Examining the contribution of birth weight to mental health, cognitive, and socioeconomic outcomes: A two sample Mendelian randomization

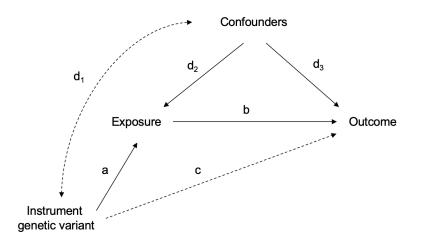
Massimiliano Orri, Jean-Baptiste Pingault, Gustavo Turecki, Anne-Monique Nuyt, Richard E Tremblay, Sylvana M Côté, & Marie-Claude Geoffroy

Table of Contents

eIntroduction	2
eMethods	3
Mendelian randomization: method and assumptions eFigure 1. Mendelian randomization model eTable 1. F statistic and r ² for each SNP	
e l'able 1. F statistic and r' for each SNP Power analysis eTable 2. Power analysis	7
Details on samples overlap eTable 3. Potential bias due to samples overlap	
eResults	9
Single SNP effects eFigure 2. Forest plot reporting Single SNP effects	
Results of the tests for pleiotropy eTable 4. Results of the tests for pleiotropy	
Leave-one-out analysis eFigure 3. Forest plots for the leave-one-out analysis	13
PhenoScanner Search eTable 4. Results of the PhenoScanner Seach eFigure 4. Word cloud visualizing the results of the PheonoScanner search	16
Steiger filtering	18
eReferences	19

eIntroduction

Evidence before this study: additional detailed information from a systematic search


We systematically searched Medline without date limitations up to April 30, 2019 (updated on July 16, 2019), using the following keywords: ("Mental Health" [Mesh] OR "Substance-Related Disorders" [Mesh] OR "Smoking" [Mesh] OR suicid* OR "suicide attempt" OR "social class" [Mesh] OR "Social Welfare" [Mesh] OR Education [Mesh] OR "Cognitive Dysfunction" [Mesh] OR "Intelligence" [Mesh]) AND ("birth weight" OR "birthweight" OR "fetal growth" OR "low birth weight" OR "low birthweight"). One researcher searched among the 7635 retrieved articles (filters were: English, Humans, Journal article) for pertinent articles reporting on the association between birth weight and later mental health, cognitive, and socioeconomic outcomes. Additionally, manual search on key journals was performed. Most of the available evidence came from studies using classic epidemiological designs (eg, cohort study, registers), including meta-analysis of observational studies. Overall, studies suggested associations of low birth weight with higher risk of psychiatric disorders such as depression, schizophrenia, suicidal behavior, ADHD, intelligence, socioeconomic status (eg, ¹⁻¹¹). However, a number of studies failed to find associations, and the overall evidence resulted contradictory. For example, of two meta-analyses on the association between birth weight and depression, only one found evidence of increased risk of adult depression for low birth weight children ^{6,12}. Only few studies (mainly from northern European countries and the United Kingdom) relied on quasi-experimental designs to investigate the association between birth weight and various mental health problems (eg, 4,13,14). These studies found that most of these associations were no longer significant using robust designs such as twin or sibling comparison. For example, a Swedish study found that while nine outcomes were significantly associated with birth weight in the population at large, only three (depression, ADHD and autism spectrum disorders) remained associated when a within-sibling design was used ⁴. The association between birth weight and ADHD was the most consistently reported across studies using classic observational ^{15,16}, sibling ⁴, and twin designs ¹³. Only one previous study used a Mendelian randomization design¹⁷. This study investigated the association of birth weight with ADHD, major depressive disorder, and schizophrenia, reporting no evidence for a contribution of birth weight to these outcomes. However, this study did not take into account the confounding effect of maternal genotype when used individual's SNPs as instruments for birth weight. We found no study using Mendelian randomization to investigate the association between birth weight and cognitive or socioeconomic outcomes.

eMethods

Mendelian randomization: method and assumptions

A schematic representation of the Mendelian randomization (MR) model is presented in **eFigure 1**. In two-sample MR, association between the instrument genetic variant(s) and the exposure comes from a GWAS, and the association between these same genetic variant(s) and the Outcome come from a different GWAS. The unconfounded association of the Exposure with the Outcome (*b* in the figure) is estimated as c/a.

eFigure 1. Mendelian randomization model

The same assumption as other instrumental variable approaches held for Mendelian randomization analyses. These are the following:

<u>Relevance</u>. The instrument used must be robustly associated with the exposure. In our study, we selected 48 SNPs as instruments of birth weight. These were selected from an initial pool of 209 SNPs showing genome wide statistical significance ($P < 6.6 \times 10^{-9}$) in the birth weight GWAS, and still maintained statistical significance ($P < 1 \times 10^{-6}$) once adjusted for the correlated maternal effect. The validity of the instrument can be quantified using the *F* statistic, with *F* > 10 indicating strong instruments. The *F* statistics for our instrument ranged from 19 to 182 (median, 28; mean, 36), suggesting that all SNPs were strong instruments.

Exchangeability. Instruments must be independent from confounding of the exposure-outcome association (d_1 nonsignificant). This assumption is not empirically testable in two-sample MR. However, we conducted a search in the phenoScanner database to verify whether, in the literature, the SNPs instruments have been associated with traits likely to be considered confounders of the exposure-outcome association.

Exclusion restriction criterion. There is no association between the instrument and the outcome conditional on the exposure. Differently said, the only pathway of association of the instrument to the outcome must be the trough the

exposure. This assumption may be violated by the pleiotropic effects of the SNPs used as instruments (or those in linkage disequilibrium with them). Pleiotropy refers to the effect of a SNP on multiple traits/genes, and can be distinguished in horizontal and vertical pleiotropy. Horizontal pleiotropy refers to the association of the instrument SNPs with traits/genes that can potentially open alternative pathways through which the instruments may be associated with the outcome, and that are not in the causal pathway between the instruments and the outcome. Horizontal pleiotropy, if unbalanced, violates the exclusion restriction criterion. Vertical pleiotropy refers to the association of the instrument SNPs with traits/genes that can are in the causal pathway between the instruments and the outcome. For example, when studying the association between birth weight and ADHD, vertical pleiotropy would be represented by the association between the instruments SNPs and intelligence, which in turn is associated with ADHD. Vertical pleiotropy does not violate the exclusion restriction criterion. To evaluate the possible violation of this assumption, we used 3 strategies. First, we evaluate the presence of unbalanced horizontal pleiotropy by testing the significance of the intercept of the MR-Egger regression, and evaluating the presence of heterogeneity using the O statistic. Second, we used a range of sensitivity analyses in addition to our primary MR analyses; all these methods differ in the assumptions regarding horizontal pleiotropy. Third, we conducted a search in the PhenoScanner database to find the traits that have been associated with each SNP instrument (and the SNPs in linkage disequilibrium, $r^2 \ge .80$) in the literature.

F statistic

The r^2 and F statistic for each SNP are reported in the table below:

eTable 1. F statistic and r^2 for each SNP

SNP	r2	F
rs1012167	0.00058	36.00
rs10181515	0.00130	26.45
rs10265057	0.00078	31.36
rs10935733	0.00044	27.56
rs11042596	0.00073	45.56
rs11055030	0.00048	19.36
rs11096402	0.00048	30.25
rs112139215	0.00314	49.00
rs1129156	0.00048	19.36
rs116807401	0.00774	30.25
rs11698914	0.00084	33.64
rs11711420	0.00048	19.36
rs12401656	0.00084	23.36
rs13266210	0.00090	36.00
rs134594	0.00048	30.25
rs138715366	0.05523	114.10
rs1480470	0.00078	49.00
rs1482852	0.00292	182.25
rs1547669	0.00032	20.25
rs222857	0.00068	42.25
rs2282978	0.00044	27.56
rs2551347	0.00084	33.64
rs28457693	0.00160	32.65
rs28505901	0.00058	23.04
rs3933326	0.00053	33.06
rs41311445	0.00116	23.59
rs41355649	0.00176	27.56
rs4144829	0.001/0	40.96
rs4444073	0.00053	33.06
rs4511593	0.00035	22.56
rs4953353	0.00036	22.56
rs56188432	0.06250	26.03
rs6575803	0.00116	23.59
rs6930558	0.00048	19.36
rs7076938	0.00048	33.64
rs72681869	0.01166	26.45
rs73143584	0.00096	19.61
rs732563	0.00036	22.56
rs7402983	0.00073	45.56
		20.25
rs753381	0.00032	20.25
rs754868	0.00036	
rs7772579	0.00073	29.16
rs7819593	0.00053	21.16
rs7968682	0.00137	85.56
rs80278614	0.00270	33.38
rs8106042	0.00053	21.16
rs8756	0.00137	85.56
rs9909342	0.00036	22.56
Sum	0.17579	1744.05

Fetal and maternal effects on birth weight

Associations between individual's genetic variants and birth weight may result from (i) the direct effect of the individual's own genotype on their birth weight, (ii) the effect of the maternal genotype on the individual's birth weight, i.e. the maternal genotype (or behavior depending on maternal genotype) influencing the intrauterine environment, in turn influencing birth weight, (iii) the combination of both (same gene having both fetal and maternal effect, either in the same direction or in opposite directions). Such multiple sources of variation in birth weight must be taken into account to study the genetic association between birth weight and later outcomes. Indeed, the correlation (r~0.5) between an individual's genotype and his/her mother's genotype may introduce confounding effects due to the individual's genotype on his/her own birth weight, a structural equation model has been proposed and implemented in a large GWAS. This model allows one to statistically adjust the influence of genetic variants on the individual genotype for the maternal effect on birth weight taking into account the correlation between the 2 genotypes. Details on the model can be found elsewhere ^{18,19}. In this study, we selected as instruments the SNPs having a fetal effect only, and the beta value for the association was adjusted for the correlated maternal effect.

Power analysis

Formulas are available to estimate the power of one-sample Mendelian randomization analysis. However, to our knowledge, there is no formula allowing one to estimate the power in a two-sample Mendelian randomization analysis. We therefore estimated our statistical power considering the sample size of the SNP-outcome GWAS, because the hypothesis testing refers to a difference in the outcome according to the level of the exposure (birth weight). The results of the power calculation are presented in **eTable 2**. For categorical outcomes, we reported the power given by our sample size to detect 20%, 30%, and 40% difference (ie, OR 1.20/0.80, 1.30/0.70, and 1.40/0.60, respectively) in the risk of the outcome per 1 SD-unit increase in the exposure. For continuous outcomes, we reported the power given by our sample size to detect 20%, 30%, and 40% of a SD in the outcome per 1 SD-unit increase in the exposure. Analyses were performed using the web application: <u>https://sb452.shinyapps.io/power/</u>.

These analyses suggested for all outcomes adequate power (ie, $\geq 90\%$) to detect associations as small as 20% change in the outcome for 1-SD unit change in the birth weight.

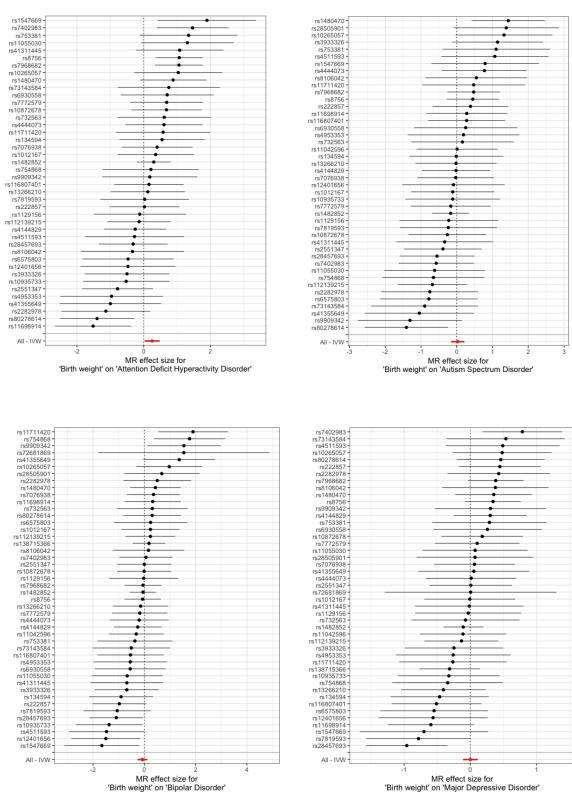
eTable 2. Power analysis

Trait	N	Cases/controls	Power (%) to detect the following OR		
Iran	IN	ratio	1.2	1.3	1.4
ADHD	53293	0.56	100	100	100
Autism Spectrum Disorder	46350	0.66	100	100	100
Bipolar Disorder	46582	0.65	99.9	100	100
Major Depression Disorder	173005	0.53	100	100	100
Obsessive-Compulsive Disorder	9725	0.38	92.6	99.8	100
Post-Traumatic Stress Disorder	9537	0.34	90.8	99.7	95.7
Schizophrenia	105318	0.63	100	100	100
Suicide attempt	50264	0.14	100	100	100
Intelligence	264498	-	100	100	100
Educational attainment	264498	-	100	100	100
Income	96900	-	100	100	100
Social deprivation	112005	-	100	100	100

ADHD, Attention-Deficit/Hyperactivity Disorder

Details on samples overlap

In two-sample Mendelian randomization, bias may emerge from the overlap between the instrument-exposure and instrument-outcome datasets. Overlap for outcomes such as ADHD, Educational attainment, Intelligence, Income, and Social deprivation is present. The bias on the MR estimate due to the overlap has been quantified as explained by Burgess, Davies, and Thompson²⁰ and using the web application: <u>https://sb452.shinyapps.io/overlap/</u>. We estimated the bias under 2 hypothetical situations (i) with a bias of the observational estimate of 0.4 per standard deviation change in the risk factor, and (ii) with a bias of the observational estimate of 0.8 per standard deviation change in the risk factor. Additionally, as precisely calculating the proportion of overlap is not possible with summary statistics, we calculate the bias for all ranges of overlap up until complete (100%) overlap. We calculate the bias for the smallest sample among our outcomes. The analyses suggest virtually no bias, with no inflation of type I error, even in the case of total overlap between samples (**cTable 3**).

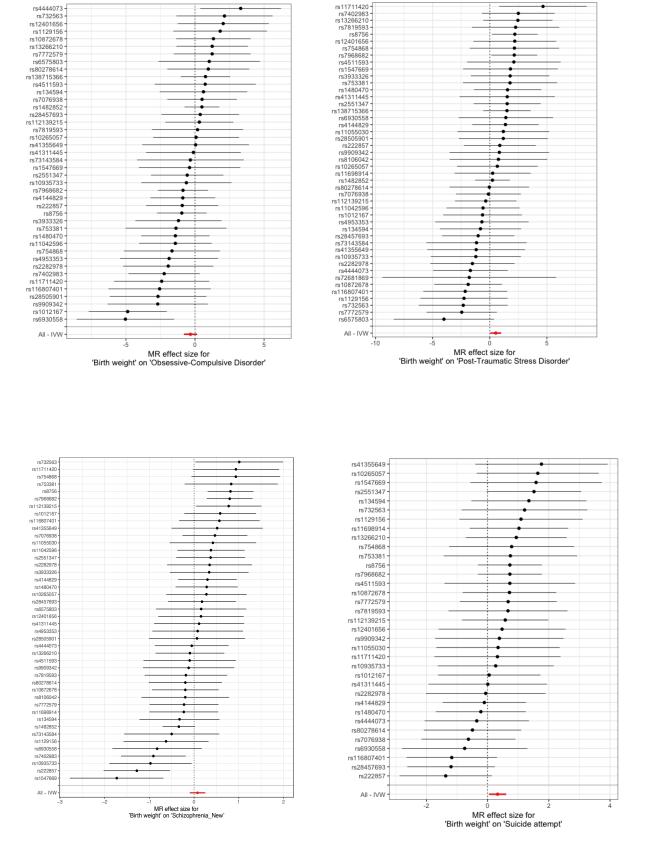

Smallest N among the analyzed	Overlap	Bias of the observational estimate, 0.4		Bias of the observational estimate, 0.8	
outcome	proportion	Bias MR estimate	Type I Error	Bias MR estimate	Type I Error
Binary outcome, N=9537	0	0.000	0.05	0.000	0.05
•	0.1	0.000	0.05	0.000	0.05
	0.2	0.000	0.05	0.000	0.05
	0.3	0.000	0.05	0.000	0.05
	0.4	0.000	0.05	0.000	0.05
	0.5	0.000	0.05	0.000	0.05
	0.6	0.000	0.05	0.000	0.05
	0.7	0.000	0.05	0.000	0.05
	0.8	0.000	0.05	0.000	0.05
	0.9	0.000	0.05	0.000	0.05
	1	0.000	0.05	0.000	0.05
Continuous outcome, N=96900	0	0.000	0.05	0.000	0.05
	0.1	0.000	0.05	0.000	0.05
	0.2	0.000	0.05	0.000	0.05
	0.3	0.000	0.05	0.000	0.05
	0.4	0.000	0.05	0.000	0.05
	0.5	0.000	0.05	0.000	0.05
	0.6	0.000	0.05	0.000	0.05
	0.7	0.000	0.05	0.000	0.05
	0.8	0.000	0.05	0.000	0.05
	0.9	0.000	0.05	0.000	0.05
	1	0.000	0.05	0.000	0.05

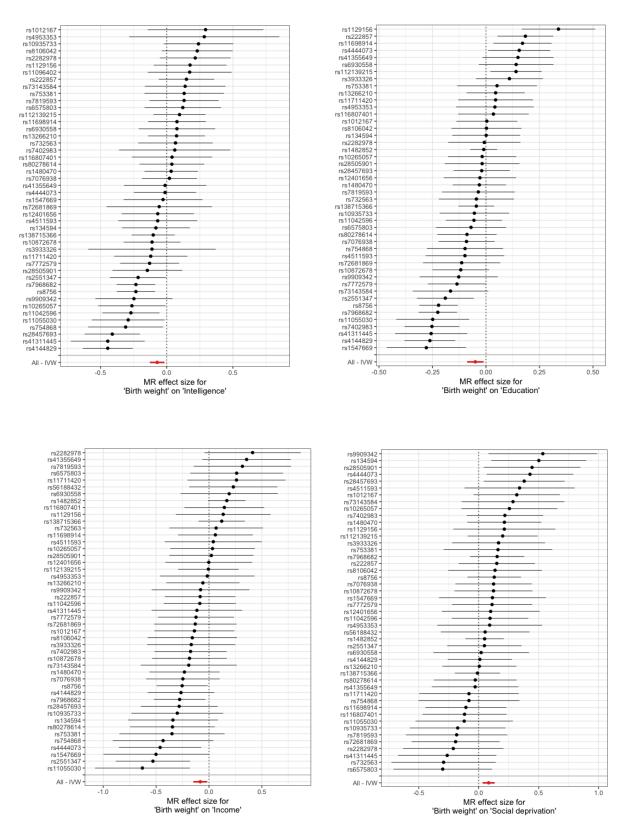
eTable 3. Potential bias due to samples overlap

eResults

Single SNP effects

The forest plots in the figure show, for each outcome, the Wald estimate for each single SNPs, as well as the pooled Inverse-Variance Weighted (IVW) effect (in red).


eFigure 2. Forest plot reporting Single SNP effects


(eFigure 2 continued)

rs4444073 rs732563 rs12401656 rs1129156 rs10872678 rs10872678 rs1026200 rs7772579 rs5575803 rs80278614 rs134715386 rs4511533 rs134594 rs7076938 rs1482852

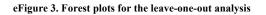
rs1482852 rs28457693 rs112139215 rs7819593

.

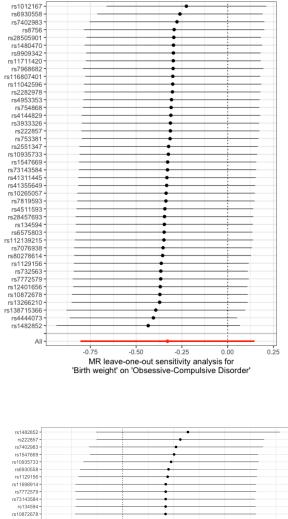
11

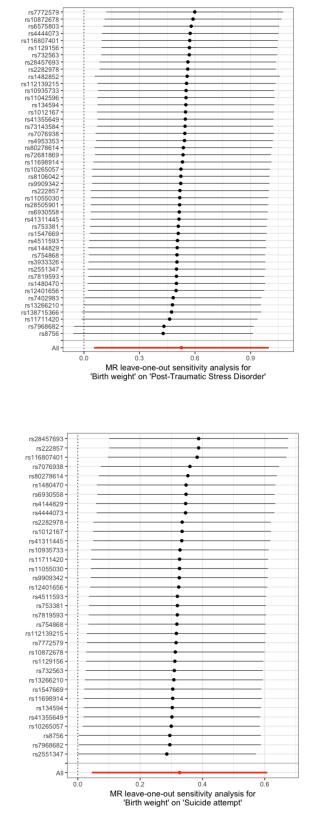
Results of the tests for pleiotropy

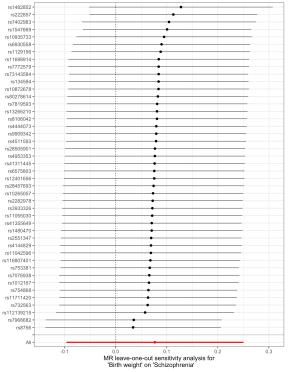
The table reports the results for the heterogeneity test (Q statistics) and the test of the MR-Egger intercept (unbalanced

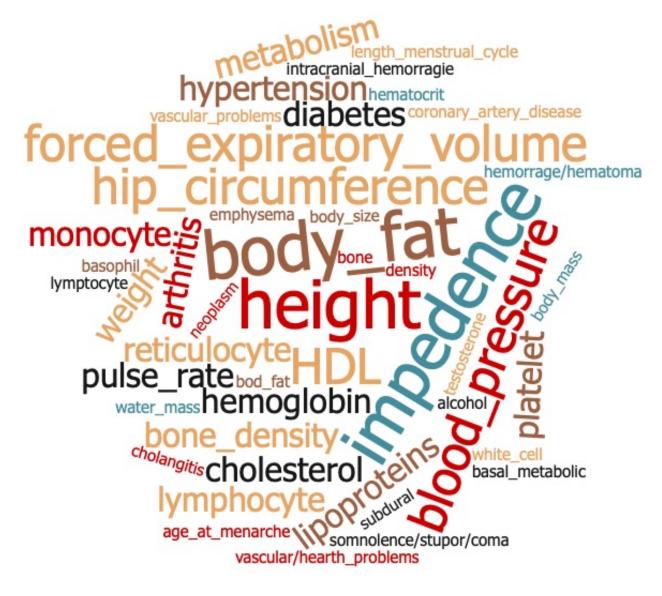

horizontal pleiotropy test).

eTable 4. Results of the tests for pleiotropy


	Q statis	MR-Egger intercept			
Outcome	Q value (DF)	Р	MR-Egger intercept	SE	Р
Attention-Deficit/Hyperactivity Disorder	71.49 (41)	0.002	0.00	0.01	0.653
Autism Spectrum Disorder	51.42 (43)	0.177	-0.01	0.01	0.157
Bipolar Disorder	64.77 (45)	0.028	0.01	0.01	0.404
Major Depressive Disorder	59.36 (45)	0.074	0.00	0.00	0.433
Obsessive-Compulsive Disorder	52.25 (41)	0.112	0.03	0.02	0.078
Post-Traumatic Stress Disorder	44.78 (45)	0.481	0.00	0.02	0.957
Schizophrenia	90.42 (43)	< 0.001	0.00	0.01	0.373
Suicide attempt	31.51 (34)	0.590	-0.02	0.01	0.172
Intelligence	104.79 (45)	< 0.001	0.00	0.00	0.123
Educational attainment	161.93 (45)	< 0.001	0.00	0.00	0.741
Income	70.75 (46)	0.011	0.01	0.00	0.024
Social deprivation	49.09 (46)	0.350	0.00	0.00	0.148


Leave-one-out analysis


The forest plots in **eFigure 3** show, for each outcome, the Inverse-Variance Weighted (IVW) estimate calculated excluding one SNP instrument at the time, as well as the IVW instrument obtained considering all available SNP instruments (in red).


PhenoScanner Search

The PhenoScanner database was searched to identify the known association between the SNP instruments (and those in linkage disequilibrium with $r^2 \ge 0.80$) and traits explored in the literature. The aim was to identify potential source of horizontal pleiotropy or potential associations with traits that can confound the exposure-outcome association. Findings (ie, the traits associated with the SNPs of interest according to the phenoScanner search) are visualized in **eFigure 4** using a word cloud in which the dimension of each word (ie, trait) is proportional to the number of SNPs associated with that trait.

eTable 4. Results of the PhenoScanner Seach

SNP	CHR	Function	Gene	Associated traits
rs1012167	20	intergenic	LINC01728	Cholesterol, lipoproteins, body fat
rs10181515	2	intergenic	NEU2	Impedance, body fat
rs10265057	7	intergenic	TNS3	
rs10935733	3	intron	RP11-680B3.2	
rs11042596	11	intergenic	IGF2	Height, length menstrual cycle
rs11055030	12	upstream	APOLD1	Height, lymphocyte count, metabolism, body fat, hypertension
rs11096402	Х	intron	PLAC1	
rs112139215	7	intron	MLXIPL	
rs1129156	19	synonym	MAP3K10	pulse rate
rs116807401	4	missense	PABPC4L	Height, body mass
rs11698914	20	intron	COMMD7	Height, monocyte count, basophil count
rs11711420	3	upstream	KLHL24	Weight, body fat
rs12401656	1	upstream	RNU6-880P	Weight, body hat
rs13266210	8	int	ANK	Diabetes, Reticulocyte
rs134594	22	upstream	KREMEN1	Bone density, Reticulocyte, arm impedance
rs138715366	7	intron	YKT6	Subdural hemorrhage/hematoma
rs1480470	12		RP11-366L20.4	Body fat, pulse rate
rs1482852	3	intergenic	LINC02029	Height, body fat, waist circumference, high-density lipoprotein, age at
181462632	5	upstream	LINC02029	menarche, hemoglobin
rs1547669	6	_	-	Height, rheumatoid arthritis, Plateletcrit, platelet count, alcohol intake
18134/009	0	-	-	
				past 10 years
rs222857	- 7	-	- CDV/	
rs2282978	7	intron	CDK6	Height, body fat, monocyte count, blood pressure, bone density, rheumatoid arthritis
rs2551347	2	intron	KLHL29	Height, body fat, lymphocyte count, impedance, white cell count
rs28457693	9	intron	PTCH1	Height, body fat, impedance, forced expiratory volume
rs28505901	9	intron	GPSM1	Height, diabetes
rs3933326	9	intron	PHF19	
rs41311445	22	3 prime UTR	SNU13	Body fat mass, height, impedance arm
rs41355649	19	downstream	CEBPA	Impedance, lymphocyte count
rs4144829	4	intron	LCORL	Body fat mass, height, basal metabolic rate, weight
rs4444073	11	downstream	ADM	Impedance, body fat, metabolism, height
rs4511593	17	intron	TNFSF12-TNFSF13	Impedance, blood pressure, body fat, testosterone
rs4953353	2	intron	EPAS1	
rs56188432	2	missense	ACVR1C	Neoplasm, emphysema, intracranial hemorrhage, body size, cholangitis, somnolence/stupor/coma
rs6575803	14	intron	MEG3	Body fat
rs6930558	6	-	-	2009 1
rs7076938	10	intergenic	ADRB1	Vascular/hearth problems, hypertension, high-density lipoprotein, heigh
rs72681869	10	missense	SOS2	Blood pressure, hip circumference, body fat, hemoglobin
rs73143584	20	intron	ZBTB46	Blood pressure, vascular problems, coronary artery disease
rs732563	8	upstream	CTC-756D1.1	Height, body fat, hip circumference
rs7402983	15	intron	IGF1R	Height, body fat, hip circumference, hip circumference, water mass,
				impedance
rs753381	20	missense	PLCG1	Cholesterol, lipoproteins, hematocrit
rs754868	2	intergenic	AC016735.1	Blood pressure
rs7772579	6	intron	ESR1	Bone density, HDL cholesterol
rs7819593	8	intron	ZFPM2	
rs7968682	12	intergenic	HMGA2	Height, body fat, forced expiratory volume, blood pressure
rs80278614	11	intergenic	TBX15	Height
rs8106042	19	intron	INSR	Height
rs8756	12	3_prime_UTR	HMGA2	Height, body fat, forced expiratory volume
	7	intergenic	RP11-173M1.4	

SNP, Single Nucleotide Polymorphism; CHR, Chromosome

Steiger filtering

The table below presents results of the Steiger filtering sensitivity analysis.²¹ This analysis verifies whether the variance in the exposure explained by the instrument SNPs is larger than the variance in the outcome explained by the instrument SNPs. As shown in the table below, this analysis suggested that the direction of the tested associations is correct (i.e., the instrument SNPs explains a larger proportion of the variance of the exposure –birth weight– than the outcomes), and the sensitivity analyses after filtering are consistent with the main analyses. Of note, MR analyses while excluding potentially problematic SNPs reduce power. For this reason, despite our hypothesized direction of causation is correct and despite results are largely consistent with the main analyses, the CI for PTSD is large and includes 1. This may likely be due to reduced power after the exclusion of potentially problematic SNPs (the PTSD GWAS has relative low sample size). It is also worth noting that Steiger filtering relies on an approximation and may be numerically unstable because R² should be estimated directly from independent replication samples (which is not the case here).

Outcome	SNP R ² exposure ^a	SNP R ² outcome ^b	Correct causal direction ^c	OR/Beta (CI) after Steiger filtering ^d	OR/Beta (CI) main analysis ^e
ADHD	0.0054	0.0012	True	1.26 (1.01-1.58)	1.29 (1.03-1.62)
PTSD	0.0062	0.0052	True	1.26 (0.69-2.31)	1.69 (1.06-2.71)
Suicide attempt	0.0042	0.0011	True	1.39 (1.05-1.84)	1.39 (1.05-1.84)
Intelligence	0.0056	0.0007	True	-0.07 (-0.13; -0.02)	-0.07 (-0.13; -0.02)
Education attainment	0.0047	0.0001	True	-0.04 (-0.07; -0.01)	-0.05 (-0.09; -0.01)
Income	0.0063	0.0008	True	-0.08 (-0.15; -0.01)	-0.08 (-0.15; -0.02)
Social deprivation	0.0063	0.0005	True	0.08 (0.03; 0.13)	0.08 (0.03; 0.13)

^a Proportion of variance in the exposure (birth weight) explained by the instrument SNPs. Should be greater than SNP R² outcome ^b Proportion of variance in the outcome explained by the instrument SNPs. Should be smaller than SNP R² exposure;

^o Proportion of variance in the outcome explained by the instrument SNPs. Should be smaller than SNP R² exposure ^c Is the hypothesized causal direction correct (based on SNP R² exposure > SNP R² outcome criterion)?

^d Association if problematic SNPs are filtered out

^e Main association

eReferences

- 1 Strauss RS. Adult functional outcome of those born small for gestational age: twenty-six-year follow-up of the 1970 British Birth Cohort. *JAMA* 2000; **283**: 625–32.
- 2 Jelenkovic A, Mikkonen J, Martikainen P, Latvala A, Yokoyama Y, Sund R, *et al.* Association between birth weight and educational attainment: an individual-based pooled analysis of nine twin cohorts. *J Epidemiol Community Health* 2018; **72**: 832–7.
- 3 Flensborg-Madsen T, Mortensen EL. Birth Weight and Intelligence in Young Adulthood and Midlife. *Pediatrics* 2017; **139**: e20163161.
- 4 Pettersson E, Larsson H, D'Onofrio B, Almqvist C, Lichtenstein P. Association of Fetal Growth With General and Specific Mental Health Conditions. *JAMA Psychiatry* 2019. doi:10.1001/jamapsychiatry.2018.4342.
- 5 Orri M, Gunnell D, Richard-Devantoy S, Bolanis D, Boruff J, Turecki G, *et al.* In-utero and perinatal influences on suicide risk: a systematic review and meta-analysis. *Lancet Psychiatry* 2019; **0**. doi:10.1016/S2215-0366(19)30077-X.
- 6 Loret de Mola C, de França GVA, Quevedo L de A, Horta BL. Low birth weight, preterm birth and small for gestational age association with adult depression: systematic review and meta-analysis. *Br J Psychiatry J Ment Sci* 2014; **205**: 340–7.
- 7 Abel KM, Wicks S, Susser ES, Dalman C, Pedersen MG, Mortensen PB, *et al.* Birth Weight, Schizophrenia, and Adult Mental Disorder: Is Risk Confined to the Smallest Babies? *Arch Gen Psychiatry* 2010; **67**: 923–30.
- 8 Franz AP, Bolat GU, Bolat H, Matijasevich A, Santos IS, Silveira RC, *et al.* Attention-Deficit/Hyperactivity Disorder and Very Preterm/Very Low Birth Weight: A Meta-analysis. *Pediatrics* 2018; **141**: e20171645.
- 9 Gunnell D, Rasmussen F, Fouskakis D, Tynelius P, Harrison G. Patterns of Fetal and Childhood Growth and the Development of Psychosis in Young Males: A Cohort Study. Am J Epidemiol 2003; 158: 291– 300.
- 10 Lampi KM, Lehtonen L, Tran PL, Suominen A, Lehti V, Banerjee PN, *et al.* Risk of autism spectrum disorders in low birth weight and small for gestational age infants. *J Pediatr* 2012; **161**: 830–6.
- 11 Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L, *et al.* Preterm Birth and Psychiatric Disorders in Young Adult Life. *Arch Gen Psychiatry* 2012; **69**: 610–7.
- 12 Wojcik W, Lee W, Colman I, Hardy R, Hotopf M. Foetal origins of depression? A systematic review and meta-analysis of low birth weight and later depression. *Psychol Med* 2013; **43**: 1–12.
- 13 Lim KX, Liu C-Y, Schoeler T, Cecil CAM, Barker ED, Viding E, *et al.* The role of birth weight on the causal pathway to child and adolescent ADHD symptomatology: a population-based twin differences longitudinal design. *J Child Psychol Psychiatry* 2018; **59**: 1036–43.
- 14 Class QA, Rickert ME, Larsson H, Lichtenstein P, D'Onofrio BM. Fetal growth and psychiatric and socioeconomic problems: population-based sibling comparison. Br J Psychiatry J Ment Sci 2014; 205: 355–61.
- 15 Breslau N. Psychiatric sequelae of low birth weight. Epidemiol Rev 1995; 17: 96-106.

- 16 Galéra C, Côté SM, Bouvard MP, Pingault J-B, Melchior M, Michel G, *et al.* Early risk factors for hyperactivity-impulsivity and inattention trajectories from age 17 months to 8 years. *Arch Gen Psychiatry* 2011; **68**: 1267–75.
- 17 Arafat S, Minică CC. Fetal Origins of Mental Disorders? An Answer Based on Mendelian Randomization. *Twin Res Hum Genet* 2018; **21**: 485–94.
- 18 Warrington NM, Freathy RM, Neale MC, Evans DM. Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank. *Int J Epidemiol* 2018; **47**: 1229–41.
- 19 Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, *et al.* Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. *Nat Genet* 2019; **51**: 804.
- 20 Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. *Genet Epidemiol* 2016; **40**: 597–608.
- 21 Hemani G, Tilling K, Smith GD. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. *PLOS Genet* 2017; **13**: e1007081.