuracies in spatial normalization (3).
Feature preprocessing
First, each feature vector was z scored within each site. Since we used leave-one-set-out cross validation, all 8 sites were z scored within each site. Z score normalization can be used to reduce the range variations caused by scanners. For each feature vector x, the z score was calculated by: 



whereis the mean and s is the SD of all the samples at each site (i.e., HC+SZ). 

Second, we estimated the age and gender effects within the pooled HCs samples in the training set using a general linear model and applied the coefficients to the other participants in the training and test sets. Specifically, for the pooled HC samples in the training set we estimated β1 and β2 using the following formula:


where Xage, Xgender are the age and gender vectors for all the HC samples in the training set, and Y denotes the volumetric features, and ε denotes the error term.

The estimated β1 and β2 were then applied to all samples (HC+SZ) in the training and test sets separately to obtain the age and gender regressed training features and test features. This strategy has been demonstrated to be effective for removing the influence of demographic effects on the distinction between patients and controls (4). This was done voxel-wise. 

Supplementary Fig. 8 shows the distribution of raw, z scored, and age and gender regressed data for the HCs at each site. Note that the age and gender regression was performed eight times because we performed eight leave-one-site-out experiments and calculated the total values of the overlapped and feature selected voxels for eight validations (i.e., 12666 voxels) to plot the distributions for the raw, z scored, and age and gender regressed data. The harmonization performance was evaluated using analyses of variance (ANOVAs), which were conducted using the Pingouin package (v.0.3.11, https://pingouin-stats.org/index.html). The violin plots were conducted using Python 3.8.5.
As shown in Supplementary Table 9, no differences were found for the main effects of sites after z score normalization and age and gender regression. 

Fisher score feature ranking
The Fisher score is a criterion by which to quantify the discrimination between a feature and its clinical label (5). Given training instances xi, i = 1, …, l, the Fisher score of the jth feature is defined as: 

 


where n+ and n- are the number of schizophrenia (positive) and healthy control (HC, negative) individuals, respectively; are the average of the jth features for the total sample, schizophrenia sample, and HC sample, respectively; is the jth feature of the ith schizophrenia/HC sample. The numerator denotes the inter-class variance, and the denominator denotes the sum of the variance within each class. The larger a feature’s Fisher score the more discriminative it is.

DNN training setup
The deep learning parameters momentum and learning rates were set to 0.9 and 0.1, respectively. ReLU was chosen as the activation function, and logistic regression was the classifier. The weights of each layer were initialized to the standard Gaussian initialization of 0 mean and 0.01 standard deviation for weights and a constant initialization of 0 for biases. We optimized our algorithm for 150 epochs with a batch size of 50 and a momentum of 0.9. The learning rate started at 0.001 and was divided by 2 every 30 epochs. The weight decay term  was fixed to 0.0001. We used a dropout with a fixed rate of 0.5 and batch normalization to enable the global statistics derived from all the training samples to be used to normalize every mini-batch of test data. The DNN models were trained by Pytorch (http://pytorch.org/). All the experiments were performed using a server with Intel(R) Xeon(R) CPU (3.60GHz), 32GB DDR3, and TITAN XP (Tesla) GPU (12G).
Comparisons with SVM
To compare SVM with DNN, support vector machines (SVMs) were performed in the automated classification procedure. SVM classifiers have been widely used in the field of neuroscience (6). SVMs select a small number of critical boundary samples from each class and build a linear discrimination function with the maximal margin. In the present study, SVM classifiers were implemented using the scikit-learn package in Python (7), which is based on the LIBSVM toolbox (8). The same feature selection method was performed to reduce the feature dimensions and avoid overfitting. We tested the performance of the Gaussian radial basis function (RBF) kernel and linear SVMs. The parameters C (a constant determining the trade-off between training error and model flatness) and ɣ (Gaussian kernel width) for RBF kernels and C for linear SVMs were optimized via cross-validation on the training data. We optimized parameters C and ɣ via cross validation on the training set for RBF and for linear SVMs via grid search (i.e., C = 2−5, 2−3, …, and 215 and γ = 2−15, 2−13, …, and 23 for RBF SVM, C = 2−5, 2−3, …, and 215 for linear SVM, respectively). We found the best performance was achieved when ɣ =2-15 and C = 23 using RBF kernels. We observed that a linear SVM when C = 2-5 had marginally inferior performance compared with the RBF kernel SVM (linear SVM BAC = 76.30% and AUC = 0.824 vs. RBF SVM BAC = 76.07% and AUC = 0.844). Therefore, we reported the results of the RBF kernel SVM in the manuscript.
The voxel probability maps of volumetric contributions to schizophrenia generated by SVM were based on the learned weight vector of a linear SVM. For a linear SVM with a -dimensional weight vector, the output  for a -dimensional data  can be written as , where  and  denote the weight and bias terms of SVM, respectively. A linear SVM creates a hyperplane that uses support vectors to maximize the distance between the two classes, which is determined by  and .  represents the vector which is orthogonal to the hyperplane, in which the absolute values of the coefficients in relation to each feature can then be used to determine feature contribution for the classification task. The final contribution of each feature was averaged across all the participants from the eight experiments and normalized between 0 and 1. A higher value indicates a greater discriminative ability for the classification of schizophrenia.

Comparisons with CNN
CNNs are special types of neural networks that require all the high-dimensional neuroimaging image data as the input. The convolutional operations in the CNNs enhance their ability to contextualize spatial information. We constructed 3D ResNet-18 models to test the performance of the CNNs. 

Volumetric abnormalities contributing to the DNN models 
To identify the consistent changes related to schizophrenia across the eight sites, voxel probability maps of the GM, WM, and CSF were generated with the value at each voxel indicating the contributions of the eight experiments to the DNN model. Because of the nested non-linear activation functions and numerous parameters, the interpretability of the DNN model was challenging. We used a layer-wise relevance propagation (LRP) (9) to back-propagate the final two-dimensional classification scores. 

Specifically, for the th network layer in a DNN that consisted of  layers, we defined  as the output of a neuron  in layer ,  as the output of a neuron  in the next layer . The  can be calculated by

where  is the network weight of layer ,  is a non-linear activation function. For each neuron at layer , we defined the propagation of relevance from layer  to layer  as

After defining the relevance between two adjacent network layers, we could back propagate the relevance layer by layer and finally get , representing the relevance between each input feature and the final prediction of the network. 
[bookmark: _Hlk89176335]By implementing a min-max normalization on the absolute value of the vector , which scales the values between 0 and 1, we could get , a vector with length M, which represents the contribution of the input features. M is the number of input features. The final contribution of each feature was averaged across all the participants from the eight experiments and normalized between 0 and 1. A higher value indicates a greater discriminative ability for the classification of schizophrenia.

ROI-based contributions to the DNN and meta-analysis
[bookmark: _Hlk89176395]To identify the regions of interest (ROIs) that contribute to the DNN models, we calculated the mean probability values for each ROI in the Brainnetome Atlas (10). Similarly, the average T statistical values were also calculated for the ROIs. Supplementary Table 10 shows the ROIs with more than 150 voxels (~4ml in 3×3×3 mm3) in a probability map and a T map. We observed the thalamus contributed the most for the schizophrenia classification and in the statistical analysis. We observed the thalamus contributed the most for schizophrenia classification and statistical analysis, suggesting a crucial role for the thalamus in schizophrenia. In addition to the thalamus, the insula, precentral gyrus, inferior parietal lobule, middle frontal gyrus, orbital gyrus, inferior frontal gyrus, superior frontal gyrus, superior temporal gyrus, cingulate gyrus, middle temporal gyrus, and hippocampus have been identified in both of these methods. The basal ganglia and fusiform gyrus contributed to the DNN models, and the postcentral gyrus and lateral occipital cortex were detected in the meta-analysis, suggesting that the two approaches may complement each other.

GAF analysis
To control the confounding effect of the global assessment of functioning (GAF) scale, additional experiments were performed in which we included GAF as a covariate in a classification procedure. We found that the classification performance was comparable between the corrected and uncorrected GAF (Supplementary Table 4), indicating that what we found were schizophrenia-specific signatures in the brain volumes rather than a GAF-related brain signature and that a poor GAF is likely to be a result of impaired brain structures.
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Supplementary Fig. 1. Flowchart of the classification procedure using T1-weighted volumetric features and leave-one-site-out validation.
Abbreviations: CSF, cerebrospinal ﬂuid; DNN, deep neural network; GM, gray matter; WM, white matter.
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Supplementary Fig. 2. Statistical maps displaying gray matter volume reductions in schizophrenia patients compared with healthy controls at eight centers.
The color bar indicates T values corrected for false discovery rate with p < .05. Abbreviations: GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital 
Siemens scanning site; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.
[image: ]



Supplementary Fig. 3. Statistical maps displaying reduced (A) and increased (B) white matter volumes in schizophrenia patients compared with healthy controls at individual centers.
The color bar indicates T values corrected for false discovery rate with p < .05.
Abbreviations: GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; RWU, Renmin Hospital of Wuhan University.
[image: ]



Supplementary Fig. 4. Voxel probability maps of reliable gray matter volumetric contributions to schizophrenia using DNN (A) and SVM (B) classification approaches. A higher value indicates a greater discriminative ability for the classification of schizophrenia patients. We observed the regions identified by two approaches have similar patterns. Note that the values in A and B were not comparable because different methods were used to calculate the contributions of features.
[image: ]


Supplementary Fig. 5. Voxel probability maps of reliable white matter (WM) and cerebrospinal ﬂuid (CSF) volumetric contributions to schizophrenia using eight classification experiments. A higher value indicates a greater discriminative ability for the classification of schizophrenia patients.
[image: ]



Supplementary Fig. 6. Voxel probability maps of reliable gray matter volumetric contributions to schizophrenia identified by relapse vs. healthy controls (A) and first episode vs. healthy controls (B) classification approaches. A higher value indicates a greater discriminative ability for the classification of schizophrenia patients. 
[image: ]


Supplementary Fig. 7. Receiver operating characteristic (ROC) curves for schizophrenia patients vs. healthy controls classification using deep neural network (DNN) and support vector machine (SVM) methods. The classification was performed using the pooled eight sites data and a ten-fold cross validation. 
[image: ]
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Supplementary Fig. 8. Violin plots showing the distribution of raw (A), z scored (B), and age and gender regressed (C) data in healthy controls at each site. Boxes display the interval between the 25th and 75th percentiles (q1 and q3); white points indicate median values; red points indicate mean values; whiskers indicate the interval between q1−1.5×(q3−q1) and q3+1.5×(q3−q1), plots were smoothed for visualization with kernels by Scott's rule of thumb. 


Supplementary Table 1. Demographic characteristics at each site a
	
	
	Patients with schizophrenia
	Healthy controls

	Site
	Sample size
	Gender 
(M : F)
	Age (years) b
	GAF c
	Gender 
(M : F)
	Age (years) b
	GAF c

	PKUH6
	198
	61 : 38
	26.7 (6.4)
	43.1 (12.3)
	52 : 47
	25.7 (5.4)
	90.1 (6.5)

	HLG
	139
	30 : 49
	27.7 (6.9)
	65.9 (13.8)
	30 : 30
	25.6 (5.5)
	99.3 (0.7)

	XJ
	128
	45 : 36
	27.0 (5.8)
	51.6 (11.2)
	28 : 19
	28.9 (5.2)
	94.6 (2.5)

	HMS
	175
	39 : 42
	26.8 (5.4)
	47.9 (9.0)
	48 : 46
	28.4 (6.4)
	94.0 (2.0)

	GB
	193
	69 : 30
	27.3 (5.8)
	35.8 (13.7)
	53 : 41
	25.9 (4.9)
	94.9 (4.6)

	HMG
	133
	33 : 23
	29.6 (7.6)
	44.3 (10.9)
	38 : 39
	31.3 (7.0)
	94.7 (1.7)

	RWU
	170
	36 : 46
	26.3 (6.1)
	46.3 (8.1)
	45 : 43
	24.8 (4.6)
	80.2 (2.3)

	ZMD
	139
	49 : 36
	29.4 (7.5)
	43.6 (14.7)
	22 : 32
	31.5 (5.9)
	93.1 (5.1)

	Total
	1275
	362 : 300
	27.5 (6.5)
	46.7 (13.8)
	316 : 297
	27.5 (6.1)
	92.0 (6.6)


Abbreviations: GAF, Global Assessment of Functioning; GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital Siemens scanning site; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.
a All sites are matched for gender and age. 
b Values are means (SDs).
c Data were missing for 39 patients and 26 controls; all sites showed significant differences between patients and controls (p < .001); values are means (SDs).



Supplementary Table 2. Clinical characteristics at each site
	Site
	PANSS
	Age at onset of illness (years)
	Duration of illness (month)
	First episode
	CPZ-eq at scan (mg/d)b

	
	Positive
	Negative
	
	
	
	

	PKUH6 
(SZ = 99)
	23.6 (4.5)
	18.2 (5.8)
	22.9 (5.9)
	51.0 (50.1)
	49
	467.7 (215.5)

	HLG 
(SZ = 79)
	26.1 (3.0)
	16.6 (3.3)
	22.9 (6.3)
	64.2 (60.1)
	24
	NA

	XJ 
(SZ = 81)
	22.7 (4.8)
	22.4 (6.5)
	25.0 (6.0)
	26.1 (29.8)
	53
	452.6 (128.7)

	HMS 
(SZ = 81)
	22.5 (2.8)
	19.1 (5.0)
	22.9 (5.0)
	41.6 (41.2)a
	34
	339.5 (210.6)

	GB 
(SZ = 99)
	24.3 (4.1)
	22.5 (7.3)
	22.8 (5.9)
	56.5 (49.7) a
	29
	391.7 (142.6)

	HMG 
(SZ = 56)
	24.6 (3.6)
	24.0 (5.9)
	24.9 (6.5)
	52.4 (68.7)
	22
	351.8 (182.0)

	RWU 
(SZ = 82)
	23.8 (4.0)
	21.3 (5.9) a
	22.5 (5.8) a
	47.4 (48.3) a
	23
	558.3 (153.9)

	ZMD 
(SZ = 85)
	24.7 (4.7)
	20.9 (5.7)
	24.7 (6.7)
	56.4 (54.3)
	35
	600 (0)

	Total 
(SZ = 662)
	24.0 (4.2)
	20.5 (6.2)
	23.5 (6.1)
	49.6 (51.6)
	269
	411 (204.3)


a Missing data at the sites ranged from N = 1 to N = 7.
b Data were missing for 362 patients.
Abbreviations: GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital Siemens scanning site; NA, not available; PANSS, Positive and Negative Syndrome Scale; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.



Supplementary Table 3. Scanning sequences and parameters used at each center 
	
	Center
	PKUH6, HLG, XJ
	HMS
	GB
	HMG
	RWU
	ZMD

	Type of 3T MRI scanner
	Vendor
	Siemens
	Siemens
	Philips
	General Electric
	General Electric
	General Electric

	
	Model
	Trio 3T
	Verio 3T
	Achieva 3T
	Signa HDx 3T
	Signa HDxt 3T
	Signa HDxt 3T

	MRI scan sequence and parameter
	Sequence 
	MPRAGE
	MPRAGE
	3D T1-TFE
	BRAVO
	BRAVO
	BRAVO

	
	TR (ms)
	2530
	2530
	8.18
	8.06
	7.79
	6.78

	
	TE (ms)
	3.44
	2.43
	3.76
	3.12
	3.0
	2.49

	
	TI (ms)
	1100
	1100
	1100
	1100
	1100
	1100

	
	FA (°)
	7
	7
	7
	7
	7
	7

	
	Orientation
	Sagittal 
	Sagittal
	Sagittal
	Sagittal
	Sagittal
	Sagittal

	
	Matrix size
	256*256*192
	256*256*192
	256*256*188
	256*256*188
	256*256*188
	256*256*188

	
	Voxel size
	1*1*1
	1*1*1
	1*1*1
	1*1*1
	1*1*1
	1*1*1


FA, flip angle; GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital Siemens scanning site; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; TE, echo time; TI, inversion time; TR, repetition time; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.


Supplementary Table 4. Classification performance using a combination of gray matter, white matter, and CSF volumes after correcting for age, gender, and GAF with deep neural networks.

	Site
	BAC (%)
	Sensitivity (%)
	Specificity (%)
	AUC

	PKUH6
	80.30
	73.74
	86.87
	0.860

	HLG
	83.44
	83.54
	83.33
	0.862

	XJ
	77.57
	67.90
	87.23
	0.801

	HMS
	77.65
	69.14
	86.17
	0.809

	GB
	81.47
	76.77
	86.17
	0.874

	HMG
	82.71
	87.50
	77.92
	0.861

	RWU
	83.43
	80.49
	86.36
	0.881

	ZMD
	80.32
	84.71
	75.93
	0.838

	Average
	80.86
	77.97
	83.75
	0.848


Abbreviations: AUC, area under the receiver operating characteristic curve; BAC, balanced accuracy; GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital Siemens scanning site; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.




Supplementary Table 5. Classification performance using deep neural networks for relapse vs. healthy controls and first episode patients vs. healthy controls.
	
	Relapse vs healthy controls
	First episode vs healthy controls

	Site
	BAC
(%)
	Sensitivity
(%)
	Specificity
(%)
	AUC
	BAC
(%)
	Sensitivity
(%)
	Specificity
(%)
	AUC

	PKUH6
	85.43
	84.00
	86.87
	0.900
	76.62
	71.43
	81.82
	0.773

	HLG
	86.59
	78.18
	95.00
	0.880
	76.25
	79.17
	73.33
	0.822

	XJ
	80.05
	75.00
	85.11
	0.818
	74.63
	64.15
	85.11
	0.778

	HMS
	80.32
	78.72
	81.91
	0.831
	69.90
	82.35
	57.45
	0.689

	GB
	83.81
	85.71
	81.91
	0.910
	80.74
	82.76
	78.72
	0.832

	HMG
	82.30
	97.06
	67.53
	0.849
	85.06
	90.91
	79.22
	0.909

	RWU
	85.28
	83.05
	87.50
	0.869
	74.18
	60.87
	87.50
	0.696

	ZMD
	81.67
	80.00
	83.33
	0.822
	79.81
	80.00
	79.63
	0.826

	Average
	83.18
	82.72
	83.65
	0.860
	77.15
	76.45
	77.85
	0.791


Abbreviations: AUC, area under the receiver operating characteristic curve; BAC, balanced accuracy; GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital Siemens scanning site; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.



Supplementary Table 6. Classification performance for schizophrenia patients vs. healthy controls using deep neural network (DNN) and support vector machine (SVM) methods. The classification was performed using the pooled eight sites data and a ten-fold cross validation.

	Methods
	Accuracy (%)
	Sensitivity (%)
	Specificity (%)
	AUC

	SVM
	78.98
	76.36
	81.61
	0.842

	DNN 
	82.73
	80.17
	85.28
	0.865







Supplementary Table 7. Classification performance using only gray matter (GM) and the combination of gray matter and white matter (GM + WM) volumetric features with deep neural networks.
	Site
	GM
	GM + WM

	
	BAC (%)
	Sensitivity (%)
	Specificity (%)
	AUC
	BAC (%)
	Sensitivity (%)
	Specificity (%)
	AUC

	PKUH6
	75.76
	71.72
	79.80
	0.808
	78.79
	80.81
	76.77
	0.845

	HLG
	77.97
	75.95
	80.00
	0.835
	79.24
	78.48
	80.00
	0.851

	XJ
	74.55
	70.37
	78.72
	0.796
	76.78
	64.20
	89.36
	0.790

	HMS
	69.04
	75.31
	62.77
	0.736
	73.12
	72.84
	73.40
	0.776

	GB
	81.87
	81.82
	81.91
	0.874
	82.90
	82.83
	82.98
	0.874

	HMG
	83.04
	80.36
	85.71
	0.846
	80.76
	87.50
	74.03
	0.874

	RWU
	78.51
	69.51
	87.50
	0.865
	79.05
	85.37
	72.73
	0.844

	ZMD
	75.11
	70.59
	79.63
	0.801
	74.86
	68.24
	81.48
	0.803

	Average
	76.98
	74.45
	79.51
	0.820
	78.19
	77.53
	78.84
	0.832


Abbreviations: AUC, area under the receiver operating characteristic curve; GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital Siemens scanning site; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.


Supplementary Table 8. Classification performance using a combination of gray matter, white matter, and cerebrospinal fluid volumetric features with a convolutional neural network (CNN) for schizophrenia patients vs. healthy controls. We used 3D ResNet-18 as the CNN model for comparison.
	Site
	CNN

	
	BAC (%)
	Sensitivity (%)
	Specificity (%)
	AUC

	PKUH6
	76.91
	86.15
	67.67
	0.821

	HLG
	76.23
	78.26
	74.19
	0.828

	XJ
	63.05
	55.88
	70.21
	0.716

	HMS
	66.93
	70.93
	62.92
	0.725

	GB
	75.51
	82.81
	68.22
	0.862

	HMG
	74.33
	89.36
	59.3
	0.796

	RWU
	70.85
	77.27
	64.42
	0.817

	ZMD
	68.69
	69.23
	68.14
	0.758

	Average
	71.56
	76.24
	66.89
	0.790


Abbreviations: AUC, area under the receiver operating characteristic curve; BAC, balanced accuracy; GB, Guangzhou Brain Hospital; HLG, Beijing Huilongguan Hospital; HMG, Henan Mental Hospital GE scanning site; HMS, Henan Mental Hospital Siemens scanning site; PKUH6, Peking University Six Hospital; RWU, Renmin Hospital of Wuhan University; XJ, Xijing Hospital; ZMD, Zhumadian Psychiatric Hospital.


Supplementary Table 9. Analysis of variance of main effects of sites for raw, z scored and age and gender regressed data.
	
	
	ANOVA

	
	
	F
	p

	
	Raw
	29.079
	< .001

	Stage 1
	Z score normalization
	1.834
	.163

	Stage 2
	Age and gender regression
	1.825
	.167






Supplementary Table 10. ROIs that contributed to the classification of schizophrenia based on the contribution of voxel probability maps to the DNN models and the contributions of statistical results in the meta-analysis.
	DNN
	Meta-analysis

	Ranking
	ROIs
	Contributions
	Voxel number
	Ranking
	ROIs
	Statistical T
	Voxel number

	1
	Thalamus
	0.77
	356
	1
	Thalamus
	-8.02
	296

	2
	Basal ganglia
	0.69
	274
	2
	Superior temporal gyrus
	-7.90
	1196

	3
	Insula
	0.67
	543
	3
	Insula
	-7.20
	568

	4
	Precentral gyrus
	0.66
	156
	4
	Middle temporal gyrus
	-7.04
	440

	5
	Inferior parietal lobule
	0.65
	167
	5
	Orbital gyrus
	-6.93
	1060

	6
	Middle frontal gyrus
	0.63
	220
	6
	Precentral gyrus
	-6.91
	557

	7
	Orbital gyrus
	0.62
	728
	7
	Inferior frontal gyrus
	-6.88
	717

	8
	Inferior frontal gyrus
	0.62
	244
	8
	Hippocampus
	-6.61
	169

	9
	Superior frontal gyrus
	0.62
	255
	9
	Inferior parietal lobule
	-6.54
	417

	10
	Superior temporal gyrus
	0.61
	493
	10
	Postcentral gyrus
	-6.52
	385

	11
	Cingulate gyrus
	0.60
	603
	11
	Cingulate gyrus
	-6.44
	773

	12
	Fusiform gyrus
	0.59
	217
	12
	Middle frontal gyrus
	-6.21
	708

	13
	Middle temporal gyrus
	0.58
	237
	13
	Superior frontal gyrus
	-5.93
	550

	14
	Hippocampus
	0.55
	254
	14
	Lateral occipital cortex
	-5.85
	162
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